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Abstract

Effective monitoring of groundwater withdrawals is necessary to help mitigate the negative impacts of aquifer depletion. In

this study, we develop a holistic approach that combines water balance components with a machine learning model to esti-

mate groundwater withdrawals. We use both multi-temporal satellite and modeled data from sensors that measure different

components of the water balance at varying spatial and temporal resolutions. These remote sensing products include evapo-

transpiration, precipitation, and land cover. Due to the inherent complexity of integrating these data sets and subsequently

relating them to groundwater withdrawals using physical models, we apply random forests- a state of the art machine learning

algorithm- to overcome such limitations. Here, we predict groundwater withdrawals per unit area over a highly monitored

portion of the High Plains aquifer in the central United States at 5 km resolution for the years 2002-2019. Our modeled with-

drawals had high accuracy on both training and testing datasets (R[?] 0.99 and R[?] 0.93, respectively) during leave-one-out

(year) cross-validation with low Mean Absolute Error (MAE) [?] 4.26 mm and Root Mean Square Error (RMSE) [?] 13.57 mm

for the year 2014. Moreover, we found that even for the extreme drought year of 2012, we have a satisfactory test score (R[?]

0.79) with MAE [?] 10.34 mm and RMSE [?] 27.04 mm. Therefore, the proposed hybrid water balance and machine learning

approach can be applied to similar regions for proactive water management practices.
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Abstract 39 

Effective monitoring of groundwater withdrawals is necessary to help mitigate the negative 40 

impacts of aquifer depletion. In this study, we develop a holistic approach that combines water 41 

balance components with a machine learning model to estimate groundwater withdrawals. We 42 

use both multi-temporal satellite and modeled data from sensors that measure different 43 

components of the water balance at varying spatial and temporal resolutions. These remote 44 

sensing products include evapotranspiration, precipitation, and land cover. Due to the inherent 45 

complexity of integrating these data sets and subsequently relating them to groundwater 46 

withdrawals using physical models, we apply random forests— a state of the art machine 47 

learning algorithm— to overcome such limitations. Here, we predict groundwater withdrawals 48 

per unit area over a highly monitored portion of the High Plains aquifer in the central United 49 

States at 5 km resolution for the years 2002-2019. Our modeled withdrawals had high accuracy 50 

on both training and testing datasets (𝑅2 ≈ 0.99 and 𝑅2 ≈ 0.93, respectively) during leave-one-51 

out (year) cross-validation with low Mean Absolute Error (MAE) ≈ 4.26 mm and Root Mean 52 

Square Error (RMSE) ≈ 13.57 mm for the year 2014. Moreover, we found that even for the 53 

extreme drought year of 2012, we have a satisfactory test score (𝑅2 ≈ 0.79) with MAE ≈ 10.34 54 

mm and RMSE ≈ 27.04 mm. Therefore, the proposed hybrid water balance and machine 55 

learning approach can be applied to similar regions for proactive water management practices.  56 

 57 

Plain Language Summary 58 

Groundwater is an essential component of global water resources and is the largest source of 59 

Earth’s liquid freshwater. It is extensively used for drinking water and to support global food 60 

production. Consequently, groundwater consumption has significantly increased owing to the 61 

pressing demands for water, food, and energy primarily driven by the increasing global 62 

population. Despite its critical role in the water-food-energy nexus, very few regions in the 63 

United States (US) or elsewhere actively monitor their groundwater withdrawals (also known as 64 

extraction or pumping) for implementing sustainable water management solutions. We develop a 65 

hybrid approach combining water balance components measured using openly available remote 66 

sensing products with a machine learning model to estimate groundwater withdrawals. This 67 

framework automatically learns the inter-relationships among these variables and groundwater 68 

withdrawals. Our study area is a portion of the High Plains Aquifer in Kansas (central US) where 69 

overpumping has caused substantial groundwater storage loss. Also, a large amount of 70 

groundwater pumping data is available for validation. Our results indicate good accuracy even 71 

for extreme drought years. Thus, this approach should be applicable to similar regions having 72 

sparsely or moderately available groundwater pumping data, enabling water managers to 73 

proactively implement sustainable solutions addressing water security issues. 74 

 75 
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1 Introduction 76 

Groundwater constitutes nearly 30% of total global freshwater reserves (Schneider et al., 2011) 77 

and is a key component of the water-food-energy nexus (Smajgl et al., 2016). Globally, about 78 

half of the drinking water is supplied by groundwater (Gleeson et al., 2019). Moreover, 79 

groundwater is extensively used in agricultural activities and the demand for it is increasing due 80 

to the rise in the global population, dietary shifts, and climate change (Margat & van der Gun, 81 

2013). Monitoring of groundwater withdrawals (pumping) is needed for quantifying aquifer 82 

depletion and to provide essential information for building groundwater models to manage the 83 

resource. However, most places in the world, including the United States (US), do not actively 84 

monitor their groundwater withdrawals at a high-enough spatial resolution for implementing 85 

sustainable water management policies. Without that monitoring, it will be exceedingly difficult 86 

to address the negative impacts of groundwater overuse, which include permanent aquifer 87 

storage loss, land subsidence and water contamination (Butler et al., 2018; Chaussard & Farr, 88 

2019; Erban et al., 2013; Galloway & Burbey, 2011; MardanDoost et al., 2019; Smith et al., 89 

2017, 2018).  90 

 91 

Due to the availability of voluminous amounts of satellite data, it is possible to monitor large 92 

regions using remote sensing techniques (Frappart & Bourrel, 2018; Leidner & Buchanan, 2018). 93 

