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Abstract

Despite the importance of turbidity currents in environmental and resource geology, their flow conditions and mechanism are

not well understood. To resolve this issue, a novel method for the inverse analysis of turbidity current using deep learning

neural network (DNN) was proposed. This study aims to verify this method using artificial and flume experiment datasets.

Development of inverse model by DNN involves two steps. First, artificial datasets of turbidites are produced using a forward

model based on shallow water equation. To develop a inverse model, DNN then explores the functional relationship between

initial flow conditions and characteristics of the turbidite deposit through the processing of artificial datasets. The developed

inverse model was applied to 200 sets of artificial test data and four sets of experiment data. Results of inverse analysis

of artificial test data indicated that the flow conditions can be precisely reconstructed from depositional characteristics of

turbidites. For experimental turbidites, spatial distributions of grain size and thickness were accurately reconstructed. With

regard to hydraulic conditions, reconstructed values of flow heights, sediment concentrations, and flow durations were close to

the measured values. In contrast to the other values, there was a larger discrepancy between the measured and reconstructed

values of flow velocity, which may be attributed to inaccuracies in sediment entrainment functions employed in the forward

model.
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Abstract13

Despite the importance of turbidity currents in environmental and resource geology,14

their flow conditions and mechanism are not well understood. To resolve this issue, a15

novel method for the inverse analysis of turbidity current using deep learning neural16

network (DNN) was proposed. This study aims to verify this method using artificial17

and flume experiment datasets. Development of inverse model by DNN involves two18

steps. First, artificial datasets of turbidites are produced using a forward model based19

on shallow water equation. To develop a inverse model, DNN then explores the func-20

tional relationship between initial flow conditions and characteristics of the turbidite21

deposit through the processing of artificial datasets. The developed inverse model was22

applied to 200 sets of artificial test data and four sets of experiment data. Results of in-23

verse analysis of artificial test data indicated that the flow conditions can be precisely24

reconstructed from depositional characteristics of turbidites. For experimental tur-25

bidites, spatial distributions of grain size and thickness were accurately reconstructed.26

With regard to hydraulic conditions, reconstructed values of flow heights, sediment27

concentrations, and flow durations were close to the measured values. In contrast to28

the other values, there was a larger discrepancy between the measured and recon-29

structed values of flow velocity, which may be attributed to inaccuracies in sediment30

entrainment functions employed in the forward model.31
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1 Introduction32

A turbidity current is a process of sediment transport into subaqueous environ-33

ments such as deep lakes and ocean (Daly, 1936; Johnson, 1939). The deposits of34

turbidity currents are called turbidites, which are often characterized by graded bed-35

ding and sedimentary succession called the Bouma sequence (e.g., Kuenen & Migliorini,36

1950; Bouma, 1962; Talling et al., 2012). Turbidite deposits have been an active area37

of study because of their close association with petroleum resources and their role in38

the destruction of sea-floor equipment, such as the submarine cables (Weimer & Slatt,39

2007; Talling et al., 2015). Furthermore, turbidites are often deposited as a result of40

tsunami triggered turbidity currents (Arai et al., 2013),and thus are potentially useful41

for estimating the recurrence intervals of geohazards.42

To understand the characteristics of turbidites and their implications, it is essen-43

tial to study the flow behavior of turbidity currents (Talling et al., 2007). However,44

knowledge in this area remains limited because of difficulties in the direct observation45

of turbidity currents. A few in-situ measurements have been made (e.g., Xu et al.,46

2004; Vangriesheim et al., 2009; Arai et al., 2013; Paull et al., 2018), but hydraulic47

conditions measured, such as sediment concentration and flow velocity, were unclear48

because of the destructive nature and unpredictable occurrences of turbidity currents49

(Naruse & Olariu, 2008; Falcini et al., 2009; Lesshafft & Marquet, 2010; Talling et al.,50

2015). Therefore, inverse analysis that reconstructs the flow conditions of turbidity51

currents from their deposits is crucial for estimating the flow conditions in natural52

environments.53

Prior to this research, inverse analysis of turbidity currents was conducted by54

Baas et al. (2000), where flow velocity was reconstructed through analyses of sedimen-55

tary structures of turbidites. The results gave an estimation of the hydraulic conditions56

of flow at a single location, but did not provide a reconstruction of spatial evolution of57

the turbidity current. By contrast, inverse analysis methods in previous studies based58

on numerical models provided more detailed insights to the spatial structure of flow59

and the evolution of flow over time (e.g., Falcini et al., 2009; Lesshafft & Marquet,60

2010; Parkinson et al., 2017). However, the method proposed by Falcini et al. (2009)61

assumed steady flow conditions and was simplified for obtaining analytical solutions,62

preventing it from accurately illustrating the flow mechanism of unsteady turbidity63

currents that can produce normally graded bedding. Consequently, this method can64

not be applied to normally graded beds, which are typical characteristics of turbidites.65

Other studies employed the optimization method estimated the hydraulic parameters66

through optimizing the input parameters of numerical models, so that the resulting67

calculations fit the observed data from turbidites (Lesshafft & Marquet, 2010). This68

method can provide a relatively good reconstruction of the hydraulic conditions of69

turbidity currents, but has extremely heavy calculation load. Therefore, it is impossi-70

ble to apply the method to natural scale turbidites, which typically run over tens to71

hundreds of kilometers and flow continuously for several hours (Talling et al., 2015).72

Optimization using the adjoint approach proposed by Parkinson et al. (2017) solved73

the problem of heavy calculation load, but the reconstructed values were very low in74

accuracy.75

To resolve the aforementioned issues, Naruse and Nakao (2017) developed a new76

method for inverse analysis of turbidite deposits using deep learning neural network77

