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Abstract

The withdrawal of fluid from a reservoir results in a decline of the fluid

pressure followed by a consequent change in stress state in porous rocks.

Stress change may cause irreversible deformation and compaction. Such

compaction is generally the result of pore collapse and shear-enhanced compaction

caused by changes at a microscopic level in the porous rocks. Pore

collapse and shear-enhanced compaction are considered as potential problems

during reservoir production and drilling operations. The purpose of

this paper is to analyze the pore collapse and shear-enhanced compaction in

hydrocarbon reservoirs using coupled poro-elastoplasticity and permeability.

This coupling is implemented using a sequentially coupled scheme with a

fixed stress split. In this coupling, the poro-elastoplasticity analysis includes

the linear component based on Biot’s theory and the nonlinear component

based on a cap plasticity model. The fluid flow formulation is defined by

Darcy’s law, including nonlinear permeability model. The numerical approximation

is implemented using continuous finite element approximations for

rock deformation and mixed finite element approximation for pore pressure

and flux. Several numerical simulations are performed to indicate the onset of pore collapse and shear-enhanced compaction

and evaluate their effects on

reservoir performance.
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Abstract

The withdrawal of fluid from a reservoir results in a decline of the fluid
pressure followed by a consequent change in stress state in porous rocks.
Stress change may cause irreversible deformation and compaction. Such
compaction is generally the result of pore collapse and shear-enhanced com-
paction caused by changes at a microscopic level in the porous rocks. Pore
collapse and shear-enhanced compaction are considered as potential prob-
lems during reservoir production and drilling operations. The purpose of
this paper is to analyze the pore collapse and shear-enhanced compaction in
hydrocarbon reservoirs using coupled poro-elastoplasticity and permeability.
This coupling is implemented using a sequentially coupled scheme with a
fixed stress split. In this coupling, the poro-elastoplasticity analysis includes
the linear component based on Biot’s theory and the nonlinear component
based on a cap plasticity model. The fluid flow formulation is defined by
Darcy’s law, including nonlinear permeability model. The numerical approx-
imation is implemented using continuous finite element approximations for
rock deformation and mixed finite element approximation for pore pressure
and flux. Several numerical simulations are performed to indicate the onset
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of pore collapse and shear-enhanced compaction and evaluate their effects on
reservoir performance.
Keywords: Pore Collapse, Shear-Enhanced Compaction, Coupled
Poro-Elastoplasticity and Permeability, Finite Element Analysis.

1. Introduction

Surface subsidence over producing hydrocarbons, caused by a reduction of
fluid pressure and consequent compaction of reservoir rocks, enhances prob-
lems for drilling operation and reservoir production (Simon et al., 1982; Sulak
& Danielsen, 1988; Gurevich & Chilingarian, 1993). Historically, there are
many well-known cases of surface subsidence and reservoir compaction, such
as Ekofisk oil fields in North Sea, Wilmington in California, and Lagunillas
fields in Venezuela. Compaction can occur as the effects of mechanical and
chemical process, which is a considerable challenge to understand during the
long-term reservoir production (Ostermeier, 2001). The chemical compaction
commonly becomes the dominant process at higher depths and mechanical
compaction governs the response at lower depths (Poulet & Veveakis, 2016).

In the mechanical regime, such compaction is due to pore collapse and
shear-enhanced compaction, which they can change the strain state of reser-
voir and then, causes to reduce porosity and permeability (Brace, 1978).
Reduction of porosity and permeability may lead to reduce oil production
that can have a considerable influence on the further recovery of hydrocar-
bons (Xiong et al., 2018). This phenomenon is more common in weakly
cemented, poorly-consolidated, overpressured reservoirs, high porosity and
low permeability rock (Hoek, 2016). The onset of pore collapse and shear-
enhanced compaction typically depends on the properties of the reservoir,
such as depth and thickness of the reservoir, initial stress state, pore pres-
sure, and the reservoir stress path (Zoback, 2007). However, these phenom-
ena have been analyzed, they are not considered in the conventional reservoir
simulation (Wan, 2002).

Pore collapse has been studied widely in the literature, such studies have
shown macroscopically the pore collapse phenomena in the laboratory, e.g.,
(Blanton, 1981; Johnson et al., 1988) and such researchers have indicated the
microscopic changes because of pore collapse in reservoir rocks (Addis, 1987;
Abdulraheem et al., 1994). Heiland (2003) expressed that with an increase
of hydrostatic stress, the porosity and permeability reduce continuously until
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the initiation of pore collapse which the permeability reduction undergoes a
sharp decline. Moreover, Coelho (2003) indicated that a cap plasticity model
is able to clearly indicate the pore collapse of porous rocks.

Shear-enhanced compaction has been studied by several researchers, such
as Schock et al. (1973); Curran & Carroll (1979) who presented that the
shear-enhanced compaction can be induced by the application of a nonhy-
drostatic stress. Tembe et al. (2008) indicated the onset of shear-enhanced
compaction by using acoustic emission. Baud et al. (2006) expressed that
the onset of shear-enhanced compaction can be described using cap plasticity
model. Also, Jongerius (2016) expressed that a large reduction in porosity
and permeability is observed once the shear-enhanced compaction is started.

To analyze pore collapse and shear-enhanced compaction in hydrocar-
bon reservoirs and its impact on reservoir performance, the coupled poro-
elastoplasticity and fluid flow is required. This coupling is complex, because
of the complexity of the physics and of the complicated geometry of the
reservoir rock (Lewis et al., 2003). Poro-elastoplasticity is usually presented
through the elastoplasticity constitutive models. The implementation of the
elastoplasticity models in finite element demands the use of numerical inte-
gration algorithms for presenting the incremental evolution of stresses and
hardening parameters (Borja & Lee, 1990).

Originally, the coupled fluid flow and deformation in porous media was
first described by Terzaghi (1925). He proposed the concept of effective stress
for incompressible solid grains. His one-dimensional consolidation theory has
hitherto used in subsidence problems. Later, the extension of the Terzaghi’s
work to the three-dimensional was formulated by Biot (1941b,a) in a frame-
work consistent with the basic principles of continuum mechanics. Subse-
quently, he developed the poroelasticity theory for anisotropic and nonlinear
materials (Biot, 1955; Biot & Willis, 1957; Biot, 1962, 1973). Also, the devel-
opment of consolidation theories of complex models dealing with nonlinear
problems and thermal effect was done by (Small et al., 1976; Coussy, 1989;
Lewis & Schrefler, 1998). Moreover, the extension of poroelasticity to poro-
elastoplasticity was devleoped by (Coussy, 1995). The following publications
deal with the modeling of coupled fluid flow and deformation: (Settari &
Mourits, 1998; Thomas et al., 2002; Phillips & Wheeler, 2007; Wei & Zhang,
2010; Sanei et al., 2017; Jiang & Yang, 2018; Duŕan et al., 2019).

