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Abstract

Analysis of multi-temporal and spatial trends of rainfall in a river basin is an effective tool for water resources management

based on delimited hotspots of water scarcity and flooding risks. The present study aims to characterize rainfall distribution

patterns in a coastal watershed, Santa Maria da Vitória River Basin–SMVRB (Southeastern, Brazil), based on 42 meteorological

stations, using geostatistical approach (i.e., kriging), from 2004 to 2017. Anisotropy effects on rainfall were observed throughout

the year and were related to regional/continental climate processes. Trends in rainfall, from 1970 to 2017, were computed using

the RClimDex package with eleven climate extreme indices. The results show that rainfall had an irregular distribution and

droughts have become more persistent in recent years causing water scarcity to sustain crops and threatening water supply. In

the lower basin, where part of the Great Vitória metropolitan area is located, flooding risks increase in the response of intensive

short-term rainfall events. Knowledge of rainfall patterns contributes to assure water security and subsidize adaptative responses

to extreme hydrological events.
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Key points  8 

 Rainfall spatial and temporal patterns in a coastal river basin were assessed with a 9 

geostatistical approach and climate indices. 10 

 Extreme climate indices indicate that drought events in the upper basin threaten water 11 

security for agriculture and water supply. 12 

 Because of extreme rainfall events with short-term duration, the lower basin becomes 13 

more prone to flooding. 14 

Abstract 15 

Analysis of multi-temporal and spatial trends of rainfall in a river basin is a useful 16 

tool for water resources management based on delimited hotspots of water scarcity and 17 

flooding risks. The present study aims to characterize rainfall distribution in a coastal 18 

watershed, Santa Maria da Vitória River Basin–SMVRB (Southeastern, Brazil). Data from 42 19 

meteorological stations, from 2004 to 2017, were analyzed using kriging as a geostatistic 20 

tool. Anisotropy effects on rainfall were observed throughout the year and were related to 21 

regional/continental climate processes. From 1970 to 2017, trends in rainfall were computed 22 

using the RClimDex package with eleven extreme climate indices. The results have shown 23 

spatial and temporal rainfall variability, with drought events becoming more persistent in 24 

recent years. Water shortage causes water scarcity to sustain crops and threatening water 25 

supply. In the lower river basin, where part of the Great Vitória metropolitan area is located, 26 

flooding risks increase in the response of intensive short-term rainfall events. Knowledge of 27 

rainfall variability in the river basin is required to assure water security, and subsidize 28 

adaptative responses to extreme hydrological events. 29 

1 Introduction 30 

Climate oscillations can shift equilibrium states and cause the loss of stability of 31 

ecosystems and regional landscapes. The disturbance of shifting baseline influences 32 

biogeochemistry, biological productivity, biodiversity composition, and, ultimately, 33 

ecosystem services. The hydrological cycle is a critical biogeochemical process of a nested 34 

network of natural and social systems. Consequently, assuring water security for ecosystems, 35 

drinking water, economic development, and natural hazards is essential, particularly under 36 

persistent long term climate shifts further than discrete weather events. The resilience of 37 

socio-hydrological systems affected by climate oscillations at local and regional scales, and 38 

long-term changes at a global scale, have been compromised by intensive land use and land 39 

cover - LULC changes. LULC changes can amplify the frequency and intensity of climate 40 

extremes, resulting in highly severe environmental and socioeconomic impacts (Pan et al., 41 

2015; Zhao et al., 2018; Gogoi et al., 2019). As a result, it has been recognized to assure that 42 

water security is crucial to achieving a better understanding of climate patterns and dynamics 43 

(Dore, 2005; Swaney et al., 2012).  44 



2 

 

The assessment of water availability and hydrological risks and hazards for 45 

sustainable water resources management must be based on sound information emphasizing 46 

spatial and temporal rainfall distribution in watersheds (Badr & Zaitchik, 2014; Shamir et al., 47 

2015; Hartmann et al., 2016; Jepson et al., 2017; Vogel, 2017; Lima et al., 2018; Andreu et 48 

al., 2019; Gunda et al., 2019; Qin et al., 2019; Shikangalah & Mapani, 2019; Yang et al., 49 