(DNN). DNN is a computational scheme that works as a universal function approxima-78

tor (Liang & Srikant, 2016). Previously, it was applied to problems such as landslide79

susceptibility analyses (Pradhan et al., 2010) and identification of lithology from well80

log data (Rogers et al., 1992), where the empirical relationship between the observed81

data and the parameters aimed to be predicted were explored. In case of turbidity82

currents, however, it is impossible to obtain sufficient datasets of in-situ measurements83

of flow characteristics for developing a DNN inverse model. Thus, Naruse and Nakao84
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(2017) produced artificial datasets of turbidites using a numerical model. The pro-85

duced datasets were inputted into DNN to explore the functional relationship between86

the deposits and the initial flow conditions. After this process, which is referred to87

as training, DNN becomes capable of making estimations of flow conditions from new88

turbidite data. Although it was proven by Naruse and Nakao (2017) that DNN is89

capable of reconstructing flow properties from artificial test datasets, it has yet to be90

tested with actual turbidite data.91

In this study, we verified the ability of DNN to perform inverse analysis of tur-92

bidity currents by applying DNN to data collected from actual turbidites deposited93

in flume experiments. During each flume experiment, a turbidity current was gener-94

ated under a controlled environment. Conditions including flow duration and initial95

hydraulic conditions can be set manually, and measurements of these parameters can96

also be conducted easily during the flow. Thus, rather than data measured in nature,97

data collected from flume experiment works better as a first step to verify the accuracy98

of DNN for inverse analysis of turbidity currents.99

Here, we implemented the forward model and DNN for inverse analysis. Trained100

DNN was first tested with artificial data of experimental scale turbidity currents.101

Then, trained DNN was tested with flume experiment data. Initial flow conditions of102

experiments were reconstructed from deposit profiles sampled. These values of flow103

conditions were then fed into the forward model to reconstruct the spatio-temporal104

evolution of the flow. Reconsturcted hydraulic conditions during the flow and the105

eventual grain size distribution of the deposits were compared with the measured106

values.107

2 Forward Model108

2.1 Governing Equations109

The forward model implemented in this study is a layer-averaged model based on110

Kostic and Parker (2006). It is expanded to account for the transport and deposition of111

non-uniform grain size distribution discretized to multiple grain-size classes in Nakao112

and Naruse (2017) (Figure 1). The five governing equations are as follows:113

∂H

∂t
+ U

∂H

∂x
= ewU −H

∂U

∂x
, (1)

∂U

∂t
+ U

∂U

∂x
= RCTg(S − ∂H

∂x
)− 1

2gHR
∂CT
∂x
− U2

H
(cf − ew), (2)

∂Ci
∂t

+ U
∂Ci
∂x

= wi
H

(Fiesi − roCi)−
ewCiU

H
, (3)

∂ηi
∂t

= wi
1− λp

(roCi − esiFi), (4)

∂Fi
∂t

+ Fi
La

∂ηT
∂t

= wi
La(1− λp) (roCi − esiFi), (5)

where the equations represent fluid mass conservation (equation 1), momentum con-114

servation (equation 2), sediment mass conservation (equation 3), mass conservation in115

bed (Exner’s equation) (equation 4) and sediment mass conservation in active layer116

(equation 5) (Nakao & Naruse, 2017).117

Let x and t be the bed-attached streamwise coordinate and time, respectively.118

Parameters H, U and Ci are the flow height, the layer-averaged velocity and the layer-119

averaged volumetric concentration of suspended sediment of the ith grain-size class,120

respectively. In this study, the number of grain-size classes and representative grain di-121

ameters were determined based on the grain size distribution of experiments performed122

(specific values noted in Section 5.1). Parameter CT denotes the layer-averaged total123
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concentration of suspended sediment (CT =
∑
Ci), and g is gravitational acceleration.124

Parameters S and cf are the slope gradient and the friction coefficient, respectively.125

Sediment properties are described by R, the submerged specific density of sediment;126

wi, the settling velocity of a sediment particle of the ith grain-size class; and λp, the127

porosity of bed sediment. Parameter ηi is the volume per unit area of bed sediment128

of the ith grain-size class and ηT is the sum of all ηi (ηT =
∑
ηi). Parameters La, the129

active layer thickness, and Fi, the volume fraction of the ith grain-size class in active130

layer, describe the structure of active layer. Parameters esi, ew and ro are the entrain-131

ment rate of sediment of the ith grain-size class into suspension, the entrainment rate132

of ambient water to flow, and the ratio of near-bed suspended sediment concentration133

to the layer-averaged concentration of suspended sediment, respectively (Figure 1).134

Closure equations of the parameters mentioned are described in Section 2.2.135

Figure 1. Schematic diagram of processes considered in the forward model from Nakao and
Naruse (2017).

2.2 Closure Equations136

Empirical formulations from previous studies are adapted to close the govern-137

ing equations. In this study, the friction coefficient cf is assumed to be a constant138

value. The particle settling velocity wi for each grain-size class with a representative139

grain diameter Di is calculated using the relation from Dietrich (1982), which can be140

expressed as follows:141

wi = Rfi
√
RgDi, (6)

Rfi = exp(−b1 + b2 log(Repi)− b3(log(Repi))2 − b4(log(Repi))3 + b5(log(Repi))4),(7)

Repi =
√
RgDiDi

ν
, (8)

where b1, b2, b3, b4 and b5 are 2.891394, 0.95296, 0.056835, 0,000245 and 0.000245,142

respectively. ew is calculated using the empirical formula from Fukushima et al. (1985)143

as follows:144

ew = 0.00153
0.0204 + (RCTH/U2) . (9)
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The entrainment coefficient of sediment es is calculated using the empirical relation145

from Wright and Parker (2004):146

esi = aZ5

1 + (a/0.03)Z5 , (10)

Z = α1
u∗
wi
Reα2

p S0.08
f , (11)

where shear velocity u∗ and friction slope Sf are calculated as follows:147

u∗ =
√
cfU, (12)

Sf = cfU
2

RgCTH
, (13)

and the constants α1 and α2 are 0.586 and 1.23 respectively if Rep ≤ 2.36. If Rep >148

2.36, then α1 and α2 are 1.0 and 0.6, respectively. Kinematic viscosity of water ν is149

calculated as follows:150

ν = µ/ρ, (14)

where ρ and µ denote the density of water and the dynamic viscosity of water, respec-151

tively. Experimentally determined values for µ at 20.0 ◦C (Rumble, 2018) were used152

in the calculation of ν in this study.153

2.3 Implementation of Forward Model154

In this study, the constrained interpolation profile (CIP) method (Yabe et al.,155