There are three approaches to model the coupling of fluid flow and de-
formation in porous media: fully coupled, sequentially coupled, and loosely
coupled (Settari & Walters, 2001; Dean et al., 2006). In the fully coupled
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scheme, the governing equations of fluid flow and deformation are solved si-
multaneously at every time step. This method is unconditionally stable but it
is computationally expensive (Gutierrez & Lewis, 2002; Jha & Juanes, 2007;
Pan, 2009). Different sequentially coupled schemes exist depending on which
variables are kept constant and the order in which the sequential stages are
executed. For example, by fixing the variation of total volumetric stress for
reservoir equations and the fluid pressure for geomechanics, one solves the
flow problem first, and then uses computed pressure approximation to solve
the deformation problem (Armero & Simo, 1992; Tran et al., 2005; Wheeler
& Gai, 2007). This sequential method is iterated until the solution converges
to the desired tolerance. This approach is more efficient than the fully cou-
pled solution process either for linear and nonlinear poromechanics problems.
In the loosely coupled scheme, the coupling between flow and deformation
is solved only after a certain number of flow time steps (Bevillon & Masson,
2000; Minkoff et al., 2003; Samier et al., 2008). The loosely coupled scheme
is only conditionally stable and requires the choice of a criterion to determine
when to update the deformation response.

Due to the high computational cost of the fully coupled scheme, the se-
quential solution schemes is generally more efficient than the fully coupled
approach. Kim et al. (2011a,b) proposed four types of sequential coupled
schemes, such as drained split, undrained split, fixed strain split, and fixed
stress split. Kim et al. (2011c) concluded that among sequential schemes
the fixed stress split strategy is unconditionally stable and has better con-
vergence properties. The fixed stress split scheme consists of solving first
the flow problem while freezing the volumetric mean total stress, and then
the mechanical part is solved from the values computed at the previous flow
step.

In this article, the impact of pore collapse and shear-enhanced compaction
on the reservoir performance is analyzed using a sequential numerical scheme
with a fixed stress split for the coupled poro-elastoplasticity and permeabil-
ity. To define the elastoplastic deformation, the conservation of momentum,
Biot’s law and DiMaggio-Sandler cap plasticity model are used. To repre-
sent fluid flow, the conservation of mass and Darcy’s law with considering
nonlinear Davies permeability are employed. The numerical approximation
uses continuous Galerkin finite element for displacement and mixed finite
element for pore pressure and flux. The onset of pore collapse and shear-
enhanced compaction from the numerical results with respect to commonly
used approaches is indicated by three methods: firstly using the DiMaggio-
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Sandler cap plasticity model, secondly using the compaction model of Wong,
and thirdly using the shear bands of Rudnicki. The implementation of the
present study is done using the NeoPZ library, which is an object-oriented
scientific computational environment, providing a framework for developing
finite element schemes (Devloo, 1997, 2000).

2. Article Contributions

The major contributions of this article are:

• The sequential numerical scheme is proposed to implement a coupled
poro-elastoplasticity and permeability.

• The effect of pore collapse and shear-enhanced compaction on the reser-
voir performance is analyzed using the coupled poro-elastoplasticity
and permeability, in which the DiMaggio-Sandler cap plasticity and
nonlinear Davies permeability model are used;

• The onset of pore collapse and shear-enhanced compaction from the nu-
merical results with respect to commonly used approaches is indicated
by three methods: firstly using the DiMaggio-Sandler cap plasticity
model, second a compaction model of Wong, and third shear bands of
Rudnicki;

• Several models in 2D and 3D simulations are performed to indicate the
impact of pore collapse and shear-enhanced compaction, especially the
onset of them applied to hydrocarbon reservoirs.

3. Model Formulation

The governing equations for coupled poro-elastoplasticity and permeabil-
ity are composed for a set of conservation laws and constitutive laws. The
conservation equations are related to momentum and mass.

3.1. Momentum Conservation
The conservation of momentum under the quasi-static assumption is ex-

pressed as (Rudnicki, 1986):

div (σt − σ◦t) = 0 (1)
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where div(·) [m−1] is the divergence operator on the deform configuration,
σ◦t and σt [MPa] are the initial and the current Cauchy total stress tensor,
respectively. The corresponding initial (referred with the superscript (·)◦)
and boundary conditions of momentum conservation are:

I.C. =
p = p◦ on Ω

u = u◦ on Ω
B.C. =

σt · n = t on Γσt
N

u = uD on Γ u
D

(2)

The momentum conservation in equation (1) is defined in terms of Cauchy
effective stress tensor as:

div (σ − σ◦ − α (p− p◦) I) = 0 (3)
where σ◦ and σ are the initial and current Cauchy effective stress [MPa],
respectively. α is the Biot’s coefficient, I is the second rank identity tensor,
p◦ and p are the initial and current fluid pressure [MPa], respectively. The
effective stress σ is determined by linear stress-strain relationship, as:

σ− σ◦ = 2µ (εe − ε◦e) + λtr (εe − ε◦e) I (4)
where εe is the elastic strain. The parameters µ and λ are the Lamé

constants [MPa].

3.2. Mass Conservation
For a slightly compressible fluid, the mass conservation is defined by (Rud-

nicki, 1986) as follows:

∂ (φρf )
∂t

+ div (q) = 0 (5)

where q = ρfvf is the flux [kg s−1 m−2], in which vf [m s−1] is the fluid veloc-
ity. The corresponding initial and boundary conditions of mass conservation
are:

I.C. =
{
p = p◦ on Ω B.C. =

q · n = qn on Γ q
N

p = pD on Γ p
D

(6)

The fluid velocity in equation (5) is described by the Darcy’s law:
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vf = −K
η
∇p (7)

where η is the fluid dynamic viscosity [Pa s], K is the absolute permeabil-
ity tensor [m−2], which is expressed as K = κ I, in which κ is defined using
the nonlinear Davies permeability model, as follows (Davies & Davies, 1999):

κ = κ◦ exp
[
Z
(
φ

φ◦
− 1

)]
(8)

Z is the permeability coefficient. k◦ and k are the initial and current
permeability [m−2], respectively. φ◦ and φ are the initial and current porosity,
respectively. The Lagrangian porosity is (Kim et al., 2011b; Coussy, 2004):

φ = φ◦ + α (εev − ε◦ev) + φp − φ◦p + S (p− p◦) (9)
where S = ((1− α) (α− φ◦)) /Kdr, in which Kdr [MPa] is the elastic rock

bulk modulus in drained conditions. φp is the plastic porosity and it is:

φp = αpεpv (10)
where εpv is the plastic volumetric strain. The parameter αp is the nonlin-

ear Biot’s coefficient and shares the same restrictions of α, i.e. φ◦ ≤ αp ≤ 1
(Coussy, 2004; Bui et al., 2016; da Silva et al., 2018). Experimental results
support the fact that α 6= αp (Xie & Shao, 2015). However, many researchers
(Zhou et al., 2008; Kim et al., 2011b,c) assume that α = αp. In this research,
for simplicity α = αp is considered. The volumetric elastic strain εev can be
related to volumetric total stress σtv = tr (σt) /3 as:

(σtv − σ◦tv) + α (p− p◦) = Kdr (εev − ε◦ev) (11)
By inserting equation (11) into equation (9) and considering Se = S +

φ◦cf , an alternative expression for (φρf ) is obtained (Kim et al., 2012), as:

φρf = ρ◦f

(
φ◦ + α

Kdr

(σtv − σ◦tv) + φp − φ◦p +
(
Se + α2

Kdr

)
(p− p◦)

)
(12)

where Se is the inverse of Biot’s modulus M [MPa], cf is the fluid com-
pressibility. ρ◦f and ρf are the initial and current fluid density [kg m−3],
respectively. σ◦tv and σtv are the initial and current volumetric total stress
[MPa], respectively.
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3.3. Elastoplastic Constitutive Models
A nonlinear elastoplastic model is described by the theory of elastoplas-

ticity, when a material undergoes an irreversible deformations. The total
strain tensor ε is decomposed into two parts (de Souza Neto et al., 2008):

ε = εe + εp (13)
where εe is the elastic strain and εp is the plastic strain. The elastic strain
is reversible and the plastic strain represents a permanent (i.e. irreversible)
deformation (de Souza Neto et al., 2008). The total strain is defined in terms
of displacement u as:

ε = 1
2
(
∇u +∇Tu

)
(14)

The elastoplastic deformation is mathematically described by four funda-
mental axioms (de Souza Neto et al., 2008):

Elastic law. The elastic law can be defined by using the linear stress-strain
relationship expressed by equation (4).