2019; Vera et al., 2020). Changes in rainfall patterns with extended dry periods reduce river 50 

discharge with effects on water supply, hydroelectricity production (Gohar & Cashman, 51 

2016; Su et al., 2019), and disturbances on downstream ecosystems structure and functioning 52 

(Sabater et al., 2018).   53 

River discharge reductions on lower sections of tropical and warm temperate coastal 54 

basins, under low and/or highly seasonal rainfall and fluvial discharge regulation, can lead to 55 

estuarine and groundwater salinization (Alber, 2002; Tweedley et al., 2019). Ecological 56 

effects can be related to disturbing nutrient dynamics, impairing feeding, mating and nesting 57 

habitats, and reducing the biodiversity of aquatic biological communities (Atrill & Power, 58 

2000; Alber, 2002; Dai et al., 2006; Yin et al., 2014; Corbari et al., 2016; Costa et al., 2018; 59 

Lund-Hansen, 2018; Tweedley et al., 2019).  60 

A concise understanding of climate dynamics requires the definition of standard 61 

indices for the assessment of climate data. In this respect, the World Meteorological 62 

Organization–WMO assembled 27 core indices of extreme climate in the RClimeDex 63 

software package for indices calculation and climate trends outputs (Zhang & Yang, 2004).   64 

Geographic information systems (GIS) and geostatistical analysis have become 65 

powerful tools for rainfall spatial modeling and water resources management (Goovaerts, 66 

1999; Mir et al., 2017; Passarella et al., 2020). GIS can handle analog, and digital 67 

georeferenced data spatially indexed in a database for problem-solving using spatial analysis. 68 

Geostatistical analysis has been considered as a practical approach for modeling climate 69 

variables due to high accuracy and low errors of spatial models. Experimental variograms 70 

allow the most suitable model fit for spatial data dependence, including directional effects 71 

(i.e., anisotropy) on regionalized variables, improving variable predictions and with low costs 72 

(Holdaway, 1996; Holawe & Dutter, 1999; Noori et al., 2014; Mendez & Calvo-Valverde, 73 

2016; Ozturk & Kilic, 2016).  74 

This study aims to analyze the spatial and temporal variability and trends of rainfall 75 

data using meteorological stations, from 1970 to 2017, at a coastal river basin in southeastern 76 

Brazil, Santa Maria da Vitória River Basin–SMVRB, to promote effective water resources 77 

management of the fluvial-estuarine hydrological system.  78 

2 Materials and Methods 79 

2.1 Study area  80 

The Santa Maria da Vitória River Basin–SMVRB drains an area of 1,799.6 km
2
 81 

comprising the municipalities of Santa Maria de Jetibá, Santa Leopoldina and part of 82 

Cariacica, Serra, and Vitória in Espírito Santo state, southeastern Brazil (Figure 1a). The 83 

SMVRB drains to Vitória Bay estuarine system–VBES (42.9 km
2
), which mangrove forests 84 

cover 57.9 % (24.8 km
2
) of the area under a microtidal (<2.0 m) and semidiurnal regime. The 85 

VBES watershed (1,921 km
2
), which embraces the other nine river basins, has a mean 86 

estimated discharge of 65.14 m
3
/s (2.0×10

9
 m

3
/yr) with SMRVB contributing with 80% of 87 

fluvial discharge (Teubner Jr. et al., 2018).  88 

The rugged SMVRB relief embraces elevations from sea level at Quaternary coastal 89 

plains, in the lower basin, to 1,421 m at the headwaters, where pre-Cambrian gneisses and 90 
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granitic rocks predominate. The average slope of SMVRB is 12.8%, with significant 91 

elevation changes in the middle basin section. The regional climate is seasonal, with a hot 92 

wet summer and dry, mild winter, with a mean annual rainfall of 1,300 mm (Teubner Jr. et 93 

al., 2018). Koppen climate classes are Cfb, Cfa, and Am and account to 42.3, 22.8, and 32.4 94 

of the basin areas at the upper, middle, and lower sections, respectively (Alvares et al., 2013). 95 

The Aw class accounts for 2.5% of the SMVRB area within 200 and 400 m elevation in the 96 

middle basin section. 97 

The SMVRB has three main water reservoirs, with two of them in operation for 98 

hydropower generation in the main river course: Rio Bonito (2.4 km
2
 of surface area and 22.5 99 