2001) was used for the integration of the partial differential equations 1, 2, and 3. To156

stabilize the calculation, artificial viscosity was applied with the scheme of Jameson et157

al. (1981), in which the parameter κ was set to 0.25. The two-step Adams-Bashforth158

method was used to solve ordinary differential equations 4 and 5. Interval of spatial159

grids ∆x was set to 0.05 m and time step ∆t was set to 0.01 s. Initial values of S were160

10% for all grids.161

Dirichlet boundary condition was used for the upstream boundary, in which all162

flow parameters at the upper boundary of calculation domain, including the initial163

flow height H0, the initial flow velocity U0, the initial total volumetric concentration164

of sediment CT,0, and the initial volumetric concentration of each grain-size class Ci,0,165

were set to be constant. Parameter Fi,0, the initial volume fraction of the ith grain-166

size class in active layer, was set to 0.25 for all grain-size classes. The downstream167

boundary was the Neumann boundary condition where all parameters were set to the168

same values as those of the grid adjacent to the lower boundary toward the upstream169

direction. Other than the upstream boundary, all flow parameters, except the flow170

height H, were initialized to zero. H was initialized to 0.0001.171

Properties of fluids and sediment particles were set as follows. Density of fluid ρ172

were set to be 1000.0 kg/m3, and submerged specific density of sediment R = (ρs−ρ)/ρ173

was set differently according to the types of particles used in experiments (rhos is the174

density of sediment particles), which are stated in Section 4.1. The porosity of bed175

sediment λp was assumed to be 0.4. In this study, both the friction coefficient cf176

and ratio of near-bed concentration to layer-averaged values ro were assumed to be177

constant, which were set to 0.002 and 1.5 (Kostic & Parker, 2006). Also, the thickness178

of the active layer La was set to be constant (0.003 m). The gravitational acceleration179

g was 9.81 m/s2.180

3 Inverse Analysis by Deep Learning Neural Network181

In this method, initial flow conditions of turbidity currents are reconstructed182

from its turbidite deposits. DNN first explores the functional relationship between the183
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initial flow conditions of turbidity currents and the resulting turbidite deposits in a184

process called training. After the training process, DNN is applied to new turbidite185

datasets for inverse analysis. In preparation for training, artificial training datasets186

are produced using the forward model. During the training process, training datasets187

are fed into DNN. DNN examines the datasets and adjusts to make good estimation188

of the initial flow conditions from the deposit profile. After training, DNN, which is189

now capable of predicting the initial flow conditions of new turbidites based on the190

functional relationship it discovered, is tested with independent artificial datasets that191

are also produced from the forward model and with flume experiment data.192

3.1 Production of Training Data193

A training dataset is a combination of randomly generated initial flow conditions194

at the upstream boundary of the flow and a matching deposit profile calculated by195

the forward model. A program in Python was written to generate sets of initial flow196

conditions. Each set of flow conditions generated consists of an initial flow velocity197

U0, an initial flow height H0, a flow duration Td, and the initial concentrations of each198

grain-size class Ci,0. Other variables, such as slope, are set to constant values.199

The forward model calculates the deposit profile of a turbidite using the randomly200

generated initial flow conditions. The deposit profile is calculated as volume per unit201

area for each grain-size class at a total of 80 locations within a 4 m range. Each data202

point is 0.05 m away from its neighboring points. The ranges of randomly generated203

initial flow conditions are shown in Table 1. In this study, 11800 training datasets were204

used for training and 200 datasets were used for verification of DNN. The test artificial205

datasets for verification were produced independently from the training datasets.206

Table 1. Range of initial flow conditions generated for the production of training datasets.

Parameter Minimum Maximum

H0 (m) 0.005 0.3
U0 (m/s) 0.001 0.3
Ci,0 0.0001 0.02
Td (s) 1080 120

3.2 Structure of Deep Learning Neural Network207

The type of neural network used in this study is the fully connected neural208

network, which consists of an input layer, several hidden layers, and an output layer.209

Each layer consists of a number of nodes. Each node connects with every node in the210

adjacent layers (Figure 2A). In the input layer, the nodes hold values of the deposit211

profile, i.e. the volume-per-unit-area for all grain-size classes at spatial grids. In the212

output layer, the nodes hold estimates of the parameters we seek to reconstruct, which213

in this case are the initial flow conditions U0, H0, Ci,0 and the flow duration Td. The214

activation function used in this study is ReLU, which is one of the most commonly215

used activation functions for DNN and is proven to perform calculations at a higher216

speed than other activation functions (Krizhevsky et al., 2012).217

Before training, the weight coefficients are set to random values. As the training218

process begins, the values of deposit profile from the training datasets are fed into the219

input layer. These values propagate through the hidden layers of DNN and estimates of220

initial flow conditions are outputted at the output layer. At this point of training, DNN221
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Figure 2. Schematic diagrams of DNN. A. Overall structure of DNN. B. Concept of weight
coefficient and activation function.

is yet to adapt its internal variables to the functional relationship between turbidite222

deposits and initial flow conditions, thus the initial estimates are expected to be largely223

off from the actual values. To explore this functional relationship, a loss function is224

used to evaluate the accuracy of the estimated values. The loss function used in225

this case is the mean squared error function, which is considered as one of the best226

functions for regression (Wang & Bovik, 2009). The gradient of the loss function227

is calculated and fed back to the hidden layers of DNN through a process called228

backpropagation (Nielsen, 2015; Schmidhuber, 2015), where the internal values of229

DNN are optimized toward minimizing the difference between the estimated and actual230

values. This process is repeated for every epoch of calculation. An epoch is a cycle231

of calculation in DNN that involves one forward pass and one backpropagation of all232

training data.233

The optimization algorithm used in this study is stochastic gradient descent234

(SGD), which drastically reduces the amount of calculation involved in training with-235

out compromising accuracy relative to previous algorithms of gradient descent (Bottou,236