Yield criterion. Describes the elastic limit and the plastic part through
a plasticity yield function Φ = Φ (σ,A), where A = ρ̄∂Fp/∂χ is the
hardening thermodynamic force, Fp is the plastic part of Helmholtz
free energy F, and χ is the hardening variable. The plasticity function
assumes negative values in the elastic part and null values in the plastic
part (Kossa, 2011).

Flow rule. Assumes the existence of a plastic potential function Ψ = Ψ (σ,A),
which specifies how the plastic deformation tensor evolves in the plastic-
ity process .

εp = .
γN, in which N (σ,A) = ∂Ψ/∂σ is the flow direction

and .
γ is the plastic multiplier. The flow rule is called associative if

the plastic potential function equals to yield function, namely Ψ = Φ
(Davis & Selvadurai, 2002).

Hardening law. Specifies how the internal damage variable .
χ = .

γH evolves,
in which, H (σ,A) = −∂Ψ/∂A is the hardening modulus.
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3.3.1. Time Evolution in Elastoplasticity
The time evolution in elastoplasticity is formed by giving the elastic strain

εn−1
e , the plastic strain εn−1

p , and the hardening variable χn−1 at a (pseudo)
time step tn−1, and also given a prescribed incremental strain tensor ∆ε for
the time interval [tn−1, tn] in order to find the following system of algebraic
equations at a time-step tn (de Souza Neto et al., 2008):

εne = εn−1
e + ∆ε−∆γN (σn,An)

χn = χn−1 + ∆γ H (σn,An) (15)

for the unknowns εne , χn and incremental of plastic multiplier ∆γ, it is
subjected to the restrictions:

∆γ ≥ 0, Φ (σn,An) ≤ 0, ∆γ Φ (σn,An) = 0 (16)
Solving the elastoplastic problem occurs in two steps. First an elastic

response is computed (i.e. elastic trial step), where ∆γ = 0 leading to the
elastic trial stress εnetrial

= εn−1
e + ∆ε and hardening variable χntrial = χn−1.

Then, σntrial and Φ (σntrial,An
trial) are computed as a function of εnetrial

. If
Φ (σntrial,An

trial) ≤ 0, the elastic response is a valid solution and the elasto
plastic variables are updated from the trial values (· )n := (· )ntrial. Otherwise,
the return-mapping algorithm is applied and a set of nonlinear equations
needs to be solved (de Souza Neto et al., 2008):

εne = εnetrial
−∆γN (σn,An)

χn = χntrial + ∆γ H (σn,An)
∆γ > 0, Φ (σn,An) = 0

(17)

Once the solution εne has been calculated, the plastic strain at a time step
tn can be computed as:

εnp = εn−1
p + ∆ε−∆εe (18)

3.3.2. DiMaggio-Sandler Elastoplasticity Model
The DiMaggio-Sandler elastoplasticity model was presented in (DiMaggio

& Sandler, 1971). It was developed to model granular soils, but can also be
applied to problems relevant to the oil industry representing the behavior
of rocks at depth (Cećılio et al., 2015). The yield function Φ of DiMaggio-
Sandler model is defined by two functions: a failure function Ff (I1,

√
J2) and

a cap function Fc(I1,
√
J2, L):
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Φ =
 Ff (I1,

√
J2),

Fc(I1,
√
J2, L),

I1 > L

L > I1 > X
(19)

where L(χ) is the cap position parameter [MPa], X(χ) is the current cap
surface position [MPa], I1 is the first invariant of the stress tensor [MPa],
and J2 is the second deviatoric stress tensor [MPa2]. The expressions of the
failure function and cap function are:

Ff (I1,
√
J2) =

√
J2 − Fs(I1)

Fc(I1,
√
J2, L) = ( I1−L

RFs(L))
2 + (

√
J2

Fs(L))
2 − 1

(20)

with,

L (χ) =
 χ

0
if χ < 0
if χ ≥ 0

(21)

Fs (ι) = A− C exp (B ι) X = L−RFs(L) (22)
where A [MPa], B [MPa−1], C [MPa] are material property constants and

R is the ratio of principal ellipse radii of the cap surface. A typical 2D profile
of DiMaggio-Sandler yield surface is plotted in Figure 1.

Figure 1. DiMaggio-Sandler plastic yield profile in the (I1,
√
J2) plane (Sandler & Rubin,

1979).

The hardening parameter χ of DiMaggio-Sandler cap model is defined
through a functional of X(χ) and volumetric plastic strain εpv as follows
(Fossum et al., 1995):
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εpv = W (exp[D (X −X◦)]− 1) (23)
where X◦ is the initial cap position [MPa]. D [MPa−1] and W are the ma-
terial properties constants. The yield surface of DiMaggio-Sandler in 3D is
illustrated in Figure 2.

Figure 2. (left) DiMaggio-Sandler plasticity yield criterion in which failure function
part is with a green color and cap function is with a red color, and (right) a comparison
between numerical model of DiMaggio-Sandler with the experimental data reported by
(Sandler & Rubin, 1979); the arrow with a blue color in middle shows the evolution of
elastoplastic model which is represented here by a point with a red color.

3.4. Strong Statement of Coupling
The strong statement of the coupling is presented using the conservation

laws given in equations (3) and (5), as follows:
div (σ − σ◦ − α (p− p◦) I) = 0

∂(φρf)
∂t

+ div (q) = 0
(24)

It is completed by considering the equations (4) and (7), namely:
σ−σ◦ = 2µ (εe − ε◦e) + λtr (εe − ε◦e) I

vf = −K
η
∇p

(25)
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The strong statement is incorporated with Dirichlet and Neumann bound-
ary conditions in the equations (2) and (6).

3.5. Weak Statement of Coupling
The weak statement of the coupling is presented by using one field u as

state variable for the elastoplastic problem and two fields q and p for the
Darcy’s flow problem, as:



∫
Ω (σn − σ◦ − α (pn − p◦) I) · ε (φu) dΩ−

∫
ΓN

(tn − t◦) · φu dΓ = 0

∫
Ω

(
ρnf

κn I
η

)−1
qn · φq dΩ +

∫
ΓD
pn · φq · n dΓ −

∫
Ω p

n · div
(
φq
)
dΩ = 0

∫
Ω div (qn) · φp dΩ +

∫
Ω

(
φρf |n−φρf |n−1

δt

)
· φp dΩ = 0

(26)
where Ω is the domain, Γ is the boundary and φu, φq, φp are the test

functions. The weak statement is incorporated with Dirichlet and Neumann
boundary conditions in the equations (2) and (6).

3.6. Sequential Coupled Scheme
The sequential coupled scheme is a common approach to handle coupled

flow, and transport equations for multiphase flow in porous media (Jiang &
Tchelepi, 2018). The schematic of the sequential coupled scheme is shown
in Figure 3. This scheme is applied with the fixed stress split as a robust
procedure to approximate solutions of nonlinear equations (Kim, 2010).