MW of hydropower capacity) with annual storage regulation; and Suiça (0.14 km
2
 of surface 100 

area and 33.5 MW of hydropower capacity) with daily regulation (Teubner Jr. et al., 2018). 101 

In 2012 the LULC of SMVRB was characterized by native Atlantic forest (45%) 102 

followed by pastureland (16%), croplands (14%), and Eucalyptus forestry (7%). Urban areas 103 

account for 4% of the river basin area and are primarily concentrated in the lower basin 104 

section (Figure 1c). In 2010, population counting for the whole VBES was 1,159,350 105 

inhabitants, most of them living in the urban Great Vitória Metropolitan Area at the coastal 106 

plain. SMVRB is the primary source of water for urban supply (Teubner Jr. et al., 2018). 107 
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 108 

Figure 1. Study area: a) SMVRB digital elevation model; b) location of SMVRB and 109 

meteorological stations for rainfall data in the Espírito Sato State, Southeastern Brazil; c) 110 

2012 land use and land cover–LULC (Restinga: coastal plain herbaceous and shrub 111 

vegetation), according to GEOBASES (2015).    112 

2.2 Rainfall data  113 

Rainfall data from 2004 to 2017 were obtained from 42 meteorological stations at 114 

Hidroweb, a database of hydrologic information of the National Water Agency (ANA) 115 

(Figure 1b). The dataset from 2018 to 2019 was not considered because of the incomplete 116 

records of several meteorological stations. When data gaps and inconsistencies were found in 117 

temporal series, gaps were filled, considering a threshold of 10% of monthly data. Multiple 118 

linear regressions considering a set of three meteorological stations, spatially nearer and 119 

within the same geomorphological feature, were applied as a filling method. Regressions with 120 

r
2
 > 0.7 were considered, while months with lower coefficients were discarded from temporal 121 

series.   122 
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2.3 Interpolation of rainfall data and processing of continuous surface models  123 

Continuous spatial distributions of rainfall data were interpolated for each month from 124 

2004 to 2017. Geostatistical analysis with ordinary kriging with a spherical variogram model 125 

was applied to rainfall data using the GIS package ESRI ArcGIS 10.7 with UTM coordinate 126 

system and SIRGAS 2000 datum. As a statistical requirement for monthly means, outliers 127 

and non-normal distribution data (Naoum and Tsanis, 2004), assessed with the Shapiro-Wilk 128 

test and R software, were excluded. Rainfall predictions for the SMVRB were inferred with 129 

spatial correlations of meteorological station data through experimental variograms. As a 130 

geostatistical requirement, the spatial data structure analysis was based on the spatial 131 

correlation between samples and their distances (Goovaerts, 1999). 132 

Interpolation results were evaluated considering reports of variograms parameters, 133 

cross-validation errors, linear regressions between predicted and measured values, rainfall 134 

prediction maps, and maps of associated errors. Adjustments on variograms parameters are 135 

required for high kriging capacity for climate datasets spatialization, including regions with 136 

low data densities (Campling et al., 2001; Aalto et al., 2012; Choudhury et al., 2015). 137 

Additionally, kriging procedures can consider, in variogram analysis, data anisotropy, which 138 

is a common feature of climate data (Holdaway, 1996).   139 

Monthly mean rainfall models were developed with ESRI ArcGIS 10.7 raster algebra 140 

routines. Time series of annual rainfall for the same period, from 2004 to 2017, was 141 

computed considering annual precipitation. Descriptive statistics were acquired using ESRI 142 

ArcGIS 10.7 raster calculation routines for each continuous surface model of annual rainfall. 143 

2.4 Climate Extreme Indices–CEI 144 

The evaluation of climate change effects was computed using the software RClimDex 145 

with 11 rainfall related Climate Extreme Indices - CEI from the 27 core indices. The Expert 146 

Team proposed the RClimDex on Climate Change Detection Monitoring and Indices - 147 