2010). In this study, Nesterov momentum is employed with SGD (Ruder, 2016). Be-237

cause of difference in the order of the range of initial flow conditions, normalization238

needs to be applied to training datasets before they are inputted to DNN. In this case,239

all values are normalized to be between 0 and 1 for DNN to consider all parameters at240

equal weights. The hyperparameters including the number of layers, number of nodes241

at each layer, dropout rate, validation split, learning rate, batch size, epoch, and mo-242

mentum were adjusted manually. Various combinations were attempted and the best243

combination of hyperparameters was chosen based on the performance of DNN, which244

is judged on the basis of the final validation loss.245

In this study, DNN was programmed in Python using the package Keras 2.2.4.246

The package Tensorflow 1.14.0 (Abadi et al., 2015) was used for backend calculation.247

Calculations were conducted using GPU NVIDIA GeForce GTX 1080 Ti.248

3.3 Evaluation of Trained DNN Model249

During the verification of DNN with test artificial datasets (Section 5.1), recon-250

struction result of each parameter was evaluated using bias (B) and sample standard251

deviation (s) of residuals. The calculations were conducted using the following equa-252

–8–
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tions:253

B =
∑
xi
n

, (15)

s =
√∑

(xi −B)2

n− 1 , (16)

where n is the number of test datasets, and xi denotes the residual of the specific recon-254

structed parameter for the ith test dataset. The calculated s and B for reconstructed255

parameters are listed in Table 4 and Table 5. The value of s for each reconstructed256

parameter was compared with a representative value C∗v , which is the mid-value over257

the range in which the specific parameter was generated (Table 1). The confidence258

interval of B was determined using bootstrap resampling method (Davison & Hink-259

ley, 1997). Resampling of B was conducted for 10000 times and the 95% confidence260

interval (CI) of B was determined.261

During the verification of DNN using flume experiment data (Section 5.2), flow262

parameters at the upstream end of simulation were reconstructed from the measured263

properties of the deposit profile. The upstream end of simulation was set at 1.0 m264

from the upstream boundary of the flume. The reconstructed parameters were in-265

putted into the forward model so that the flow parameters downstream and the time266

evolution of deposit profile were calculated. The calculated flow parameters down-267

stream were compared with the flow conditions measured during experiments. The268

deposit profile calculated from the reconstructed flow parameters was also compared269

with the measured deposit profile that was used for inversion.270

4 Flume Experiments271

4.1 Experiment Settings272

In this study, flume experiments were conducted using a flume located in the273

basement of Building No.1 of the Faculty of Science at Yoshida Campus, Kyoto Uni-274

versity. The flume was made of acrylic panels and is 4 m in length, 0.12 m in width275

and 0.5 m in depth. It was submerged in a tank made of glass panels and steel sup-276

porting frame. The tank was 5.5 m in length, 2.5 m in width and 1.8 m in depth.277

Slope of channel floor changes at a middle point of the flume (1.0 m from the inlet),278

where the upstream slope a was set to 26.8% and the downstream slope b was set279

to 10% (Figure 3). Sediment was mixed with water in two mixing tanks before the280

experiments.281

During the experiments, the mixture of sediment and water was first pumped to282

the constant head tank and then released into the flume from a valve at the base of283

the constant head tank. Flow discharge was regulated through adjusting the degree284

of opening of the valve. The amount of mixture in the constant head tank was kept285

at a constant level to maintain a stable flow discharge. The damping tank at the286

downstream end of the flume prevented flow from reflecting back toward the upstream287

side. A pipe of freshwater supply was placed at the top of the damping tank, and288

a draining pipe was placed at the bottom of the damping tank. The combination of289

these two pipes kept the level of water in the tank constant and prevented reflection290

of flow.291

Four experiments were conducted in this study. Two experiments were performed292

using two types of plastic particle (experiments PP1, PP2 (Section 4.3)). One of the293

types of plastic particle used, polyvinyl chloride, had a density of 1.45 g/cm3 and294

an average grain diameter of 0.120 mm. The other type of plastic particle used,295

melamine, had a density of 1.45 g/cm3 and an average grain diameter of 0.220 mm.296

Two experiments were performed using a mixture of siliciclastic sand and polyvinyl297

chloride plastic particle (experiments BS1, BS2 (Section 4.3)). Siliciclastic sand had298

–9–
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a density of 2.65 g/cm3 and an average grain diameter of 0.250 mm. The submerged299

specific gravity R of the plastic particles was 0.45, whereas that of the siliciclastic sand300

was 1.65.301

4.2 Measurements and Data Analysis302

Before each experiment, tank water temperature was measured using a glass303

alcohol thermometer. A beaker of the mixture in tank was sampled to measure the304

initial concentration in tank. Flow velocity during experiment was measured with an305

acoustic Doppler velocity profiler (ADVP; Nortek Vectrino Profiler). The functional306

range of the ADVP used was 4.0 − 7.0 cm from the probe. To obtain the vertical307

velocity profile of the flow, an actuator was used to adjust the position of the ADVP308

during experiments.309

A siphon with 10 plastic tubes was used to measure the suspended sediment310

concentration of flow. The tubes were aligned vertically at 1.0 cm intervals and were311

positioned such that samples were collected at 0.0 to 9.0 cm above bed. Aluminum312

tubes with an outer diameter of 8.0 mm and an inner diameter of 5.0 mm were attached313

to the outlets of the plastic tubes to stabilize its position. Sampling using siphon was314

conducted when the flow reached a quasi-equilibrium state. The state of flow was315

determined by observation of the development of flow. Two single-lens reflex cameras316

were used to record the experiments. Flow height was determined based on the video317

recorded.318

After the experiments, the flume was left untouched for 1 to 3 days for the319

suspended sediment to settle. Afterward, photos were taken from a lateral view per-320

pendicular to the flume. The lateral view of the deposited sediment could be seen321

together with a ruler in the photos. The height of deposit was determined from the322

photos. Water was then drained slowly from the tank with a bath pump at a rate of323