Figure 3. Schematics of the sequential coupled scheme (Kim, 2010).

The sequential scheme is used to approximate the time dependent prob-
lem of coupled poro-elastoplastic and permeability. The scheme computes
a new state (u,q, p)m in a time step of size ∆t, by starting an external
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loop with counter m → 1 to execute a sequence of two nonlinear solvers (a
fluid flow module and a poro-elastoplastic module with internal loops that
counter n). In order to describe the implementation of sequential coupled
scheme, the change in porosity over a timestep (as defined by equation (12))
is decomposed in two parts δφ = φ− φ◦ as (Kim et al., 2011b):

φ = φ◦ + δφ (27)

 δφ = δφpore +
δφ∗

f +δφ∗
s︷ ︸︸ ︷

δφmatrix

δφ = δφpore + δφ∗f + δφ∗s

(28)

where 
δφpore = S (p− p◦)

δφmatrix = α2

Kdr

(p− p◦)︸ ︷︷ ︸
δφ∗

f

+ α

Kdr

(σtv − σ◦tv) + φp − φ◦p︸ ︷︷ ︸
δφ∗

s

(29)

where δφ∗f and δφ∗s are the matrix parts of porosity change. The variation
of the fluid content expressed by equation (29) is computed using two stages
(Settari & Mourits, 1998; Mikelić & Wheeler, 2012; Duŕan et al., 2019):

1. For the fluid flow module the variation of δφpore and δφ∗f are computed
and the δφ∗s is considered constant;

2. For the poro-elastoplastic module δφ∗s is updated.

At the first step, it is set to δφ∗ m−1
s → 0 and add the (αn−1)2

/Kdr to the
fluid flow module, and the equation is solved as follows:

• Fluid Flow Module: by allowing to compute implicitly pn,m, while
the total volumetric stress and the plastic porosity are constant during
solving the fluid flow iterations, the porosity φn,m is approximated as:



φn,m ≈ φ◦ + δφn,mpore + δφ∗ n−1,m
f + δφ∗ m−1

s

φn,m ≈ φ◦ + S (pn,m − p◦)︸ ︷︷ ︸
δφpore

+
((
αn−1

)2
/Kdr

)
(pn,m − p◦)︸ ︷︷ ︸

δφ∗
f

+ δφ∗ m−1
p︸ ︷︷ ︸
δφ∗

s

(30)
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Consecutively, the pressure is transferred to the poro-elastoplastic mod-
ule and the equation is solved as follows:

• Poro-Elastoplastic Module: Once the pressure pn,m is determined,
then the term δφ∗ ms is computed implicitly using the expression:

δφ∗ ms = (αn−1)2

Kdr

(σn,mtv − σ◦tv) + φn,mp − φ◦p (31)

It is considered to maintain the Biot coefficient constant during a timestep
iteration and only between timesteps is updated using the following expres-
sion (Kim et al., 2012):

α = 1− Kdrep

Ks
; Kdrep = δσv

δεv
(32)

where Kdrep [MPa] is the elastoplastic tangent bulk modulus, Ks [MPa]
is the solid bulk modulus, δσv [MPa] is volumetric effective stress variation,
and δεv is the volumetric total strain variation.

The sequence between both fluid flow and poro-elastoplastic module is
repeated until a desired stopping criteria is reached.

4. Pore Collapse and Shear-Enhanced Compaction

During production of hydrocarbon from both the unconsolidated and
weakly consolidated reservoir rocks, they can undergo irreversible deforma-
tion (compaction). Such compaction is generally the results of pore collapse
and shear-enhanced compaction at the microscopic level, within the rock
mass. Pore collapse and shear-enhanced compaction are considered poten-
tial problems in the reservoirs. To overcome these problems, it is required to
evaluate the probability of pore collapse and shear-enhanced compaction.

4.1. Constitutive Models
The theory of plasticity provides a constitutive framework for the anal-

ysis of compaction in a granular material, such as soil (Chen, 1984), porous
sandstone (Wong et al., 1997), porous diatomites (A.F. & J.T., 2000), and
carbonate rocks (Vajdova et al., 2004). Generally, two types of plasticity
models have been applied: the cap model which was formulated by DiMaggio
& Sandler (1971) that extensively applied for both soil and porous rock, and
the critical state model (A. Schofield, 1968) which has been widely used in soil
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mechanics. In this study, DiMaggio-Sandler cap plasticity model is applied
to analyze the compaction phenomenon. The original DiMaggio-Sandler cap
plasticity model in equation (20) is rewritten as follows (DiMaggio & Sandler,
1971):

Φds =
(
I1 − L
RFs (L)

)2

+
( √

J2

Fs (L)

)2

− 1 (33)

It corresponds to an ellipse centered at (L, 0) with major and minor semi-
axes of RFs (L) and Fs (L). Moreover, the first stress invariant I1 can be
related to the effective mean stress P by I1 = −3P and the second invariant
J2 to the von Mises stress Q by 3J2 = Q2. The DiMaggio-Sandler model can
be defined on the ellipse with semiaxes RI = (RFs (L)) /3, RII =

√
3Fs (L),

and center at (Ct = L/3), which is rewritten as follows (Baud et al., 2006):

Φds = (P − Ct)
R2
I

2

+ Q2

R2
II

− 1 (34)

4.2. Theoretical Model
When studying the mechanical behavior of porous materials, three ef-

fects of plastic deformation related to permeability can be recognized; pore
collapse, shear-enhanced compaction, and shear-induced dilation.

4.2.1. Pore Collapse
Under the hydrostatic stress condition, the transition from elastic (pre-

pore collapse) to plastic is named pore collapse (Addis & Jones, 1990), and
the post-pore collapse region can be characterized by a plastic hardening
model. The critical effective stress for the onset of pore collapse is denoted
by P ∗. In the Figure 4, that is drawn similar to experimental results of (Baud
et al., 2006) in saturated sandstone, a schematic behavior of hydrostatic test
and the critical stress for the onset of pore collapse, namely P ∗ are shown.
The onset of plastic collapse is picked as the endpoint of linear evolution
of volumetric strain (Nguyen et al., 2014). The onset of pore collapse P ∗
can be determined using two methods: firstly, an expression derived from
experimental observations developed by (Zhang et al., 1990) and second, a
numerical approach by applying a plasticity cap model (Coelho, 2003; Baud
et al., 2006) such as the DiMaggio-Sandler and/or the modified Cam-Clay
plasticity model.
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• Firstly. The experimental model of Zhang et al. (1990) which is pre-
sented based on the Hertzian contact theory and the crack propagation
mechanics. This model is a power law that describes the dependency
of the critical pressure P ∗ with micro-structural attributes, as follows:

P ∗ ∝ (φRg)n (35)
where φ is the porosity, Rg is the mean grain radius, and n = −1.5. This
model has been validated on glass beads, consolidated porous sandstones,
and quartz sand by Wong et al. (1997); Karner et al. (2005).

• Second. Using DiMaggio-Sandler or modified Cam-Clay plasticity
model to indicate the onset of pore collapse P ∗, as follows:

The DiMaggio-Sandler cap plasticity model in equation (34) is rewritten
in terms of normalized stresses using the critical pressure P ∗ as follows (Wong
et al., 1997):

Φds = (P/P ∗ − ξ)2

(1− ξ)2 + (Q/P ∗)
δ2 − 1 (36)

where, ξ = Ct/P ∗, 1− ξ = RI , and δ = RII/P
∗.