ETCCDMI (Zhang & Yang, 2004) (Table 1). After the evaluation of discontinuities and gaps, 148 

a rainfall dataset of 34 meteorological stations, from 1970 to 2017, was selected for CEIs 149 

computation. Datasets with more than 25% of annual gaps and monthly datasets with more 150 

than three gaps were excluded. For each computed index, RClimDex provides as outputs 151 

statistical reports, linear trends based on least squares, statistical trend significance levels, 152 

according to the Fischer method, and standard error estimates (Zhang & Yang, 2004). In the 153 

present study, the confidence level for CEIs were 90 and 95%. Ordinary kriging with 154 

spherical models was applied to interpolate CEI data using ArcGIS.  155 
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Table 1  156 

Selected indices of extreme climate applied in the study area 157 

ID Name Definition Unity 

RX1day 1 day maximum rainfall Maximum 1 day monthly rainfall mm 

RX5day 5 days maximum 

rainfall 

Maximum 5 consecutive days monthly 

rainfall 

mm 

SDII Simple daily index The ratio of annual rainfall and rainy 

days (≥1 mm) 

mm/day 

R10mm Days with intense 

rainfall 

Days with rainfall ≥10 mm days 

R20mm Days with high intense 

rainfall 

Days with rainfall ≥ 20 mm days 

R50mm Days with rainfall 

higher than 50 mm 

Days with rainfall ≥ 50 mm days 

CDD Consecutive days of 

droughts 

Maximum consecutive days of rainfall < 

1 mm 

days 

CWD Consecutive rainfall 

days 

Maximum consecutive days of rainfall ≥ 

1 mm 

days 

R95p Very wet days Annual total PRCP when RR>95
th

 

percentile 

mm 

R99p Extremely wet days 
Annual total PRCP when RR>99

th
 

percentile 

mm 

PRCPTOT Annual total wet day 

precipitation 

Annual total PRCP in wet days 

(RR≥1mm) 

mm 

 158 

3 Results and Discussion 159 

3.1 Rainfall temporal variability 160 

The interpolation of monthly rainfall data, using spheric kriging, produced 168 161 

continuous surface models with 30 m of spatial resolution and the associated cross-validation 162 

errors. Figures 2 show the mean monthly rainfall and related RMS. Lowest RMS were 163 

associated with lower data variability of dryer periods, principally after 2014. Seasonality of 164 

wet months (>120 mm) comprise from late spring to early fall, and dry months (<60 mm) 165 

from late fall to middle spring (Figure 2a and Table 2). December and November account for 166 

35% of annual precipitation. 167 
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 168 

 169 

Figure 2. Boxplots of rainfall and estimated errors (RMS) in mm in the study area: a) 170 

mean monthly rainfall; b) mean RMS of monthly rainfall. 171 

Table 2  172 

Descriptive statistics of monthly rainfall (mm) for 2004 and 2017. Data from month 173 

rainfall spacial models 174 

Month Minimum Maximum Mean 
Standard 

deviation 

January 3.91 336.75 150.39 112.74 

February 30.66 369.16 117.61 95.87 

March 32.03 399.46 179.62 115.55 

April 55.03 211.19 107.81 50.90 

May 0.93 205.52 63.98 57.25 

June 14.70 184.99 62.81 41.65 

July 3.93 149.49 52.09 40.24 

August 9.91 189.03 46.46 46.28 

September 23.94 115.80 51.00 24.58 

October 34.40 386.32 108.65 88.94 

November 65.59 425.36 219.57 95.59 

December 75.97 710.63 239.33 161.38 

    175 

Mean annual rainfall along the 13 years was 1,339.4 ± 367.4 mm. 2005 and 2013 176 

were the wettest years with 2,044.3 and 1,959.5 mm, respectively. For the Considering 177 

monthly averages from 2004 to 2017, the highest positive anomalies were concentrated in 178 

February, May, and June of 2005. The anomalous precipitation recorded for the year 2013 179 

was concentrated in December, reaching three times the monthly average. 180 
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The driest years were 2015, 2007, and 2014, with 789.1, 928.0, and 949.8 mm of 181 

rainfall, respectively. However, the drought of 2014 and 2015 seems to be the most severe, 182 

considering the lower rainfall variability along the 14 years.   183 

The highest rainfalls of November and December are related to the South Atlantic 184 