0.0002333 m3/s. After water was drained, deposited sediment was sampled at 20 cm324

intervals starting from the upstream boundary of the flume.325

Samples from the siphon and tank were first weighed right after they were col-326

lected. Following the weighing, samples from the deposited sediment and from siphon327

and tank were dried. Samples from the siphon and tank were weighed again after dry-328

ing, and the measurements were recorded for calculation of the sediment concentration329

in flow and in tank. Grain size distribution analysis was conducted in a settling tube330

for all sediment samples. The settling tube used was 1.8 m long. Calculation of grain331

size distribution was performed using STube (Naruse, 2005). Particle settling velocity332

was calculated using Gibbs (1974).333

The measured grain-size distribution of sediment was discretized to four grain-334

size classes. For experiments using plastic particle only, representative grain diameter335

of grain-size classes 1, 2, 3 and 4 were set to be 210 µm, 149 µm, 105 µm and 74.3336

µm, respectively. For experiments using a mixture of siliciclastic sand and plastic337

particle, representative grain diameter of grain-size classes 1, 2, 3 and 4 were set to be338

297 µm, 210 µm, 149 µm and 105 µm, respectively. Grain size distributions of sand339

and plastic particle partially overlaps, thus concentrations of grain-size classes 2 and340

3 were each represented by two separate parameters, i.e. C2,BS,0 and C2,PP,0, C3,BS,0341

and C3,PP,0, respectively. BS and PP represents the siliciclastic sand and the plastic342

particle portions, respectively, of the grain-size classes 2 and 3.343

In steady flow conditions, the relationship between the layer-averaged flow ve-344

locity U , the layer-averaged sediment volumetric concentration C, and the flow height345

H is defined as follows (Garcia & Parker, 1993):346

UCH =
∫ ∞
a

uzczdz, (17)
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where uz and cz are the flow velocity and sediment volumetric concentration, re-347

spectively, at elevation z above bed. The relationship between the layer-averaged348

flow velocity U and the velocity maximum Um is defined with the following equation349

(Altinakar et al., 1996):350

Um
U

= 1.3. (18)

The layer-averaged flow velocity was calculated from the velocity profile measured351

by the ADVP using the relationship described by equation 18. The sediment volu-352

metric concentration was calculated from siphon measurements using the relationship353

described by equation 17.354

4.3 Experimental Conditions355

The experimental conditions for the four runs conducted are outlined in Table 2356

and Table 3. CTT is the total concentration of sediment in the mixing tank. C1T,357

C2T, C3T, C4T are the concentrations of grain-size classes 1, 2, 3, and 4, respectively.358

C2T,BS and C2T,PP, C3T,BS and C3T,PP in Table 3 are concentrations of the siliciclastic359

sand portion and plastic particle portion, respectively, of grain-size classes 2 and 3.360

Parameter xC is the position of siphon downstream, whereas xU is the position of flow361

velocity meter downstream. xH is the position where flow height was measured from362

video taken. Temperature is the measured temperature of clear water in tank before363

experiment.364

Table 2. Conditions and settings of experiments conducted with two types of plastic particle.

PP1 PP2

CTT 0.0191 0.0276
C1T 0.0102 0.0160
C2T 0.00713 0.00820
C3T 0.00146 0.00254
C4T 0.000366 0.000817
xC (m) 1.08 2.10
xU (m) 1.46 2.48
xH (m) 1.10 1.10
Temperature (◦C) 22.5 17.0

5 Results365

Inverse analysis was applied to deposits within a 2.6 m range downstream starting366

at the end of slope a (1.0 m from the upstream boundary of the flume). Because367

of the limited size of the flume, slope a was set with a steep angle (26.8%) in all368

experiments. Considering the effect of instabilities from the outlet pipe and the overly369

steep slope, the region with slope a was excluded from numerical simulations and370

inverse analysis. As a result, for the production of artificial datasets, the upstream371

boundary of simulation was set at the end of slope a. The numerical simulation was372

conducted for 4.0 m downstream, but only the deposits from the upstream boundary373

of simulation to 2.6 m downstream were used for training and verification. This range374

corresponds to 1.0 m to 3.6 m from the upstream boundary of the flume, where samples375

were collected for experiment deposits. The range of simulation was set longer than376

the range used for training and verification to minimize the influence of the boundary377

conditions at the downstream end of simulation.378

–12–
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Table 3. Conditions and settings of experiments conducted with a mixture of siliciclastic sand
and plastic particle.

BS1 BS2

CTT 0.0587 0.0140
C1T 0.0246 0.000122
C2T,BS 0.0101 0.00385
C2T,PP 0.00958 0.00251
C3T,BS 0.00811 0.00503
C3T,PP 0.00424 0.00164
C4T 0.00202 0.000846
xC (m) 2.33 1.85
xU (m) 2.71 2.23
xH (m) 1.40 1.40
Temperature (◦C) 9.5 12.2

With regard to the values of hyperparameters used during the training process,379

the dropout rate, validation split and momentum for DNN were set to 0.5, 0.2, and380

0.9, respectively. Learning rate was set to 0.01, batch size to 32, number of layers to 5,381

number of nodes each layer to 2000, and epoch to 15000. With this setting the eventual382

validation loss was 0.0031 when training with plastic particle only datasets and 0.0020383

when training with siliciclastic sand plastic particle mixture datasets. Figures 4A and384

5A show that overlearning did not occur, as no deviation was observed between the385

resulting values of loss function for the training and validation datasets.386

5.1 Verification of Inverse Model with Test Artificial Datasets387

This section presents the results of verification with artificial test datasets. Re-388

sults of parameter reconstructions by DNN are shown in Figures 4 and 5. Parameters389

reconstructed include flow duration Td and flow conditions at the upstream end (flow390

velocity U0, flow depth H0, sediment concentrations Ci,0). Verification was performed391

separately for artificial datasets of experiments using plastic particle only and artificial392

datasets of experiments using a mixture of siliciclastic sand and plastic particle. The393

results are described in Sections 5.1.1 and 5.1.2.394

5.1.1 Verification with Test Artificial Datasets for Experiments Using395

Plastic Particle Only396

As an overall trend, the reconstructed values mostly coincided with the original397

values, with a few values scattering further away from the line of perfect match (the398

diagonal solid line) (Figure 4B, C, D, E, F, G, H). A greater degree of scattering,399

however, was observed for U0 in comparison to other parameters (Figure 4D). Flow400

duration Td exhibited a tendency of underestimation (Figure 4B). The ranges of mis-401

fit (2s) were relatively small for all parameters, which had 2s/C∗v values under 13%402

(Table 4). Zero lay within the 95% confidence interval (CI) of B for all parameters,403

except for Td and C1,0, where the CI range lay below zero for Td and above zero for404

C1,0.405

–13–
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Table 4. Sample standard deviation and bias of the inversion result of artificial datasets for
experiments using plastic particle only.