The modified Cam-Clay plasticity model is rewritten by using the critical
pressure P ∗ as follows (Nguyen et al., 2014):

Φcc = Q2 −M2P (P ∗ − P ) (37)
Finally, the pore collapse can be described using plasticity models, as

follows:

Φpc =


Φcc

or

Φds

(38)

The equation (38) means when the yield surface Φpc = 0, the plastic de-
formation regime starts and this transition from elastic to plastic is named
pore collapse and P ∗ is the critical pressure for onset of pore collapse. More-
over, the onset of pore collapse (starts a plastic strain) and post-pore collapse
(evolution of plastic strain) of reservoir rocks means the deformation is irre-
versible and consequently the reduction of porosity and also permeability are
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irreversible. Therefore pore collapse will affect reservoir performance and its
occurrence can be detected using a cap plasticity model.

4.2.2. Shear-Enhanced Compaction
Under nonhydrostatic or deviatoric stress, the onset of inelastic perma-

nent deformation in porous rock is generally associated with the onset of ei-
ther permanent dilation or compaction (Rutter & Glover, 2012). The shear-
enhanced compaction regime is where the nonhydrostatic stress part com-
bines with the hydrostatic part in reaching the resistance of the pore with
respect to collapse (Curran & Carroll, 1979). Shear-enhanced compaction
refers to a permanent deformation of porous rock, characterized by the loss
of porosity due to the pore collapse as confining pressure and/or shear stress
increases beyond the yield value (Zoback, 2007). Post-yield deformation re-
lated to shear-enhanced compaction is often ductile, which leads to spreading
the deformation throughout the rock mass (Underhill & Woodcock, 1987;
Rutter & Glover, 2012).

Under nonhydrostatic stress condition in the cataclastic flow regime, it is
observed the porosity firstly decreases up to a critical effective stress state,
namely C∗, the reduction of porosity is accelerated, which is referred to the
shear-enhanced compaction (Curran & Carroll, 1979; Wong et al., 1992).
The C∗ is the critical stress for the onset of shear-enhanced compaction
and shear hardening under triaxial loading. In the Figure 4, that is drawn
similar to experimental results of (Baud et al., 2006) in saturated sandstone,
a schematic behavior of triaxial test and the critical stress for the onset of
shear-enhanced compaction, namely C∗ are displayed.
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Figure 4. Schematic behavior of pore collapse and shear-enhanced compaction.

Similarly to pore collapse, three different models have been developed to
represent shear-enhanced compaction C∗: firstly, a model developed by Wong
et al. (1997), second, shear bands idealized by Rudnicki & Rice (1975), and
third, using plasticity cap models such as the DiMaggio-Sandler cap model
and/or the modified Cam-Clay model.

• Firstly. The compaction model of Wong et al. (1997) is based on con-
stitutive plasticity parameters presented by Rudnicki & Rice (1975).
These parameters are the internal friction parameter µp and the dila-
tancy factor βp which can be extracted from triaxial compression test
data. The dilatancy factor βp in the article (Rudnicki & Rice, 1975)
is representative for the inelastic compaction (Wong et al., 1997), as
follows:

βp = −
√

3
∆εvp/∆εap

(3−∆εvp/∆εap)
(39)

where ∆εap is the axial plastic strain and ∆εvp is the volumetric plastic strain
∆εpv. The parameter βp is computed from the measurement of ∆εvp/∆εap,
provided by the laboratory test data. The difference in sign of βp can indicate
the dilatancy or compaction. Negative values of βp indicate shear-enhanced
compaction and the positive values of βp indicate dilation regime (Baud et al.,
2006).
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• Second. The shear and compaction bands of Rudnicki & Rice (1975)
can be applied to define the critical conditions for dilation, shear or
compaction bands. The bands are described using the parameters βp
and µp as follows (Wong et al., 1997): Shear bands occurr if:

−
√

3 ≤ µp + βp ≤
√

3 (2− ν)
(1 + ν) (40)

Dilation band is characterized, if:

µp + βp >

√
3 (2− ν)
(1 + ν) (41)

Compaction band will occur, if:

µp + βp < −
√

3 (42)
where ν is the Poisson’s ratio. µp is the friction parameter which is
written as:

µp =
√

3
3
Q

P
(43)

• Third. The DiMaggio-Sandler or modified Cam-Clay plasticity model
can be used to indicate the onset of shear-enhanced compaction C∗.
The onset of shear-enhanced compaction can be obtained, similar to
the plasticity models in equations (36), (37) by considering C∗ as the
critical mean stress, as follows:

Φds = (P/C∗ − ξ)2

(1− ξ)2 + (Q/C∗)
δ2 − 1 (44)

where, ξ = Ct/C∗, 1− ξ = RI and δ = RII/C
∗.

In addition,

Φcc = Q2 −M2P (C∗ − P ) (45)
Finally, the shear-enhanced compaction can be presented using constitu-

tive plasticity models, as follows:
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Φsc =


Φcc

or

Φds

(46)

The equation (46) means when the yield surface Φsc = 0, the plastic
deformation regime starts and this transition in the cataclastic flow regime
from elastic to plastic is named shear-enhanced compaction and C∗ is the
critical effective stress for onset of shear-enhanced compaction. Moreover,
the onset of shear-enhanced compaction (starting point of plastic strain)
and post-shear-enhanced compaction (evolution of plastic strain) of reservoir
rocks means the deformation is irreversible and consequently the reduction of
porosity and also permeability are irreversible. Shear-enhanced compaction
can be considered as a potential problem in reservoir performance and it can
be indicated using the cap plasticity model.

4.2.3. Shear-Induced Dilation
The shear stresses in porous rocks can cause either compaction or dilation

in the form of shear-enhanced compaction or shear-induced dilation. In the
shear-enhanced compaction mode, porosity decreases with increasing effec-
tive stress, but in shear-induced dilation, porosity increases with increasing
the effective stress (Bernard et al., 2002). The shear induced dilation can be
represented by the equation (41) and also by using nonassociated plasticity
models Φsd (Rudnicki & Rice, 1975). The discussion of this topic is beyond
the scope of this study and will be dealt with in a forthcoming contribution.

5. Analysis of Pore Collapse and Shear-Enhanced Compaction

Analysis of pore collapse and shear-enhanced compaction is complex ow-
ing to the nonlinear behavior of reservoir rocks (Smits et al., 1988; Boade
et al., 1989). To analyze these phenomena, the poro-elastoplastic coupling
with considering the nonlinear Davies permeability model is proposed. The
following numerical models are developed, such as: (1) homogeneous stress
state of hydrostatic and triaxial test, (2) two-dimensional model of horizontal
wellbore drilling, (3) two-dimensional model of horizontal well production,
(4) subsidence in a three-dimensional model of reservoir with horizontal pro-
duction well.
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5.1. Hydrostatic and Triaxial Compression Test
The pore collapse and shear-enhanced compaction are analyzed numer-

ically by implementing a hydrostatic and triaxial compression test, respec-
tively. The numerical models are done using a homogeneous stress states.
The material properties for the hydrostatic and triaxial test are given in Table
1. The evolution of loading applied on the sample to reach the final stresses
in 20 states is given in Table 2. Figure 5 is representative of the equivalent
loading condition. The hydrostatic and triaxial loading conditions are as
follows:

• The hydrostatic test is modeled in a stress-rate control where a con-
fining stress σc is applied at the top and right side of sample and zero
normal displacements on the two other boundaries. The stress ratio ks
is the ratio of horizontal stress to vertical stress, is equal 1.0. Moreover,
a fixed pressure 1 MPa is applied above the top and right side of sample
and impermeable wall on two other sides.