In the hydrologic remote sensing domain, there is a multitude of spaceborne missions that 94 

provide satellite products for assessing different quantities related to the global water cycle. The 95 

most prominent of these products quantify total water storage— GRACE (Gravity Recovery and 96 

Climate Experiment) and GRACE-FO (GRACE- Follow On), terrestrial evapotranspiration—  97 

MODIS (Moderate Resolution Imaging Spectroradiometer), soil moisture— SMAP (Soil 98 

Moisture Active Passive), precipitation— GPM (Global Precipitation Measurement), TRMM 99 

(Tropical Rainfall Measuring Mission), and land cover— USDA-NASS (United States 100 

Department of Agriculture- National Agricultural Statistics Service)  (Boryan et al., 2011; Chan 101 

et al., 2016; MardanDoost et al., 2019; Nie et al., 2018; Yi et al., 2018).  102 

 103 

Each of these datasets is related in some way to hydrologic fluxes that impact the groundwater 104 

system. A great deal of research has been done on using these datasets to estimate groundwater 105 

fluxes. A number of studies have used GRACE to estimate changes in total water storage, then 106 

subtract the components of soil moisture, surface water, and snow water to estimate fluxes in 107 

groundwater storage  (Famiglietti et al., 2011; Rodell et al., 2007, 2009). While useful for basin- 108 

or continental-scale studies, the resolution of GRACE is too coarse (~400 km) for local estimates 109 

of groundwater flux Surface water availability and land use (which is a proxy for water demand) 110 

have also been tied to groundwater withdrawals in previous studies (Faunt, 2009). Many land use 111 

datasets are now derived from remote sensing, and a growing number of studies are using remote 112 

sensing estimates of land use to estimate irrigated area (Deines et al., 2017; Ozdogan & Gutman, 113 

2008), although this has not been tied directly to groundwater extraction. Others have used in-114 

situ data in a water balance approach to estimate groundwater fluxes (Butler et al., 2016, 2018). 115 
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Satellite methods have been used to estimate groundwater storage change at high resolution 116 

(~100 m) utilizing land subsidence estimates from Interferometric Synthetic Aperture Radar 117 

(InSAR, e.g., Hoffmann et al., 2001; Smith et al., 2017), but this approach is typically limited to 118 

regions with confined or semi-confined aquifers (where pressure changes are highest) and highly 119 

compressible sediments (Smith and Majumdar, 2020). In spite of the mature research in many of 120 

these individual fields, very rarely are the various remotely sensed datasets combined to estimate 121 

groundwater fluxes, which limits their ability to estimate these fluxes to very specific cases. In 122 

this study, we seek a generalizable approach that utilizes satellite data to estimate groundwater 123 

withdrawals at the local scale (5 km resolution) without prior knowledge of withdrawals. We 124 

accomplish this by integrating diverse satellite datasets that are related to different components 125 

of the water balance. 126 

 127 

Integrating satellite data for estimating the different water balance components can be immensely 128 

challenging due to the varying spatial and temporal resolutions (Tamayo-Mas et al., 2018).  129 

Moreover, we lack methods to estimate several key parameters, such as recharge, groundwater 130 

inflow/outflow, and surface water withdrawals, to ‘close the loop’ of the water balance and 131 

directly estimate groundwater withdrawals. Furthermore, existing water balance estimates have 132 

been shown, in many cases, to exhibit spatial bias, limiting their accuracy to some extent 133 

(Hashemi et al., 2017). These roadblocks have limited our ability to estimate groundwater 134 

withdrawals except in the special cases noted previously. In addition, traditional approaches to 135 

calibrate physical models that incorporate these diverse datasets are challenging because the 136 

models quickly become overly complex and computationally intensive, making the parameter 137 

estimation procedure required to develop accurate estimates infeasible (Becker et al., 2019; 138 

Moeck et al., 2018; Seibert et al., 2019; Tamayo-Mas et al., 2018). 139 

 140 

In this research, rather than using traditional physical models, we leverage the correlations 141 

between various water balance measurements and groundwater withdrawals in a machine 142 

learning framework that learns the relationship between the various datasets and uses them in a 143 

predictive fashion. Here, we apply random forests (Belgiu & Drăguţ, 2016; Breiman, 2001), a 144 

state of the art machine learning algorithm, to develop local scale (5 km) estimates of 145 

groundwater withdrawals over Kansas (part of the High Plains Aquifer in the central US). 146 

Regarding the satellite and modeled datasets, we include the water balance products from 147 

MODIS, PRISM (Parameter-elevation Regressions on Elevation Slopes Model), and USDA-148 

NASS acquired over this region between 2002 and 2019. Here, we use PRISM as it is specific to 149 

the US and the precipitation estimates are interpolated from a dense array of rain gauges thereby 150 

providing higher accuracies than TRMM and GPM (Cannon et al., 2017; Hashemi et al., 2017). 151 

Finally, this novel hybrid water balance and machine learning framework is validated against the 152 

annual in-situ groundwater pumping data available over this area and the results are also 153 

compared to GRACE and GRACE-FO Total Water Storage (TWS) (Landerer & Swenson, 2012; 154 

Swenson, 2012).   155 
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The remainder of this paper is divided into five main sections. We first discuss the characteristics 156 

of the study area (section 2) followed by the details of our methods (section 3). We then provide 157 

an in-depth analysis of the results (section 4) and end with a discussion of the broader 158 

implications and applicability of this work to other regions (sections 5 and 6). 159 