Convergence Zone (SACZ). SACZ is an important climatological feature of the austral 185 

summer in South America, with high precipitation extending NW to SE, from the Amazon 186 

toward southeastern Brazil, and occurring between October to March with a period of at least 187 

three days (Carvalho et al., 2004; Abrizzi & Ferraz, 2013). Conversely, the dry season, which 188 

extends from June to August, is primarily controlled by semi-permanent meteorological 189 

phenomena of South Atlantic, such as cold fronts (CF) and the South Atlantic Subtropical 190 

High (SASH) (Santos et al., 2019). 191 

The anisotropic pattern of rainfall variograms indicates an NW trend for the wettest 192 

months. In contrast, for the dry season, the tendency is SW and S (Figure 3). Rainfall in the 193 

dry season is driven by the dominant CF and SASH atmospheric systems. During this season, 194 

the SASH is displaced from the middle South Atlantic Ocean towards the continent, where 195 

lower temperatures prevent low-pressure systems, decreasing rainfall (Santos et al., 2019). 196 

Anisotropy is a parameter obtained by analyzing the structure of the data in the 197 

experimental variogram. It indicates a directional tendency of natural phenomena. Thus, the 198 

data show the best estimates of predictions with lower associated errors in a particular 199 

direction. Nevertheless, predictions of different anisotropic and isotropic variograms may not 200 

be significant (Haberlandt, 2007). Anisotropy is a common phenomenon associated to 201 

climate variables since its relation with other factors, whether climatic as preferential to wind 202 

direction, orogenic to geomorphology, geographic as the distance from the sea, among others 203 

(Arbia & Lfratta, 2002; Niemi et al., 2014; Wadoux et al., 2017).   204 

The analysis of the experimental variograms of the mean monthly directional trends, 205 

for the period from 2004 to 2017, shows a relative homogenization of the anisotropy 206 

throughout the year (Figure 3). The mean annual anisotropy of rainfall in the study area, 207 

based on 168 monthly rainfall measurements, is oriented towards SW-S direction (133.7°) 208 

(Figure 3m). For the driest months, between June and August, the directional trend is oriented 209 

towards SW-S (Figure 3f-h). The wettest months, November and December, show 210 

preferential anisotropy towards NW. From January to April, anisotropy in the BHSMV is in 211 

the NE direction. From June to August, the direction follows S-SW. 212 

The Espírito Santo central region is characterized by a marked change in elevation 213 

from NW to SE, from the hinterland towards the coast. This rouged relief influence the 214 

directional trends of rainfall anisotropy as a spatial dependent factor. A more refined 215 

understanding of rainfall anisotropy variability in the river basin would require a more 216 

spatially dense network of meteorological stations and extensive time series.    217 
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 218 

Figure 3. Variograms preferential directions of mean monthly (a-l) and annual 219 

rainfall (m) in the study area for the period of 2004 to 2017 (n = 168): a) January; b) 220 

February; c) March, d) April; e) May; f) June; g) July; h) August; i) September; j) October; k) 221 

November; l) December; (m) annual. 222 

3.2 Rainfall spatial variability 223 

Throughout the year, the spatial distribution of rainfall in the SMVRB is 224 

geographically heterogeneous, with lower precipitation in the upper and west basin sectors 225 

during the dry season. In the wettest month, December, the amount of rainfall is higher in the 226 

west part of the river basin. During December, the rainfall is related to the SACZ (Figure 3L; 227 

Figure 4L). 228 
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 229 

Figure 4. SMVRB mean monthly rainfall (mm) for the period of 2004 to 2017: a) 230 

January; b) February; c) March, d) April; e) May; f) June; g) July; h) August; i) September; j) 231 

October; k) November; l) December. 232 

The spatial patterns of annual rainfall are shown in Figure 5. For the years 2005 and 233 

2013, the wettest years, the precipitation was concentrated in the middle basin section, where 234 

the relief is more accentuated. The accumulation of rainfall in the middle section can also be 235 

observed in other years. This pattern demonstrates the influence of maritime and 236 

continentality on rainfall and associated regional instability lines.    237 

In this sense, the distance from the ocean towards the continent, exert a wide range of 238 

influences on regional climate conditions.  The hilly relief of the middle SMVRB, 239 

geomorphic, dominated the south Espírito Santo staggered levels. The foothills of mountain 240 

range concentrate and trap part of precipitation, producing a rain shadow with low rainfall 241 

towards the upper basin section where the Caparaó massive dominates. Therefore, the 242 
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mountain range increases precipitation associated with frontal rains at foothills of staggering 243 

levels. In the plateau, rainfall decreases toward the driest upper west part of the basin. 244 