Parameters s C∗v 2s/C∗v B CI of B

U0 (m/s) 0.0182 0.1505 0.121 -0.000673 (-0.00320, 0.00187)
H0 (m) 0.0151 0.1525 0.0990 0.000232 (-0.00188, 0.00233)
Td (s) 64.8 600 0.108 -36.5 (-45.6, -27.8)
C1,0 0.00114 0.01005 0.113 0.000233 (0.0000828, 0.000396)
C2,0 0.00135 0.01005 0.134 0.000136 (-0.0000447, 0.000332)
C3,0 0.00115 0.01005 0.114 0.000148 (-0.00000139, 0.000314)
C4,0 0.00117 0.01005 0.116 0.000115 (-0.0000419, 0.000274)
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5.1.2 Verification with Test Artificial Datasets for Experiments Using406

Siliciclastic Sand and Plastic Particle407

As an overall trend, good correlations were observed for the reconstructed values408

and the original values of flow parameters. The reconstructed values mostly exhibited409

perfect matches with the original values, with a few values scattering from the line410

of perfect match (the diagonal black line) (Figure 5B-J). Similar to the test datasets411

described in Section 5.1.1, U0 exhibited a greater degree of scattering in comparison412

to the other parameters. A tendency of overestimation was also observed for U0413

(Figure 5D). Td showed a tendency of underestimation (Figure 5B). The range of414

misfit (2s) was good for Td, H0, C1,0, C2,BS,0, C2,PP,0, C3,BS,0, C3,PP,0 and C4,0,415

which had 2s/C∗v values under 8%. U0 was more scattered, having 2s/C∗v value of416

14.2% (Table 5). Zero was included in the 95% confidence interval of B except for U0,417

H0, Td, C1,0, C2,BS,0 and C4,0, where the CI ranges lay below zero for Td and U0, and418

above zero for H0, C1,0, C2,BS,0 and C4,0.419

Table 5. Sample standard deviation and bias of the inversion result of artificial datasets for
experiments using a mixture of siliciclastic sand and plastic particle.

Parameters s C∗v 2s/C∗v B CI of B

U0 (m/s) 0.0214 0.1505 0.142 -0.00413 (-0.00711, -0.00115)
H0 (m) 0.0114 0.1525 0.0748 0.00155 (0.00000628, 0.00314)
Td (s) 30.9 600 0.0515 -23.7 (-28.1, -19.6)
C1,0 0.000726 0.01005 0.0722 0.000215 (0.000120, 0.000320)
C2,BS,0 0.000692 0.01005 0.0689 0.000127 (0.0000347, 0.000230)
C2,PP,0 0.000715 0.01005 0.0711 -0.0000752 (-0.000176, 0.0000243)
C3,BS,0 0.000818 0.01005 0.0814 0.000105 (-0.00000385, 0.000221)
C3,PP,0 0.000816 0.01005 0.0812 0.0000754 (-0.0000336, 0.000193)
C4,0 0.000707 0.01005 0.0703 0.000125 (0.0000303, 0.000228)
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5.2 Inverse Analysis of Flume Experiment Data420

In this section, the deposit profiles and grain size distributions calculated are421

compared with the actual deposit profiles sampled from experiments (Figures 6, 8).422

The results of flow conditions reconstructed, including flow velocity UxU
, flow height423

HxH
, sediment concentrations CxC

and flow duration Td, are compared with the values424

measured during the experiments (Tables 6 and 7). HxH
is the flow height H at425

position xH (see the positions in Table 2) downstream when the flow reached a quasi-426

equilibrium state. UxU
is the velocity U at position xC downstream when the flow427

reached a quasi-equilibrium state. CxC
is the C at position xC downstream when the428

flow reached a quasi-equilibrium state. Inversion results of the plastic particle only429

experiments (PP1, PP2) and of the experiments using a mixture of siliciclastic sand430

and plastic particle (BS1, BS2) are described in Sections 5.2.1 and 5.2.2.431

5.2.1 Experiments using Plastic Particle Only (PP1, PP2)432

Depositional profiles in these experiments exhibited a thinning and fining down-433

stream trend with concave-upward geometry. For both runs, the reconstructed deposit434

profiles of the total deposition closely matched with the sampled data (Figures 6A(1),435

B(1)). Grain size distributions at 1.4 m and 1.8 m downstream also demonstrated436

good agreement for the reconstructed and measured values for both experiments (Fig-437

ures 6A(2),(3), B(2),(3)), with PP2 having a slightly better match than that of PP1.438

For flow height HxH
, the measured and reconstructed values were in good agree-439

ment (Figure 7A). The reconstructed HxH
were 0.132 m and 0.159 m for PP1 and440

PP2, respectively (Table 6). These values matched well with the measured values for441

both PP1 (0.116 m) and PP2 (0.123 m). The reconstructed UxU
were 0.118 m/s (PP1)442

and 0.115 m/s (PP2), of which that of PP2 was close to its measured value (0.0923443

m/s), whereas that of PP1 had a larger difference from its measured value (0.0608444

m/s). The reconstructed values of flow duration Td were 635 s (PP1) and 872 s (PP2),445

which were lower than the measured values for both PP1 (936 s) and PP2 (966 s) (Fig-446

ure 7C). The reconstructed values of total concentration CT,xC
were 0.00587 (PP1)447

and 0.00383 (PP2), of which that of PP1 did not match well with the measured value448

of CT,xC
(0.000808), whereas that of PP2 was close to its corresponding measured449

value (0.00410). The reconstructed values of each grain-size class were good overall,450

but large deviations were observed for several reconstructions of concentrations that451

had very low measured values (< 0.1%) (Figure 7D)452

Table 6. Flow conditions measured and reconstructed for experiments PP1 and PP2. (R.:
reconstructed, M.: Measured)

Parameters PP1
R.