2 Study Area 160 

The High Plains Aquifer (HPA) in the central US is one of the world’s most extensive and 161 

productive aquifers helping to support agricultural demand in the US and across the globe. It 162 

spans over eight states and its water is predominantly used for irrigation of crops, including 163 

wheat, corn, cotton, and soybean. However, the HPA is heavily stressed (mostly in the central 164 

and southern parts) primarily due to groundwater over-pumping driven by the large-scale 165 

demand for freshwater and increasing variations in seasonal evapotranspiration, precipitation, 166 

and floods resulting from climate change (Smidt et al., 2016). More specifically, the situation in 167 

the state of Kansas, particularly in the western area, is critical as 90% of its irrigation water is 168 

supplied by the HPA (Butler et al., 2018). In addition, recent trends show that the water table is 169 

declining rapidly, and some regions are at risk of completely depleting their aquifer. This would 170 

significantly impact the agricultural productivity of the state in the near future thereby also 171 

hindering its economic vitality (Butler et al., 2018; Deines et al., 2020).  172 

 173 

Figure 1. Map of conterminous US highlighting the study area, Kansas, as well as the state’s five 174 

Groundwater Management Districts (GMDs), all of which overlie the HPA. 175 

Currently, the only feasible way to mitigate these negative impacts of extreme groundwater 176 

withdrawals is to reduce groundwater extraction (Butler et al., 2020). This is because surface 177 

water is scarce in western Kansas and the water table decline is driven by groundwater pumping. 178 

Over 95% of the non-domestic pumping wells in the Kansas High Plains aquifer are metered and 179 

pumping volumes must be reported annually (Butler et al., 2018). The pumping data are 180 

available through the Water Information Management and Analysis System (WIMAS) database 181 

that can be accessed at the Kansas Geological Survey (Wilson, 2019). Since “data” is the crux of 182 
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any machine learning model (Hastie et al., 2013), we chose the entire state of Kansas as our 183 

study area, which is highlighted in Figure 1. Considering the severe aquifer stress in the region 184 

and the need for proactive management solutions, we believe that this is the perfect test area for 185 

our proposed hybrid water balance and machine learning framework. 186 

3 Methodology 187 

The overall workflow is shown in Figure 2; the main steps are data acquisition (step 1) using the 188 

Google Earth Engine (GEE) platform (Gorelick et al., 2017), pre-processing (step 2), and the 189 

implementation of the hybrid water balance and machine learning model (step 3) using Python 3. 190 

After that, we perform model evaluation and analyze the groundwater withdrawal predictions 191 

using the available in-situ groundwater pumping geo-database (GDB). Here, the input time series 192 

data consist of evapotranspiration (ET), precipitation (P), and density of the following land-use 193 

types: agriculture (AGRI), urban (URBAN), and surface water (SW).  We provide a detailed 194 

description of our workflow involving the different processing blocks and the time series data 195 

specifications in subsections 3.1 and 3.2. 196 

 197 

 198 

Figure 2. Steps involved in the proposed workflow for predicting groundwater (GW) withdrawals. The 199 

machine learning model is implemented in step 3 after data downloading and pre-processing. It is a fully 200 

automated and reproducible framework developed using open source or freely available tools, libraries, 201 

and data. The icons were downloaded from the respective official websites and IU Digital Science Center 202 

(2013) (random forest figure). Also, QGIS (QGIS Development Team, 2019) is used for visualization.  203 

3.1 Data Acquisition and Pre-Processing 204 

GEE, a cloud-based platform for large-scale geospatial data processing and analysis, is 205 

accessible to researchers and operational users (Gorelick et al., 2017). We used GEE for 206 
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seamless and efficient downloading of our datasets which include MODIS (ET), PRISM (P), and 207 

land-cover data (used to produce AGRI, URBAN, SW) from USDA-NASS. The specific product 208 

names along with the corresponding description are given in Table 1. Moreover, for the MOD16 209 

and PRISM products, we restricted the time span between Apr 1 and Sep 30 (inclusive) of each 210 

year (the typical growing season (Butler et al., 2019). Our assumption was that the land cover 211 

does not change significantly between years over our study period, so we selected the USDA-212 

NASS Cropland Data Layer (CDL) for the year 2015 only. While many farmers rotate crops, we 213 

assume that the rotations did not significantly change the percentage of each 5 km x 5 km pixel 214 

that was cultivated over our study period. This dataset does not distinguish between dryland and 215 

irrigated crops. To compensate for this, we included precipitation and actual evapotranspiration 216 

as input datasets. By combining these datasets, our algorithm is able to identify pixels with low 217 

precipitation and high ET, and thus high groundwater demand. 218 

 219 

The Kansas in-situ groundwater pumping data were obtained from the WIMAS database 220 

(Wilson, 2019). We discarded pixels with average extraction rates of more than 1000 mm per 221 

year. These rates only occurred in two pixels, which had high-capacity wells that were 222 

withdrawing large volumes of water directly beneath the Missouri River, and are thus more 223 

representative of surface water withdrawals than groundwater withdrawals. The in-situ 224 

groundwater pumping data have not been released for 2019 and hence, this year is kept solely for 225 

forecasting. 226 

 227 

We took the temporal sum of both the ET and P bands between April and September of each 228 

year thereby obtaining the total ET and P for that period for each year. In addition, the original 229 

USDA-NASS CDL dataset (covering the conterminous US) for the year 2015, which classifies 230 

land use based on the specific crop type, or water, urban, etc., was reclassified according to 231 