 245 

Figure 5. SMVRB annual rainfall (mm) for the period of 2004 to 2017. 246 

3.3 Extreme Climate Indices 247 

The analysis of time series trends is associated with its non-stationarity throughout its 248 

development to an average. Several factors that driven non-stationarity, are commonly related 249 

to factors inherent to the studied phenomenon, presenting as seasonal components, trend, or 250 

heterogeneity of variances (Milly et al., 2008; Milly et al., 2015). However, the non-251 

stationarity of the data is a sophisticated statement that requires that the variable distribution 252 

depends on the time associated with a deterministic statistical function (Serinaldi & Kilsby, 253 

2015; Serinaldi et al., 2018).   254 
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Climate indices have been commonly applied in the analysis of climate features, 255 

mainly for rainfall variables, due to the relevance of knowing the temporal distribution of 256 

rainfall for socioeconomic and environmental issues. Figure 6 shows the annual spatial 257 

features of CEI associated with rainfall at SMVRB. 258 

 259 

Figure 6. Rainfall indices at SMVRB computed with RClimDex from 1970 to 2017: 260 

a) CDD–consecutive dry days; b) CWD–consecutive wet days; c) RX1day–maximum rainfall 261 

amount in one day; d) RX5day–maximum rainfall amount in five days; e) RX10mm–number 262 

of days in a year with rainfall amount higher than 10 mm; f) RX20mm–number of days in a 263 

year with rainfall amount higher than 20 mm; g) RX50mm–number of days in a year with 264 

rainfall amount higher than 50 mm; h) R95p–extremely wet days with total annual higher 265 

than 95 percentiles; i) R99p–extremely wet days with total annual higher than 99 percentiles; 266 

j) SDII–simple day intensity index for rain; k) PRCPTOT–total annual rainfall.     267 

The PRCPTOT index indicates that rainfall for rainy days (>1 mm) shows a negative 268 

trend for 71.4% meteorological stations. The PRCPTOT index shows a trend for rainfall 269 

below time-series average and drought conditions along half of the 60s, 80s, and 90s (Figure 270 

7a). Spatial analysis of PRCPTOT presents a decrease towards W and NE, while towards E, 271 

in the coastal basin section, the amount of rainfall increase (Figure 6k). Overall, there is a 272 

trend for rainfall decrease in the upper basin sector, which is the contributing area with the 273 

complex runoff processes for water production in the basin. Moreover, the upper basin sector 274 

shows high water demands for crop irrigation, which could impair agriculture production and 275 

other economic activities if the negative trends of the PRCPTOT index are verified. 276 

The analysis of consecutive dry days, computed with the CDD index, indicates a 277 

tendency of increase for a significant part of the basin, as shown for 82.3% climate stations, 278 

37.9% of them with statistical significance. The trend of dryness is shown with the increase 279 

of the CDD index after 2014 (Figure 7b) and a sharp decrease of PRCPTOT (Figure 7a). The 280 

CDD index indicates a robust positive tendency for the lower basin section, with increasing 281 

rainfall intensity but concentrated in a few days (Figure 6a). The lower basin, particularly the 282 

coastal compartment, has been most urbanized, concentrates a significant part of the 283 
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population (Teubner Jr. et al., 2018), and is vulnerable to SACZ events of high rainfall with 284 

short duration. Urban impacts, such as flooding, landslides, and homeless inhabitants, have 285 

been reported in the Great Vitória after SACZ torrential rainfalls (Marchioro et al., 2016).   286 

The statistical significance associated with high positive tendencies for the CWD 287 

index, which indicates consecutive wet days, were found for 14.7% of meteorological 288 

stations. A decreasing trend was evident in the temporal series (Figure 7c). The spatial trends 289 

of CWD for the coastal sector of SMVRB are following CDD and PRCCPTOP results 290 

(Figure 6b). Therefore, the tendency for increasing precipitation in a short time interval is 291 

indicated for the highly populated coastal sector. This trend increases the risks of flooding 292 

and impacts related to rainfall drainage (Marchioro et al., 2016). 293 

The R10mm index shown a negative tendency in 85,3% stations, with 43.3% of them 294 

statistically significant. In general, the R10mm index follows previous indices' results with 295 

the tendency of rainfall reduction through the increase of consecutive dry days and 296 

concentrated rainfall in consecutive wet days in the lower section of the SMVRB. The 297 