• The triaxial test is modeled in a stress-rate control where an axial total
stress σa is applied at the top of sample and a constant confinement
stress σc is applied on the right side of sample and zero normal dis-
placement is imposed on the two other boundaries. The stress ratio ks
for triaxial test is equal to 0.5, where ks = σc/σa = 0.5. Moreover, a
fixed pressure 1 MPa is applied at the top and right side of sample and
an impermeable wall is modeled to the two other sides.

Figure 5. Domain of: (left) hydrostatic test , and (right) triaxial test.
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Parameter Variable [unit] Value
Young’s modulus E MPa 2800.0

Poisson’s ratio ν 0.2
Biot coefficient α 1

Fluid compressibility cf MPa−1 0
Fluid dynamic viscosity η Pa s 1× 10−3

Initial porosity φ◦ 0.1
Initial Abs. permeability κ◦ m2 1× 10−13

Permeability coefficient Z 30.0
A MPa 18.0
B MPa−1 0.01
C MPa 14.0
D MPa−1 0.0065
W 0.025
R 3.0
X◦ MPa -25.0

Table 1. Material parameters employed for the hydrostatic and triaxial test.
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Num. step σa σc in hydrostatic σc in triaxial
MPa MPa MPa

0 −1.0 −1.0 -1.0
1 −1.0 −1.0 -1.0
2 −2.0 −2.0 -1.0
3 −3.0 −3.0 -1.5
4 −4.0 −4.0 -2.0
5 −5.0 −5.0 -2.5
6 −6.0 −6.0 -3.0
7 −7.0 −7.0 -3.5
8 −8.0 −8.0 -4.0
9 −9.0 −9.0 -4.5
10 −10.0 −10.0 -5.0
11 −11.0 −11.0 -5.5
12 −12.0 −12.0 -6.0
13 −13.0 −13.0 -6.5
14 −14.0 −14.0 -7.0
15 −15.0 −15.0 -7.5
16 −16.0 −16.0 -8.0
17 −17.0 −17.0 -8.5
18 −18.0 −18.0 -9.0
19 −19.0 −19.0 -9.5
20 −20.0 −20.0 -10.0

Table 2. The axial and lateral stresses applied to the sample for hydrostatic and triaxial
test.

To analyze the pore collapse and shear enhanced compaction, the results
of a material point subject to evolving stresses is studied. By applying the
axial and lateral stresses to the sample, the deformation of the sample is
increased. The numerical results in Figure 6 (left) indicate the onset of
pore collapse and shear-enhanced compaction where the plastic volumetric
strain begins. The results demonstrate that the onset of pore collapse is
P ∗ = 4.96 MPa and shear-enhanced compaction is C∗ = 4.38 MPa.

In Figure 6 (middle), the capability of DiMaggio-Sandler cap function to
capture pore collapse P ∗ and shear-enhanced compaction C∗ is displayed. It
means the cap surface can present the onset of pore collapse under hydro-
static condition and shear-enhanced compaction under triaxial condition. In
addition, it can apply for any path stress data to understand whether these
phenomena may occur or not.

Figure 6 (right) demonstrates clearly the shear-enhanced compaction by
expressing the quantities of βp where the sign of them are negative (according
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to the Wong compaction model). The value of βp becomes negative when
the compaction plastic strain starts: it implies the onset of shear-enhanced
compaction. This process is repeated for pore collapse and the results are
presented in Figure 6 (middle-right). Moreover, the position of the µ/β points
resulting from the simulation are plotted and compared with the shear bands
proposed by Rudnicki & Rice (1975) in equation (40). One can observe that,
using the DiMaggio plastic parameters, the points are moving towards shear
enhanced compaction band, but their position would not indicate a critical
value.

Figure 6. Numerical results of hydrostatic and triaxial test: (left) the relation be-
tween mean effective stress and plastic volumetric strain, (middle) capability of DiMaggio-
Sandler cap function to capture pore collapse and shear-enhanced compaction, (right)
shear bands region.

The results of Figure 6 present that the numerical modeling can indicate
the onset of pore collapse and shear-enhanced compaction. In addition, the
numerical results show that the evolution of pore collapse (post-pore collapse)
and shear-enhanced compaction (post-shear enhanced compaction) can be
simulated using the hardening function of DiMaggio-Sandler model.

In this study, the effect of pore collapse and shear-enhanced compaction
on porosity and permeability numerically are analyzed. The relation between
porosity and effective mean stress is shown in Figure 7 (left) and the rela-
tion between permeability and effective mean stress is displayed in Figure 7
(right).
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Figure 7. Numerical modeling of hydrostatic and triaxial test to see the effect of pore
collapse and shear-enhanced compaction on: (left) porosity and (right) permeability.

The results of Figure 7 emphasize that by increasing effective mean stress,
the quantity of porosity and permeability are decreased and the reduction
of porosity and permeability are irreversible when the onset of pore collapse
and permeability is initiated. Moreover, the results indicate that the coupling
of poro-elastoplasticity and permeability can describe the pore collapse and
shear-enhanced compaction and their effects on the change of porosity and
permeability.

5.2. Two-dimensional model of horizontal wellbore drilling
The study of pore collapse and shear-enhanced compaction during well-

bore drilling is numerically conducted. The numerical approximation is im-
plemented using continuous finite element approximations for rock defor-
mation and Raviart-Thomas mixed finite element approximation for pore
pressure and flux. The numerical modelling are implemented under hydro-
static and triaxial far field loading conditions. For the hydrostatic loading
ks = 1.0, the in-situ vertical stress is σv = 60 and the in-situ horizontal
stress is σh = σH = 60 MPa. For the triaxial loading ks = 0.9, the in-situ
vertical stress is σv = 60 and the in-situ horizontal stress is σh = σH = 54
MPa. The initial or far-field pore pressure is p◦ = 45 MPa. To analyze the
impact of pore collapse and shear-enhanced compaction on horizontal well-
bore drilling, a 2D numerical model is implemented (see in Figure 11). The
numerical mesh is composed of quadratic polynomial order elements for dis-
placement and linear Raviart Thomas flux/pore pressure pairs for the fluid
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approximation. This combination of finite element approximations satisfies
the LBB inf-sup condition. The size of the computational domain is 20 × 20
[m] in the h and v directions, respectively. The radius of horizontal well is
rw = 0.1 m.

The numerical simulation is performed as follows. First, the initial homo-
geneous stress/pressure state of the reservoir is imposed as the in-situ stress
and initial pore pressure.Next, the mud pressure is applied from pm = 45.0
MPa to pm = 40.0 MPa over 11 steps. The relation among in-situ stress σt,
effective stress σ, and mud pressure pm is σt = σ − αpmI. The mud pres-
sure evolution is documented in Table 3. The model parameters are given in
Table 4.