Table 2. Thereafter, this reclassified dataset was split into separate binary rasters (AGRI, SW, 232 

and URBAN) with pixel values 0 and 1 corresponding to the absence and presence of the 233 

respective class (OTHER class is ignored). The Kansas groundwater pumping database (GDB) 234 

was automatically converted into yearly shapefiles and subsequently rasters (5 km spatial 235 

resolution, UTM 14N projection) using GDAL/OGR Python APIs, GeoPandas and Rasterio 236 

(GDAL/OGR contributors, 2019; GeoPandas developers, 2019; Gillies, 2013; Oliphant, 2006). 237 

All of these rasters (ET, P, AGRI, URBAN, and SW) were reprojected to UTM 14N, resampled 238 

to 5 km spatial resolution, and clipped using the intersection of the groundwater pumping rasters 239 

and the Kansas GMD boundary file shown in Figure 1. Each 5 km x 5 km pixel contains the total 240 

annual groundwater withdrawal within that pixel for years 2002-2018. The value was computed 241 

as total volume of groundwater pumping in that region divided by the area, 25 km2.  242 

 243 

 244 

 245 

 246 
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Table 1. Specifications of the time series datasets used in the workflow. 247 

Product Name Time Period Pre-processing Applied Brief Description 

MOD16A2.006: 

Terra Net 

Evapotranspiration 

8-Day Global 500m 

 

2002-2019 

(Apr-Sep) 

Temporal sum over the 

‘ET’ band 

The ET data are available as 

cumulative 8-day composite 

images at 500 m spatial 

resolution (Running & Mu, 

2015).  

PRISM Monthly 

Spatial Climate 

Dataset AN81m 

 

2002-2019 

(Apr-Sep) 

Temporal sum over the 

‘ppt’ band 

The PRISM group provides 

daily and monthly gridded 

climate datasets for the 

conterminous USA. Here we 

use the monthly datasets 

available at about 4 km 

spatial resolution. 

USDA-NASS 

Cropland Data 

Layers 

 

2015 

(Annual) 

Reclassification of the 

‘cropland’ band and 

Gaussian filtering 

CDL is an annual crop-

specific land cover data layer 

(30 m spatial resolution) 

created for the continental 

USA developed using 

MODIS and ground-truth 

data (USDA-NASS, 2015). 

Kansas in-situ 

Groundwater 

Pumping Data 

2002-2018 

(Annual) 

Groundwater pumping 

data to rasters 

The Kansas groundwater 

pumping database (GDB) is 

publicly available (Wilson, 

2019). The GDB contains 

point data across all counties 

in Kansas. 

 248 

 Table 2. Reclassification table for the pre-processed USDA-NASS CDL data. The original CDL raster 249 

data values lie in the interval [1, 254]. 250 

Original Class Interval(s) Reclassified Label 

(0, 59], (66, 77], (203, 255] 1 AGRI 

(110, 111] 2 SW 

(120, 124] 3 URBAN 

(111, 112], (59, 61], (130, 195] 4 OTHER 

 251 

Furthermore, we applied a Gaussian filter available from the Scipy library (Jones et al., 2001) 252 

over each of the AGRI, URBAN, and SW rasters to create smoothed rasters representing the 253 

density of each land-use type within a given radius, the size of which is a function of the 254 

standard deviation (𝜎). Here, we set 𝜎 = 3 for AGRI and URBAN, and = 5 for SW. The filtered 255 
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data were then normalized over the interval [0, 1] where the values represent the density of these 256 

classes, i.e., pixel values close to 0 have very few of the respective class within the specified 257 

window, and vice-versa. Finally, the pre-processed datasets were organized into a Pandas 258 

DataFrame object (McKinney, 2010). It is noteworthy that feature ordering affects model 259 

performance in any decision-tree-based algorithm (Breiman, 2001; Olson, 2015). In order to 260 

have consistent feature ordering, the CSV file was sorted based on the attribute names (Breiman, 261 

2001; Olson, 2015). The feature or attribute names in alphabetical order are AGRI, ET, P, SW, 262 

and URBAN where the ET and P are in mm and AGRI, URBAN, and SW are measures of land 263 

type density and are unitless. The groundwater pumping values (mm) are marked as the label set 264 

(groundwater pumping is the target variable for prediction). It should be noted that our proposed 265 

framework provides the flexibility to alter any of these parameters (𝜎, spatial resolution, 266 

reclassification values) as per the requirement of the specific application. Moreover, in our initial 267 

setup, we chose these specific values for model workability purposes. However, observing the 268 

effects of modifying these pre-processing parameters could provide further insights into the 269 

spatial and temporal mechanisms driving groundwater demand and usage.  270 

 271 

3.2 Our Approach-Random Forests 272 

Random Forests is a widely used machine learning algorithm that has been extensively applied in 273 

the remote sensing domain, primarily for classification purposes with non-linear or multimodal 274 

datasets (Belgiu & Drăguţ, 2016). Although in this work, we use it for multi-variate regression, 275 

the general idea remains the same where the algorithm employs a set of Classification and 276 

Regression Trees (CART) for prediction. Essentially, the random forests algorithm behaves as an 277 

ensemble or meta estimator where it uses averaging across all the CARTs to improve the 278 

predictive accuracy and control over-fitting (Breiman, 2001). To test the performance of our 279 

model, we split the original data into training and testing data because the random forests follow 280 

a supervised machine learning approach. Here, two main hyperparameters are involved– the 281 

number of estimators or trees (n_estimators) and the number of features to consider during the 282 

best split operation (max_features). If max_features = n_features (number of actual features), 283 

then the sub-sample size is equal to the original input sample size where the samples are drawn 284 

with replacement. We have iterated our model using different values for both these 285 

hyperparameters. Also, the random_state parameter controls the randomness of the sample 286 

bootstrapping and therefore, remained fixed throughout the workflow for model reproducibility 287 