R20mm index, which has shown negative trends, while the R50mm index is showing positive 298 

trends for 82.3% stations and a shift with increasing years with intensive rainfall (>50 mm) 299 

(Figure 6e-g and Figure 7d-e). Monthly or annual thresholds of rainfall indices are essential 300 

to identify different types of events throughout the historical series. This type of approach is 301 

commonly used in the climatological analysis to verify the frequency of days with extreme 302 

precipitation values. 303 

The SDII has shown positive trends for daily rainfall intensity at 76.5% stations, with 304 

30.8% of them with statistical significance, as shown in Figure 7f. Following the CDD and 305 

PRCPTOT indexes, SDII also shows a trend for high daily rainfall occurring in rare events in 306 

the coastal sector. Maximum daily rainfall rates are also in conformity to the coastal rainfall 307 

increase (Figure 6j). 308 

The RX1day and RX5day indexes show positive trends for 76.5% climate stations, 309 

34.6% of them with statistical significance, and 91.2% stations with 19,3% of them with 310 

statistical significance, respectively. These two indexes are following the other indexes 311 

analyzed with the trend of extended dry periods and short periods of intense rainfall, verified 312 

with more intensity in the eastern portion of SMVRB (Figure 6c-d).   313 

For the long term, the R95p and R99p, which indicate extremely wet days, with total 314 

annual higher than 95 and 99 percentiles and positive trends for 85.3% and 76.5% climate 315 

stations, respectively, show a trend for high rainfall intensity in the short term, particularly in 316 

the coastal section. Trends of increasing very wet days and extremely wet days were evident 317 

in Figure 7g-h.  The increasing rainfall on consecutive days, as indicated with the RX5day 318 

index, can lead to hydrological hazards in the coastal section.   319 
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 320 

Figure 7. Linear trends of rainfall indices for Cachoeira Suíça a climate station for 321 

1961 to 2017: a) PRCPTOT; b) CDD; c) CWD; d) R10mm; e) R50mm; f) SDII; g) R95p, and 322 

h) R99p. The continuous line is the linear regression trend, and the dashed line is the locally 323 

weighted scatterplot smoothing. 324 

The consecutive droughts of the late 80s and early 90s can be associated to intense El 325 

Niño-Southern Oscillation (ENSO) events of 1987-1988, 1991-1992 and 1993-1994 (Sobral 326 

et al., 2019) and related positive anomalies of the sea surface temperature (SST) in the 327 

Tropical North Atlantic (Araújo & Brito, 2011). The ENSO is associated with changes in 328 

oceanic and atmospheric systems with the warming of Pacific Ocean SST affecting the 329 

climate system with the decrease of equatorial trade winds intensity and, consequently, the 330 

pattern of rainfall distribution in South America (Cane, 2005). As a cold phase of El Niño, La 331 

Niña (LN) is the cooling of Equatorial  Pacific Ocean SST, decreasing rainfall in Southern 332 

South America. It is the extreme LN event of early 2007 and middle 2008 (Sobral et al., 333 

2019). 334 
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Regardless of  ENSO and LN interannual variability, the intensity and frequency of 335 

these climate oscillations have been increasing. This scenario can be aggravated with global 336 

warming of 1.5°C above the preindustrial levels as it has been predicted in several climate 337 

change models (Yeh, 2009; Cai et al., 2014; Wang et al., 2017).   338 

Because of water scarcity scenarios, climate extreme indices based on precipitation 339 

have been applied to Brazilian arid and semiarid regions (Santos and Oliveira, 2017; Bezerra 340 

et al., 2018) and Southeastern region (Tafarello et al., 2016; Mohor & Mendiondo, 2017). 341 

Nevertheless, these indices are functional tools for analysis of positive trends of short-term 342 

intensive rainfall and, therefore, associated with hydrological hazards. 343 

The climate extremes indices have indicated water scarcity at the SMVRB upper 344 

section, where agriculture and poultry activities are concentrated. The water shortage in the 345 

upper basin can also threaten the water regulation capacity of the Rio Bonito Reservoir 346 