Num. step Mud pressure pm MPa
0 45.0
1 45.0
2 44.5
3 44.0
4 43.5
5 43.0
6 42.5
7 42.0
8 41.5
9 41.0
10 40.5
11 40.0

Table 3. A mud pressure evolution for horizontal wellbore drilling.
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Parameter Value Variable [unit]
Young’s modulus 3800.0 E MPa

Poisson’s ratio 0.2 ν
Biot’s coefficient 1.0 α

Fluid compressibility 0 cf MPa−1

Fluid dynamic viscosity 1× 10−3 η Pa s
Initial porosity 0.1 φ◦

Initial Abs. permeability 1× 10−13 κ◦ m2

Permeability coefficient 30.0 Z
A 50.0 MPa
B 0.028 MPa−1

C 40.0 MPa
D 0.001 MPa−1

W 0.002
R 3.0
X◦ -72.0 MPa

Table 4. Material parameters for 2D model horizontal wellbore drilling.

To analyze the onset of pore collapse and shear-enhanced compaction
on wellbore drilling, the data point around the wellbore region, namely
ptw = (x = 0.085m, y = 0.085m) and ||ptw|| = 0.12 is selected. By apply-
ing the vertical and horizontal stresses to the wellbore, as given in Table 3,
the effective stress and consequently the deformation near to the wellbore is
increased. Then, the relation between mean effective stress and plastic volu-
metric strain is shown in Figure 8 (left), in which the onset of pore collapse
and shear-enhanced compaction is where the plastic volumetric strain begins
and the quantity of plastic volumetric strain is not equal zero. It is required
to mention that the initial mud pressure is equal to the initial pore pressure,
namely p◦ = 45, thus the initial effective stress is not equal zero due to the
difference between in-situ stress σt and mud pressure pm, i.e., σ = σt+αpmI.
In addition, the big step in the Figure 8 (left) can be because of the opening
of wellbore.

The numerical results in Figure 8 (left) indicate that the onset of pore
collapse is P ∗ = 15.64MPa and the shear-enhanced compaction is C∗ =
12.57MPa. In Figure 8 (middle), the capability of DiMaggio-Sandler cap
function to capture pore collapse P ∗ and shear-enhanced compaction C∗ is
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illustrated. In Figure 8 (right), according to the Wong’s compaction model,
the pore collapse and shear-enhanced compaction are occurring during hori-
zontal wellbore drilling due to the negative quantities of βp, which are com-
puted using equation (39). Moreover, the shear bands provided by Rudnicki
& Rice (1975) in equation (40) are displayed in this figure.

Figure 8. The results of wellbore drilling: (left) the relation between mean effective
stress and plastic volumetric strain, (middle) capability of DiMaggio-Sandler cap function
to capture pore collapse and shear-enhanced compaction, (right) shear bands region.

The results of Figures 8 illustrate that, according to the DiMaggio Sandler
model, the onset of pore collapse and shear-enhanced compaction can occur
during horizontal wellbore drilling. Moreover, it can be observed that stress
points are closer to pore collapse than shear enhanced compaction.

Previous studies (Heiland, 2003; Jongerius, 2016) indicate that the onset
and post-pore collapse and shear-enhanced compaction have an effect on
petrophysical properties, such as porosity and permeability. This motivates
the numerical evaluation of the impact of pore collapse and shear-enhanced
compaction on porosity and permeability. Figure 9 (left) shows the relation
between porosity reduction and effective mean stress. The results confirm
the reduction of the porosity when the effective mean stress is increased.
Figure 9 (right) illustrates the relation between permeability reduction and
effective mean stress, where the permeability decreases with increasing the
effective mean stress.
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Figure 9. Numerical modeling of horizontal wellbore drilling: (left) porosity reduction
and (right) permeability reduction.

The distribution of porosity and permeability under hydrostatic condition
is illustrated in Figure 10 (left) and (right), respectively.

Figure 10. Numerical modeling of horizontal wellbore drilling: (left) distribution of
porosity under hydrostatic condition, and (right) distribution of permeability under hy-
drostatic condition at pm = 40.0 [MPa].

5.3. Two-dimensional model of horizontal well production
As many horizontal wells have open-hole completions, open-hole stability

analysis is required for the safe and economic production (Zhang et al., 2006).
To consider the impact of pore collapse and shear-enhanced compaction on
well production, a 2D numerical model of a horizontal well in open-hole com-
pletion is implemented (see in Figure 11). The numerical approximation is
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implemented using continuous finite element approximations for rock defor-
mation and Raviart-Thomas mixed finite element approximation for pore
pressure and flux. The numerical mesh is performed using quadratic poly-
nomial order for displacement and linear polynomial order for flux and pore
pressure. The numerical simulations include both hydrostatic and triaxial
loading conditions. For the hydrostatic loading (i.e. ks = 1.0), the in-situ
vertical stress is 60.0 MPa and the in-situ horizontal stress is 60.0 MPa. For
the triaxial loading (i.e. ks = 0.8), the in-situ vertical stress is 60.0 MPa
and the in-situ horizontal stress is 48.0 MPa. The size of the computational
domain is 20 × 20 [m] in the h and v directions, respectively. The radius of
well is rw = 0.1 m.

The simulation is conducted as follows. First, the initial state of the
reservoir is computed based on the pore pressure of 40.0 MPa and the in-
situ stress is imposed on both on the well and the far field boundaries of
the domain. Next, the stress applied at the wellbore is changed stepwise
from the in situ state stress to the reservoir pressure of 40.0 MPa to simulate
the open-hole completion. Finally, the wellbore pressure is decreased to 22.0
MPa over a time span of 10 [d]. The pressure evolution is documented in
Table 5. The model parameters are given in Table 6.

Num. step Time d Well pressure MPa
0 0.0 40.0
1 1.0 40.0
2 2.0 38.0
3 3.0 36.0
4 4.0 34.0
5 5.0 32.0
6 6.0 30.0
7 7.0 28.0
8 8.0 26.0
9 9.0 24.0
10 10.0 22.0

Table 5. A series of decreasing wellbore pressure for horizontal well production.
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Figure 11. States of in-situ stress for horizontal well.

Parameter Value Variable [unit]
Young’s modulus 4000.0 E MPa

Poisson’s ratio 0.2 ν
Biot’s coefficient 1 α

Fluid compressibility 0 cf MPa−1

Fluid dynamic viscosity 1× 10−3 η Pa s
Initial porosity 0.1 φ◦

Initial Abs. permeability 1× 10−13 κ◦ m2

Permeability coefficient 30.0 Z
A 50.0 MPa
B 0.028 MPa−1

C 40.0 MPa
D 0.001 MPa−1

W 0.002
R 3.0
X◦ -65.0 MPa

Table 6. Material parameters for 2D model of horizontal well production.

To analyze the onset of pore collapse and shear-enhanced compaction
in the horizontal well production, a data point around the wellbore region,
namely ptw = (x = 0.085m, y = 0.085m) and ||ptw|| = 0.12m is selected.

The left graph in Figure 12 shows that the onset of pore collapse and
shear-enhanced compaction where the plastic volumetric strain begins. The
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results indicate that the onset of pore collapse is P ∗ = 1.26 MPa and the
shear-enhanced compaction is C∗ = 1.24 MPa.

In Figure 12 (middle), the capability of DiMaggio-Sandler cap model to
capture and present the onset of pore collapse P ∗ and shear-enhanced com-
paction C∗ is illustrated. In Figure 12 (right), according to the Wong’s model,
the compaction phenomenon, namely pore collapse and shear-enhanced com-
paction occurs in horizontal well due to the negative quantities of βp which
are calculated using equation (39). Moreover, the shear bands expressed by
Rudnicki & Rice (1975) in equation (40) are presented in this figure.