PP1
M.

PP2
R.

PP2
M.

CT,xC
0.00587 0.000808 0.00383 0.00410

C1,xC
0.00329 0.0000911 0.000822 0.000612

C2,xC
0.00190 0.000389 0.00173 0.00224

C3,xC
0.000576 0.000228 0.000681 0.000944

C4,xC
0.000100 0.0000999 0.000607 0.000303

HxH
(m) 0.132 0.116 0.159 0.123

UxU
(m/s) 0.118 0.0608 0.115 0.0923

Td (s) 635 936 872 966
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Figure 6. Reconstructed deposit profiles and the sampled deposit data of experiments PP1
and PP2. A. (1) Reconstructed and sampled ηT of PP1. (2) Grain size distribution at 1.4 m
downstream. (3) Grain size distribution at 1.8 m downstream. B. (1) Reconstructed and sampled
ηT of PP2. (2) Grain size distribution at 1.4 m downstream. (3) Grain size distribution at 1.8 m
downstream.
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Figure 7. Reconstructed vs measured flow conditions for experiments PP1, PP2, BS1 and
BS2. A. Plot for HxH . B. Plot for UxU . C. Plot for Td. D. Plot for Ci,xC .

5.2.2 Experiments Using a Mixture of Siliciclastic Sand and Plastic Par-453

ticle (BS1, BS2)454

Similar to the results for the experiments using plastic particle only, all de-455

positional profiles in these experiments exhibited a thinning and fining downstream456

trend. For both experiments, the reconstructed deposit profiles of the total deposition457

matched closely with the sampled data (Figures 8A(1), B(1)). Grain size distributions458

at 1.3 m and 1.7 m downstream also demonstrated good agreement for the recon-459

structed and measured values for both experiments (Figures 6A(2),(3), B(2),(3)).460

The reconstructed values of flow height HxH
were 0.127 m and 0.156 m for BS1461

and BS2, respectively (Table 7). Of these values, that for BS2 was relatively close to462

the measured value (0.199 m), whereas that for BS1 differs from its measured value463

(0.209 m). The reconstructed flow velocities UxU
were 0.330 m/s (BS1) and 0.356 m/s464

(BS2), which did not match well with the measured values 0.142 m/s (BS1) and 0.113465

m/s (BS2) (Figure 7B). The reconstructed flow durations Td were 188 s (BS1) and466

120 s (BS2), which were relatively close to the measured values for both BS1 (362 s)467

and BS2 (233 s). The reconstructed values of total concentration CT,xC
were 0.00858468

(BS1) and 0.00972 (BS2), which also matched relatively well for both experiments BS1469

(0.00532) and BS2 (0.00635). The reconstructed values of each grain-size class were470

mostly reasonable, but large deviations were observed for several reconstructions of471

concentrations with very low measured values (< 0.1%) (Figure 7D).472
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Figure 8. Reconstructed deposit profiles and the sampled deposit data of experiments BS1
and BS2. A. (1) Reconstructed and sampled ηT of BS1. (2) Grain size distribution at 1.4 m
downstream. (3) Grain size distribution at 1.8 m downstream. B. (1) Reconstructed and sampled
ηT of BS2. (2) Grain size distribution at 1.4 m downstream. (3) Grain size distribution at 1.8 m
downstream.
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Table 7. Flow conditions measured and reconstructed for experiments BS1 and BS2. (R.:
reconstructed, M.: Measured)

Parameters BS1
R.

BS1
M.

BS2
R.

BS2
M.

CT,xC
0.00858 0.00532 0.00972 0.00635

C1,xC
0.000345 0.000514 0.00198 0.00146

C2,BS,xC
0.00155 0.00136 0.00249 0.00254

C2,PP,xC
0.00195 0.000974 0.00162 0.000686

C3,BS,xC
0.00147 0.00113 0.00143 0.00107

C3,PP,xC
0.00165 0.000823 0.00100 0.000418

C4,xC
0.00161 0.000523 0.00120 0.000182

HxH
(m) 0.127 0.209 0.156 0.199

UxU
(m/s) 0.330 0.142 0.356 0.113

Td (s) 188 362 120 233

6 Discussion473

6.1 Validation of DNN as an Inversion Method for Turbidity Currents474

by Artificial Test Datasets475

The results from verification with artificial datasets proved the ability of DNN to476

reasonably reconstruct the hydraulic conditions of turbidity current from its turbidite477

deposits. Reconstructions of initial flow conditions and the flow duration for artifi-478

cial datasets (Sections 5.1.1 and 5.1.2) were good overall judging from the s and B479

values (Tables 4 and 5). The reconstructions of the flow duration Td, flow depth H0,480

velocity U0, and sediment concentrations C1,0, C2,0 (C2,BS,0 and C2,PP,0 for mixture481

experiments), C3,0 (C3,BS,0 and C3,PP,0 for mixture experiments), and C4,0 were high482

in precision (Tables 4 and 5).483

Overall, the correlations between the true and reconstructed values were obvious484

for all parameters reconstructed. Some scattering was observed for the reconstructed485

parameters, but most values stayed close within the range of perfect reconstruction.486

The range of misfit 2s of all parameters lies below 14.3% of the matching representative487

value (Tables 4 and 5). A relatively greater degree of scattering is observed for U in488

comparison to the other parameters (Figures 4D and 5D).489

With regard to the estimation bias, zero was included in the 95% confidence490

interval of bias for most of the parameters, proving that the reconstructed values491

were not significantly biased with respect to the original values. Even among the492

parameters where statistically significant biases were detected, their deviations were493

minor in comparison to the representative values of the parameters (Table 4 and 5).494

For example, in both artificial datasets using plastic particle only and mixture of495

siliciclastic sand and plastic particles, the estimation bias B for Td had a negative496

value and the range of the confidence interval of B was below zero (Tables 4 and 5),497

indicating a tendency of underestimation for Td. However, the bias for Td was only498