(RBR), which regulates the fluvial discharge of River Santa Maria da Vitória and 347 

compromising the water supply of a part of Great Vitória metropolitan area. In September 348 

2016, the water volume of RBR was below 30% of its storage capacity (13.6×10
6
m

3
). 349 

Thus, the understanding of rainfall characteristics and patterns can be an effective 350 

way to address water security and subsidize the formulation of public policies (Guzmam et 351 

al., 2017). The prediction of a 45% increase of irrigated cropland areas in Brazil for 2030 352 

requires the best irrigation practices, improved reservoirs management, and adequate water 353 

resources grants to assure downstream water security (ANA, 2017). Water use grants issued 354 

by a public agency are a crucial tool for water resources regulation in Brazil. The granting 355 

system for water uses rights aims to assure river basin water security, through the analysis of 356 

quali and quantitative water availability.    357 

Changes in rainfall patterns can lead to a reduction of river discharge and 358 

consequently, water scarcity in river basins impairing several economic activities (Marengo 359 

and Bernasconi, 2014; Escobar, 2015; Nobre et al., 2016). This scenario demands an 360 

evaluation of effective public policies and measures to ensure the storage of rainfall water in 361 

the fluvial system. Water storage can be achieved through construction and operation of 362 

reservoirs, and structural best management practices, such as small sediment basins (Strauch 363 

et al., 2013; Saad et al., 2018), as well as adopting more integrative approaches such as 364 

ecosystem-based management (Vörösmarty et al., 2018). In respect to the last issue, the 365 

payment for ecosystem services (PES) approaches recently adopted in Brazil, such as the 366 

Espirito Santo State Program for Increase of Forest Cover. The Reflorestar Program aims to 367 

restore the hydrological cycle through the restoration of forest cover in key river basin 368 

headwaters for water production with landowners' payment (SEAMA, 2019). 369 

The integration of science and governance to foster public policies is complicated 370 

since the arrangement of several issues, including available technology and social behavior, 371 

and the lack of understanding of holistic approaches for implementing sustainable policies 372 

(Liu et al., 2015; Rose & Parsons, 2015; Mercure et al.,  2016; Mercure et al., 2019). 373 

Understanding spatial and temporal rainfall distribution through spatial modeling is essential 374 

for the sustainable development of river basins. 375 

4 Conclusions 376 

Kriging was a practical approach to model rainfall data, through spatial interpolation, 377 

at SMVRB.  The spatial analysis of rainfall datasets from 2004 to 2017 has shown the effect 378 

of basin geomorphology, with orographic retention of precipitation in the steep middle basin. 379 

Anisotropy of rainfall orientation was related to continental and regional climate processes.  380 
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Scenarios of water scarcity have been verified in recent years associated with climate 381 

events on a global scale. Rainfall-based extreme climate indices have shown a trend for high-382 

intensity rains with short duration in the coastal section of SMVRB, which is located in the 383 

Great Vitória Metropolitan Area. Conversely, a tendency for rainfall reduction in the upper 384 

basin section may lead to a water shortage, which can be aggravated because of damming 385 

fluvial tributaries for intensive irrigation of croplands.   386 

The spatial analysis and rainfall indices have shown the heterogeneity of distribution 387 

and trends of precipitation. We identify hotspots that need different approaches for water 388 

resources management. In upper section basin strategies for mitigating the drought associated 389 

with intensive agriculture is necessary. On the other hand, in the lower section, the trends for 390 

flooding in urban areas and the scarce water supply in some years show that it is essential to 391 

adopt adaptive measures to mitigate the socio-hydrological effects of changes on rainfall 392 

patterns. It is suggested that further studies emphasizing the extremes of climatic conditions 393 

must be carried out using a more extensive range of meteorological stations with statistical 394 

significance above 90%. Future studies using seasonal indices can also identify other patterns 395 

and trends not verified by the annual and monthly indices applied in the present work. 396 

Develop the adoption of sustainability in public management of water resources 397 

should be in a participatory and decentralized scheme, involving diverse and representative 398 

stakeholders, integrating governance, science and society, presenting clear articulations 399 

between these spheres with the focus of rainfall distribution and water resources availability. 400 
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