Figure 12. The numerical results of a horizontal well production for a total time span
of 10.0 [d] by considering the time step size is 1.0 [d]: (left) the relation between mean
effective stress and plastic volumetric strain, (middle) capability of DiMaggio-Sandler cap
function to capture pore collapse and shear-enhanced compaction, and (right) shear bands
region.

The results of Figure 12 present that if the material can be modeled by
DiMaggio Sandler plasticity the onset and evolution of pore collapse and
shear-enhanced compaction will occur during well production.

Previous study (Heiland, 2003; Jongerius, 2016), emphasize that the onset
and evolution of both pore collapse and shear-enhanced compaction have an
influence on petrophysical properties such as porosity and permeability. In
this study, the effect of pore collapse and shear-enhanced compaction on the
porosity and permeability and, consequently production, are analyzed.

Figure 13 (left) presents the relation between porosity reduction and ef-
fective mean stress, in which the results display that the porosity is decreased
by increasing the effective mean stress. Figure 13 (middle) illustrates the re-
lation between permeability reduction and effective mean stress, in which
the results show that the permeability is reduced by increasing the effective
mean stress.
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Figure 13 (right) indicates the relation between flux and effective mean
stress, in which the results display that the flux is decreased by increasing an
effective mean stress. Thus, the change of flux leads to change the quantity
of mass extracted from the system.

Figure 13. Numerical modeling of a horizontal well production: (left-top) porosity
reduction, (middle-top) permeability reduction, (right-top) the relation between flux and
effective mean stress.

The distribution of porosity and permeability under hydrostatic condition
are illustrated in Figure 14 (left) and (right), respectively.

Figure 14. Numerical modeling of a horizontal well production: (left) distribution
of porosity under hydrostatic condition, and (right) distribution of permeability under
hydrostatic condition at pw = 22.0 [MPa].

The numerical results of Figure 13 emphasize that by increasing effective
mean stress, the quantity of porosity and permeability are decreased and the
reduction of porosity and permeability are irreversible when the onset of pore
collapse and permeability is begone.
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5.4. Subsidence in a 3D Reservoir with Horizontal Production Well
In this subsection, the numerical modelling of a 3D reservoir with a hori-

zontal production well in open-hole completion is implemented. The length,
width and height of the model are 50m, 20m and 20m and the radius of well is
0.1 m. The numerical approximation is implemented using continuous finite
element approximations for rock deformation and Raviart-Thomas mixed fi-
nite element approximation for pore pressure and flux. The simulation is
conducted similar to the 2D production horizontal well and the numerical
mesh is performed by quadratic polynomial order for displacement and lin-
ear polynomial order for flux and pore pressure. Moreover, the horizontal
stress for parallel (σZ) and perpendicular (σX) to the direction of wellbore
are the same, (σh = σX = σZ). The material parameters are presented in Ta-
ble 7. In addition, the simulation is conducted as the same as 2D production
horizontal well.

Figure 15. 3D reservoir with horizontal production well: (left) boundary conditions,
(right) graphical representation of the geometry.
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Parameter Value Variable [unit]
Young’s modulus 5000.0 E MPa

Poisson’s ratio 0.2 ν
Biot’s coefficient 1 α

Fluid compressibility 0 cf MPa−1

Fluid dynamic viscosity 1× 10−3 η Pa s
Initial porosity 0.1 φ◦

Initial Abs. permeability 1× 10−13 κ◦ m2

Permeability coefficient 30.0 Z
A 55.0 MPa
B 0.028 MPa−1

C 50.0 MPa
D 0.0001 MPa−1

W 0.0002
R 3.0
X◦ -80.0 MPa

Table 7. Parameters employed for a 3D reservoir with a horizontal production well.

By applying the vertical and horizontal stresses to a 3D reservoir with an
horizontal production well for a total time span of 10.0 [d], as given in Table
6, the deformation near to the horizontal well is increased. The numerical re-
sults of all the plots presented in Figure 16 and Figure 17 are reported for two
different time values t = {1.0, 10.0} [d]. The Figure 16 at top-left position
displays the longitudinal subsidence (parallel to the direction of wellbore)
and the Figure at top-right presents transverse subsidence (perpendicular to
the direction of wellbore). It can be seen that from Figure 16 the effect of
vertical stress on the subsidence triggered by the reservoir pressure change.
The plot is rendered at the reservoir top. The Figure 16 at bottom-left posi-
tion presents the longitudinal porosity change and at bottom-right position
presents the transverse porosity change due to pressure drop. It can be seen,
that the porosity decreases with increasing the reservoir compaction.
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Figure 16. 3D reservoir with horizontal production well. (top-left) longitudinal dis-
placement, (top-right) transverse displacement, (bottom-left) longitudinal porosity, and
(bottom-right) transverse porosity.

The Figure 17 at top-left position presents the longitudinal permeability
change and at top-right position presents transverse permeability change
due to pressure drop while vertical total stress σv is kept constant along
the simulation time. The figure allows to understand that the permeability
decreases with increasing the reservoir compaction. The Figure 17 at bottom-
left and bottom-right position show the variation of radial flux for both cases.
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Figure 17. 3D reservoir with horizontal production well under hydrostatic condition.
(top-left) longitudinal permeability, (top-right) transverse permeability, (bottom-left) lon-
gitudinal radial flux, and (bottom-right) transverse radial flux.

The Figure 18 at top-left position presents the distribution of displace-
ment under hydrostatic condition, in which the surface subsidence is occurred
clearly. The Figure 18 at top-right shows the distribution of porosity under
hydrostatic condition where the porosity reduction near to wellbore is because
of pressure depletion. The Figure 18 at bottom-left displays the permeability
distribution under hydrostatic condition near the wellbore. The Figure 18 at
bottom-right shows the radial flux distribution under hydrostatic condition
near the wellbore. It can be observed that from only geomechanical effects
the wellbore region deteriorates the productivity index associated with the
case when is considered a constant permeability and no geomechanical effects.
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Figure 18. 3D reservoir with horizontal production well under hydrostatic condi-
tion. (top-left) displacement distribution in y direction, (top-right) porosity distribution,
(bottom-left) permeability distribution, and (bottom-right) radial flux distribution.

6. Conclusions

The effect of pore collapse and shear-enhanced compaction on the reser-
voir performance is analyzed using the sequential coupled poro-elastoplasticity
and permeability, in which the DiMaggio-Sandler and nonlinear Davies per-
meability model are used. The onset of pore collapse and shear-enhanced
compaction from the numerical results with respect to commonly used ap-
proaches is obtained by three methods: firstly using the DiMaggio-Sandler
cap plasticity model, second the compaction model of Wong, and third the
shear bands of Rudnicki. The numerical results demonstrate that the onset
of pore collapse and shear-enhanced compaction is clear, where the plastic
volumetric strain begins. The effect of pore collapse and shear-enhanced
compaction on porosity and permeability is analyzed, in which by increasing
the effective stress, the reduction of porosity and permeability increase. The
results demonstrate that while the pore collapse and shear-enhanced com-
paction are accrued, the change of variables will be irreversible. It means,
the deformation is irreversible and consequently the lost of porosity and per-
meability is irreversible. This change also appear for radial flux of reservoir.
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In addition, the numerical results emphasize the importance of in-situ stress
ratio ks on petrophysical properties of reservoir.
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