Polarized ambient noise on Mars

Eleonore Stutzmann¹, Martin Schimmel², Philippe Henri Lognonné³, Anna Catherine Horleston⁴, Savas Ceylan⁵, Martin van Driel⁶, Simon C. Stähler⁷, William Bruce Banerdt⁸, Marie Calvet⁹, Constantinos Charalambous¹⁰, John Clinton¹¹, Mélanie Drilleau¹², Lucie fayon¹², Raphaël F. Garcia¹³, Domenico Giardini⁶, Kenneth Hurst¹⁴, Alice Jacob¹², Taichi Kawamura¹⁵, Balthasar Kenda¹⁶, Ludovic Margerin¹⁷, Naomi Murdoch¹⁸, Mark Paul Panning¹⁹, Tom Pike²⁰, John-Robert Scholz²¹, and Aymeric Spiga²²

¹Institut De Physique Du Globe De Paris ²Institute of Earth Sciences Jaume Almera - CSIC ³Institut de Physique du Globe de Paris et Université de Paris Diderot ⁴University of Bristol ⁵ETH Zurich ⁶ETH Zürich ⁷Eidgenössische Technische Hochschule Zürich ⁸Jet Propulsion Lab (NASA) ⁹Université Paul Sabatier / CNRS ¹⁰Imperial College London ¹¹Swiss Seismological Service ¹²Institut de Physique du Globe de Paris ¹³Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO ¹⁴Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA ¹⁵IPGP ¹⁶IPGP Paris ¹⁷Paul Sabatier University - Toulouse III ¹⁸ISAE SUPAERO ¹⁹Jet Propulsion Laboratory, California Institute of Technology ²⁰Imperial College ²¹Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany ²²Sorbonne Université (Faculté des Sciences)

November 24, 2022

Abstract

Seismic noise recorded at the surface of Mars has been monitored since February 2019, using the seismometers of the InSight lander.

The noise on Mars is 500 times lower than on Earth at night and it increases during the day. We analyze its polarization as a function of time and frequency in the band 0.03-1Hz. We use the degree of polarization to extract signals with stable polarization whatever their amplitude. We detect polarized signals at all frequencies and all times. Glitches correspond to linear polarized signals which are more abundant during the night. For signals with elliptical polarization, the ellipse is in the horizontal plane with clockwise and anti-clockwise motion at low frequency (LF).

At high frequency (HF), the ellipse is in the vertical plane and the major axis is tilted with respect to the vertical. Whereas polarization azimuths are different in the two frequency bands, they are both varying as a function of local time and season. They are also correlated with wind direction, particularly during the day.

We investigate possible aseismic and seismic origin of the polarized signals. Lander or tether noise are discarded. Pressure fluctuation transported by environmmental wind may explain part of the HF polarization but not the tilt of the ellipse. This tilt can be obtained if the source is an acoustic emission in some particular case. Finally, in the evening when the wind is low, the measured polarized signals seems to correspond to a diffuse seismic wavefield that would be the Mars microseismic noise.