(Pedregosa et al., 2011).  288 

 289 

In our final model setup, we chose n_estimators = 500 which is a commonly used value for 290 

remote sensing studies (Belgiu & Drăguţ, 2016; Smith et al., 2018), random_state = 0, 291 

max_features = 5, and the other hyperparameters as scikit-learn defaults (Pedregosa et al., 2011). 292 

The parameters n_estimators and max_features were optimized to minimize the Root Mean 293 

Square Error (RMSE) on our testing (validation) datasets (described in section 4). We split the 294 

training and testing data considering a leave-one-out (year) cross-validation method where the 295 
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user is able to choose a particular year as pure test and remaining years as training data 296 

respectively.  297 

  298 

Regarding model evaluation, we considered the feature importances, partial dependence plots, 299 

and different error metrics for the predictions such as the coefficient of determination (𝑅2), 300 

RMSE, and Mean Absolute Error (MAE). The feature or variable importances are values (sum 301 

up to 1) signifying the impact of each variable (the higher the value, the more important is the 302 

feature). Although these can be calculated in several ways, in our approach, the feature 303 

importance, also called Gini importance or mean decrease in importance (MDI) is defined as the 304 

total decrease in node impurity (weighted by the probability of reaching a particular node) which 305 

is averaged over all the trees (Breiman et al., 1984). Currently, this is the most computationally 306 

efficient method and is widely used in the scientific community (Breiman et al., 1984; Pedregosa 307 

et al., 2011). Partial dependence plots in conjunction with the feature importances can be useful 308 

to interpret the effect of specific variables on the predicted outcome. Partial dependence plots 309 

determine the effect on the prediction outcomes when one variable is varied while accounting for 310 

all possible values from the rest (Hastie et al., 2013).  The equation for partial dependence plots 311 

is given below: 312 

𝑓(𝑥) =
1

𝑛
∑𝑓(𝑥, 𝑥𝑖𝑐)

𝑛

𝑖=1

 (1) 

where, 𝑓(𝑥) is the partial dependence function, 𝑛 is the number of rows in the dataset, 𝑓(𝑥, 𝑥𝑖𝑐) 313 

is the random forest model, 𝑥 is the predictor variable of interest, and 𝑥𝑖𝑐 denotes the values of 314 

all other variables. 315 

 316 

This allows us to quantify how each input variable impacts groundwater pumping. For example, 317 

we expect regions or years with low precipitation and high evapotranspiration to have high 318 

groundwater pumping values. If this is verified in our partial dependence plots, we can have 319 

confidence that our model is capturing the dynamics of the hydrologic system. In our proposed 320 

workflow, we use the scikit-learn library (Pedregosa et al., 2011) to obtain the different partial 321 

dependence plots which are discussed in section 4. Lastly, we also perform residual diagnostics 322 

to observe the error distribution and perform normality checks (Hastie et al., 2013). 323 

4 Results and Analysis 324 

In order to better assess our proposed model, we perform two main test cases– one with 2014 325 

(average to slightly dry year) as a pure validation dataset and the other with 2012 (extreme 326 

drought). Additionally, we also perform model evaluation based on multiple validation datasets. 327 

Here, we describe the results and the corresponding analysis in each of these scenarios. 328 

 329 

4.1 Test Case I– Year 2014 330 

In this case, we select the pre-processed datasets for the year 2014 as pure validation data for 331 

performing leave-one-out cross-validation. The number of rows, 𝑛, is 142,600 for the training 332 
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dataset and 8,912 for the testing or validation dataset. Accordingly, we obtain an overall training 333 

score, 𝑅2 ≈ 0.99. Moreover, the error metrics shown in Table 3 suggest that we are achieving 334 

good prediction results for the validation dataset (or testing dataset), 𝑅2 ≈ 0.93, RMSE ≈ 13.57 335 

mm, MAE ≈ 4.26 mm, and normalized MAE ≈ 0.22 (the MAE is normalized by the average 336 

annual pumping).  337 

 338 

Table 3. Error metrics (rounded to 2 decimal places) for Test Case I. 339 

YEAR 𝑅2 RMSE (mm) MAE (mm) Normalized MAE 

2002 0.98 8.18 2.94 0.12 

2003 0.99 6.29 2.19 0.10 

2004 0.99 5.44 1.85 0.10 

2005 0.99 4.20 1.51 0.08 

2006 0.99 5.95 2.00 0.10 

2007 0.98 6.60 2.38 0.13 

2008 0.99 5.38 1.72 0.09 

2009 0.99 4.09 1.42 0.08 

2010 0.99 4.52 1.59 0.08 

2011 0.98 9.31 3.10 0.13 

2012 0.98 8.06 3.02 0.13 

2013 0.99 5.77 1.78 0.09 

2014 0.93 13.57 4.26 0.22 

2015 0.99 3.97 1.41 0.08 

2016 0.99 4.46 1.58 0.10 

2017 0.98 5.53 1.71 0.10 

2018 0.99 4.61 1.62 0.10 

 340 

The actual and predicted groundwater pumping rasters for 2014 are given in Figure 3 (a) and (b), 341 

respectively. 342 

 343 

 344 

 345 

 346 

 347 
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(a) (b) 

Figure 3. (a) Actual and (b) Predicted groundwater (GW) pumping rasters for 2014. This plot was created 348 

using R (R Core Team, 2019). The no data values in the predicted raster are introduced by the ET dataset 349 

which had some pixels (falling inside the study area) assigned as no data. 350 

Next, we check the goodness of fit based on different plots (R Core Team, 2019) involving 351 

predicted values and residual diagnostics. The 1:1 relationship between the actual and predicted 352 

groundwater pumping values is given in Figure 4 which shows that the predictions closely follow 353 

the actual values for 2014 (𝑅2 ≈ 0.93 and Residual Standard Error (RSE) ≈ 13.34 mm).  354 

 355 

 356 

Figure 4. Scatter plot showing the actual and predicted groundwater (GW) pumping values (2014). 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 
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 (a) (b) 

 
  

 

(c) (d) 

  
Figure 5. Residual diagnostics (actual - predicted) for 2014 showing (a) Groundwater (GW) pumping 366 

error raster, (b) Standardized residual histogram with the red line representing the Gaussian probability 367 

density function (PDF), (c) Standardized Residuals vs Predicted, and (d) Q-Q plots.  368 

The model residual diagnostics are shown in Figure 5 (a)-(d). Figure 5 (a) shows some regions in 369 

the western portion of the study area that have pockets of high residual error. Figure 5 (b) and (c) 370 

show the standardized residuals, obtained by dividing the residuals by their standard deviation. 371 

These should lie in the [-2, 2] interval for normally distributed residuals (Hastie et al., 2013). We 372 

can see from these plots that there is a slight bias, with the residuals centered around 0 (average 373 

residual of 0.40 mm) and no significant trends in the residuals. While about 96% of the data lie 374 

within the [-2, 2] interval and Figure 5 (b) seems to follow a nearly normal distribution from the 375 

first inspection, the data do not follow a perfect normal distribution. Figure 5 (d) shows a Q-Q 376 

plot, which can be used to determine normality. When the curve follows the horizontal line 377 

(marked in red), the distribution is normal. As observed, the curve follows a straight line between 378 

quantiles -2 and 2, where most of the data lie, but the outliers have some skew.  379 

 380 

Some deviation from normality is expected as we are possibly overfitting the random forests 381 

model which also agrees with the lower test score (𝑅2 ≈ 0.93) than training score (𝑅2 ≈ 0.99). 382 

However, given that there is no significant bias or trend in the residuals, we consider the model 383 

predictions to be robust.  384 



Confidential manuscript submitted to AGU Water Resources Research (WRR) journal 

 

 14 

4.2 Test Case II– Year 2012 385 

Similar to the 2014 dataset, we selected 2012 as pure validation dataset and the rest as training. 386 

Here, the model training score, 𝑅2 ≈ 0.99 is also similar. The error metrics for this test case are 387 

shown in Table 4.  388 

 389 

Table 4. Error metrics (rounded to 2 decimal places) for Test Case II. 390 

YEAR 𝑅2 RMSE (mm) MAE (mm) Normalized MAE 

2002 0.98 9.01 3.41 0.14 

2003 0.99 6.33 2.27 0.10 

2004 0.99 5.61 1.90 0.10 

2005 0.99 4.36 1.57 0.09 

2006 0.99 6.27 2.17 0.10 

2007 0.98 6.97 2.57 0.14 

2008 0.99 5.83 1.82 0.09 

2009 0.99 4.02 1.42 0.08 

2010 0.99 4.64 1.65 0.08 

2011 0.98 9.78 3.42 0.14 

2012 0.79 27.04 10.34 0.44 

2013 0.99 5.86 1.81 0.09 

2014 0.99 5.12 1.62 0.08 

2015 0.99 4.14 1.47 0.08 

2016 0.99 4.68 1.66 0.10 

2017 0.98 5.59 1.75 0.10 

2018 0.99 4.70 1.67 0.10 

 391 

The actual vs predicted groundwater pumping plots in Figure 6 (a) and (b) for the year 2012 392 

indicate that even for extreme drought conditions, our approach produces satisfactory results. 393 

With 𝑅2 ≈ 0.79, RMSE ≈ 27.04 mm, MAE ≈ 10.34 mm, and normalized MAE ≈ 0.44 this test 394 

case has significantly lower accuracy relative to Test Case I. This is caused by a lack of training 395 

data during extreme drought years, as 2012 was the driest year in our dataset (Lin et al., 2017). 396 

Thus, by holding 2012 out of the training, our random forest model had no dataset from which to 397 

learn how groundwater pumping responds to extreme drought. We chose to hold this year out as 398 

an extreme test of our model. An 𝑅2 of 0.79 is still quite high given the extreme nature of the 399 

hold-out year, so we consider the model performance on this year as a validation of this model’s 400 

robustness. 401 

 402 
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(a) (b) 

Figure 6. (a) Actual and (b) Predicted groundwater (GW) pumping rasters for 2012.  403 

The actual vs predicted groundwater pumping values for 2012 are shown in Figure 7. As 404 

expected, there is significantly higher scatter in Test Case II relative to Test Case I. The lower 405 

𝑅2 ≈ 0.79 and higher RSE ≈ 26.90 mm for Test Case II also suggest that the predicted 406 

groundwater pumping values deviate more from the actual ones.  407 

 408 

 409 

Figure 7. Scatter plot showing the actual and predicted groundwater (GW) pumping values (2012).  410 

The model residual diagnostics are depicted in Figure 8 (a)-(d). As shown in Figure 8 (a), there 411 

are several areas in the western portion of the study area with high residuals. Figure 8 (b) and (c) 412 

show some bias (with an average residual value of -2.34 mm), and Figure 8 (d) shows that the 413 

residuals are not normally distributed though about 95% of the standardized residuals lie in the [-414 

2, 2] interval. These observations are in concordance with the lower testing score of the random 415 

forest model, 𝑅2 ≈ 0.79 when compared to the high training score, 𝑅2 ≈ 0.99 signifying bias in 416 

the final estimates.  Still, considering the extreme drought scenario, the year 2012 is an outlier 417 

with significantly higher groundwater pumping than observed in the training datasets. Given 418 

these limitations, we consider the model performance for this year to be reasonable. 419 

 420 
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(a) (b) 

  
(c) (d) 

  
Figure 8. Residual diagnostics for 2012 showing (a) Groundwater (GW) pumping error raster, (b) 421 

Standardized residual histogram with the Gaussian PDF highlighted in red, (d) Standardized Residuals vs 422 

Predicted, and (f) Q-Q plots.  423 

4.3 Test Case III– Using Multiple Validation Datasets 424 

In order to further assess our model, we held the years 2011 to 2018 out of our model and used 425 

the datasets from 2002-2010 for training. Here, we only check the error metrics as given in Table 426 

5. The overall training and testing scores for this scenario are 𝑅2 ≈ 0.98 and 𝑅2 ≈ 0.78, 427 

respectively, along with RMSE ≈ 23.50 mm, MAE ≈ 8.22 mm, and normalized MAE ≈ 0.42.  428 

These error metrics highlight that our approach performs reasonably well even when multiple 429 

years are excluded from training. 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

  440 
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Table 5. Error metrics (rounded to 2 decimal places) for Test Case III. 441 

YEAR 𝑅2 RMSE (mm) MAE (mm) Normalized MAE 

2002 0.98 9.32 3.53 0.14 

2003 0.98 7.12 2.55 0.12 

2004 0.98 6.81 2.30 0.12 

2005 0.99 5.00 1.86 0.10 

2006 0.99 6.37 2.32 0.11 

2007 0.98 7.29 2.82 0.15 

2008 0.99 6.19 2.01 0.10 

2009 0.99 5.49 1.94 0.11 

2010 0.99 5.94 2.22 0.11 

2011 0.71 33.66 12.42 0.51 

2012 0.73 30.80 12.05 0.51 

2013 0.87 18.87 6.05 0.30 

2014 0.90 16.40 5.60 0.29 

2015 0.79 20.05 7.13 0.41 

2016 0.75 21.58 7.78 0.47 

2017 0.77 20.51 7.22 0.43 

2018 0.76 20.57 7.48 0.47 

 442 

5 Discussion 443 

We chose the random forest model developed during Test Case I as the final one for the 444 

groundwater pumping prediction, as it used the most training data and was able to learn from 445 

both wet and dry years and is most likely to be effective for future predictions. After the model 446 

evaluation phase, we observed that the feature importances in all three test cases were similar, 447 

with the most important features being the land-use classes, i.e. SW, AGRI, and URBAN. This 448 

finding is in agreement with groundwater withdrawals predominantly occurring in agricultural 449 

areas with limited surface water availability (Butler et al., 2018).  More specifically, the feature 450 

importances (rounded to 2 decimal places) of SW, AGRI, URBAN, ET, and P are 0.31, 0.29, 451 

0.22, 0.09, and 0.09 in descending order, respectively. This metric gives higher importance to 452 

spatially variable but temporally static predictors (i.e. land use) than spatio-temporal variable 453 

predictors (i.e. P and ET). The main reason for this is that groundwater withdrawals vary more 454 

spatially than they do temporally, so spatial predictors explain most of the variance in 455 

groundwater pumping values. However, this metric does not provide a complete picture of 456 

variable importance, as P and ET are critical variables for quantifying any temporal variations in 457 

groundwater, including the effect of drought or wet years, which is one of the key goals of this 458 

study. To further explore the importance of each variable, we employ partial dependence plots 459 

which indicate a plausible agreement between the model behavior and the expected heuristic 460 

relationships (Figure 9 (a)-(e)). Groundwater pumping increases with higher AGRI and ET 461 
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values and decreases with increased P and SW, as would be expected. Also, the groundwater 462 

pumping varies significantly with the URBAN predictor. This could be attributed to the 463 

variability in the groundwater demand of urban areas in Kansas. 464 

 465 

 
(a) (b) (c) 

 
(d) (e)  

Figure 9. Partial dependence plots relating groundwater (GW) pumping values to (a) AGRI, (b) ET, (c) P, 466 

(d) SW, and (e) URBAN. These were generated using the scikit-learn library (Pedregosa et al., 2011). 467 

Here AGRI, SW, and URBAN are unitless. 468 

While our model was reasonably accurate, it did display bias in some regions (Figure 5 (a) and 8 469 

(a)), particularly in west-central Kansas, where we are over-predicting pumping, most notably 470 

during the major drought year of 2012 (Figure 8 (a)). This could be related to the transmissivity 471 

of the aquifer — the aquifer thickness in many of the areas with over-predicted pumping has 472 

reached a point that it can no longer support large-scale pumping for irrigated agriculture (Butler 473 

et al., 2018). Thus, these areas have high groundwater demand due to the drought, but do not 474 

have sufficient resources to meet the demand. We would expect those areas to have lower ET, 475 

but the dependence of pumping on ET resulting from the random forests may not be great 476 

enough to identify those areas.  477 

 478 

The model we developed provides reasonable estimates of groundwater pumping in Kansas. 479 

Since the model was trained on climate (i.e., precipitation and evapotranspiration) data and land-480 

use patterns specific to that region, the relationships it learned between those predictor variables 481 

and groundwater pumping estimates will likely hold in other regions with similar climates and 482 

land-use patterns. However, it is less transferrable to regions with significantly different climates 483 

or land use patterns. 484 

 485 
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5.1 Temporal trends in groundwater pumping and total water storage 486 

As a final step of our model evaluation, we used Test Case III (2011-2018 as pure test data) to 487 

compare (Figure 10) the groundwater pumping values (both actual and predicted) for the entire 488 

study area and three specific GMDs (GMD 3, 4, and 5) to the GRACE and GRACE-FO TWS 489 

measurements (Landerer & Swenson, 2012; Swenson, 2012). GMDs 3, 4, and 5 cover southwest, 490 

northwest, and south-central regions of Kansas (Butler et al., 2016) and are under significant 491 

stress due to heavy groundwater pumping. GMDs 3 and 4 are in a semi-arid climate, while 492 

GMD5 is in a sub-humid climate. Due to their varying climate and high water demand, these 493 

GMDs have conditions similar to a range of other aquifers that are under heavy water stress, so 494 

the performance of our model over these regions is indicative of model performance over regions 495 

with similar conditions globally. 496 

 497 

From Figure 10 (a), we observe that the groundwater pumping predictions for GMD 3 are lower 498 

than the actual values. However, the predictions for GMD 4 and 5 match quite well with the 499 

actual pumping measurements (Figure 10 (b)-(c)). GMD 3 is likely underpredicted because, in 500 

general, the actual values of pumping in GMD 3 are the highest of the study area. Random 501 

forests tends to produce conservative estimates that lean towards the mean and thus underpredict 502 

the highest estimates. However, the predictions are still reasonably close, and the other GMD in 503 

a semi-arid climate (GMD 4) matches closely with observed withdrawals. Thus, we consider the 504 

model to perform well in both semi-arid and sub-humid climates. 505 

 506 

Since the TWS measurements in Figure 10 (e) are too coarse to compare at the GMD scale, we 507 

use the groundwater pumping estimates from the entire state of Kansas (Figure 10 (d)) for the 508 

comparison.  The pattern for the mean annual groundwater pumping values for Kansas is in 509 

general agreement with that for the TWS values. Note that groundwater pumping most closely 510 

matches the change in TWS during each growing season (Spring to Fall) for any given year. 511 

Essentially, this highlights the effectiveness and robustness of our model even when we leave out 512 

several years of data from training.     513 

 514 

Many studies have found data from the GRACE to be a strong predictor of changes in 515 

groundwater storage at regional scales, i.e. 100s of km (Landerer & Swenson, 2012; Rodell, 516 

2004; Rodell et al., 2007, 2009; Tiwari et al., 2009). For this reason, we initially included 517 

GRACE TWS as a predictor in our model. However, we found that our model performed better 518 

without GRACE data, so it was ultimately removed. We believe that the value of GRACE in 519 

groundwater storage changes is diminished in our study both due to its coarse resolution (400 520 

km) (Miro & Famiglietti, 2018) relative to the resolution of our model (5 km), and also due to its 521 

correlation with precipitation, which is another strong indicator of drought in Kansas. We 522 

consider it likely that GRACE would be a more useful predictor for extending assessments to 523 

broader regions, where GRACE is a more consistent indicator of drought than precipitation, 524 

which has different normal levels for different regions. 525 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 10. Actual vs predicted mean annual groundwater (GW) pumping for (a) GMD 3, (b) GMD 4. (c) 526 

GMD 5, and (d) entire Kansas. Monthly GRACE/GRACE-FO TWS between 2002 and 2019 (e) are 527 

included for comparison with the entire Kansas plot. Here, years 2011-2018 are test data (Test Case III) 528 

and forecasts are made for 2019.  529 
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6 Conclusions 530 

In this research, we developed a new hybrid water balance and machine learning framework for 531 

predicting groundwater withdrawals at a local scale (5 km spatial resolution). This holistic 532 

approach integrates various openly available satellite products that are related in different ways 533 

to groundwater withdrawals. These include evapotranspiration (MODIS), precipitation (PRISM), 534 

and land-cover data (USDA-NASS). We deployed a machine learning framework using random 535 

forests to build a self-learnable hybrid water balance method that incorporates these datasets 536 

along with in-situ groundwater extraction data (Wilson, 2019). Our workflow is fully automated 537 

and has been implemented using open-sourced or freely available software tools and libraries.  538 

 539 

A thorough model assessment showed that our proposed approach works satisfactorily with 540 

predictions having high 𝑅2 values and low RMSE and MAE. In this work, we considered three 541 

test scenarios to validate our method, two of which included the extreme drought period of 2012. 542 

Moreover, the random forest feature importances agree with the expected dependencies of 543 

groundwater withdrawals.  544 

 545 

As climate change, dietary shifts, and population growth increase the global stress on 546 

groundwater resources, it is critical to develop sustainable groundwater management practices, 547 

yet the volume of groundwater withdrawals, a key quantity for such efforts, is poorly constrained 548 

in many regions. Although one of us has repeatedly called for greater monitoring of groundwater 549 

withdrawals (Butler et al., 2016, 2018, 2020), that has proven challenging in many areas. This 550 

method enables water managers to predict groundwater withdrawals from anthropogenic and 551 

climate drivers— such knowledge could lead to proactive implementation of sustainable 552 

solutions related to groundwater withdrawal practices. 553 
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