3.95% (mixture experiments) or 6.08% (plastic particle only) of the representative499

value of this parameter (600 s).500

Thus, it can be said that this method is suitable for estimating the paleo-501

hydraulic conditions of actual turbidity currents. Reconstructed parameters are well502

correlated without any serious biases from true original values, implying that the in-503
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verse model produced in this study serves as a high precision, high accuracy estimator504

of flow conditions.505

6.2 Verification of DNN Inversion with Flume Experiment Data506

As a result of inversion using DNN, the overall deposit profiles were well re-507

constructed for all four experiments, and the reconstructed grain size distribution508

downstream matched with the grain size distribution sampled from experimental de-509

posits (Figures 6 and 8). DNN as an inverse method tries to find the combination of510

hydraulic conditions that best produces the deposit profiles inputted. The fact that511

the reconstructed hydraulic conditions accurately reproduced the deposit profiles used512

for inverse analysis indicates good performance by DNN with the inverse model.513

Furthermore, the hydraulic conditions and flow duration reconstructed mostly lie514

within a reasonable range from the line of perfect reconstruction (Figure 7). Among515

the reconstructed hydraulic conditions, flow heights HxH
were well reconstructed for516

all four experiments (Table 6 and 7). The differences between the reconstructed and517

measured values of HxH
were less than 39.2%. The layer-averaged models with top-hat518

assumption (all shape factors are assumed to be unity) inevitably exhibit inaccuracies519

in the flow parameters due to their simplification of flow dynamics. Indeed, in previous520

experimental studies of the shallow water model, up to 50% deviation from the mea-521

sured values was observed for the calculated flow heights (Parker et al., 1987; Kostic &522

Parker, 2006). Considering the limitation of this model, the reconstructed flow heights523

in this study can be interpreted as reasonable estimates of the experimental results.524

Flow durations Td were also reasonably reconstructed but were underestimated525

for all four experiments, as observed for the artificial test datasets. The reconstructed526

concentration of each grain-size class Ci,xC
was scattered especially when the measured527

values were very low (< 0.1%), but the total concentrations of sediment exhibit rela-528

tively good agreement with the experimental values. In contrast to other parameters,529

flow velocities UxU
were largely overestimated for all four experiments. Difference be-530

tween the reconstructed and measured UxU
range from 24.6% to 215% of the measured531

values. Up to 25% deviation from the measured value was observed in previous re-532

search (Kostic & Parker, 2006), but deviation in this case exceeds that of the previous533

research.534

One potential reason behind the deviations in the reconstructed values is that535

inverse analysis itself is essentially difficult for turbidity currents. For instance, flow536

parameters cannot be reconstructed when different combinations of initial conditions537

produce exactly the same deposit profile. However, this is unlikely because flows538

with a wide variety of initial conditions were tested with artificial datasets and the539

reconstructions were mostly reasonable, proving the ability of DNN to distinguish540

minor differences in the characteristics of deposits. Instead, sources of deviation could541

lie in the forward model employed in this study.542

Through analysis of the result of application of DNN to flume experiment data,543

it became clear that there are three aspects for deviations in the reconstruction of544

hydraulic conditions: (1) bias inherent in the inverse model, (2) measurement errors545

during the experiments, and (3) inaccuracy within the forward model of turbidity546

currents employed in this study.547

(1) Regarding the inherent bias in the inverse model, Td reconstructed for the548

flume experiments exhibited the same tendencies of deviation during the reconstruction549

of artificial test datasets. Thus, deviation in the reconstruction of Td may be considered550

as a systematic error originating from the internal settings of DNN. UxU
exhibited551

similar tendencies in artificial datasets reconstruction to those in flume experiment552

reconstruction, but the deviation of UxU
was so large for UxU

in flume experiment553
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reconstruction that it seems unlikely to have originated solely from the DNN model.554

The tendencies of deviation for Ci in the reconstruction of flume experiment datasets555

did not match those for the artificial datasets, and thus also did not occur because of556

the tendencies of the inverse model.557

(2) The main source of deviation for sediment concentrations Ci may be inaccura-558

cies in the measurements. As shown in Figure 7, some of the measured concentrations559

Ci were extremely small (< 0.1%), making them susceptible to minor disturbances560

during sampling and measurements. For values that are extremely small, even minor561

deviations appear to be large. Thus, for Ci, the main source of deviation may not be562

the reconstructed values but the measured values.563

(3) Inaccuracy in the forward model in describing the physical processes of tur-564

bidity currents may account for deviations of the reconstructed flow velocities from565

the measured values. There are several potential reasons to why the reconstruction of566

flow velocity did not go as well as with the other parameters, but the most probable567

reason is the inaccuracy of the entrainment function in describing the actual effect of568

entrainment in flow, considering that the exponent in the calculation of dimensionless569

vertical velocity in the entrainment function was determined purely by optimization570

and differed greatly in previous studies (Parker et al., 1987; Garcia & Parker, 1991;571

Dorrell et al., 2018). Another problem may lie in the layer averaging of flow velocity.572

Even though the model uses layer averaged flow velocity for calculation, a recent study573

by (Luchi et al., 2018) had pointed out that a two layer model is more suitable for574

the calculation of turbidity currents. This research aims to verify DNN as a method575

of inverse analysis of turbidity currents. Improvement of the forward model, including576

entrainment function and velocity calculation, should be the next step in the inverse577

analysis study of turbidity currents.578

The shallow water model implemented holds certain limitations due to its sim-579

plified calculation of flow dynamics. Nevertheless, the simplifications make it possible580

to perform large batches of natural scale simulations. Overall, even though a certain581

amount of deviation was observed for all parameters, they lie mostly within a reason-582

able range for the eventual purpose of application to natural scale turbidity currents.583

6.3 Comparison of DNN with Existing Methodologies584

In comparison to previous methods of inverse analysis of turbidity currents, the585

inversion method using DNN holds great advantage in terms of calculation cost and586

in terms of accuracy of reconstruction. Previous inversion methods of turbidity cur-587

rents seek to optimize the initial conditions to a particular set of data collected from588

turbidite, which is extremely time-consuming to apply to one dataset and does not589

guarantee the general applicability of the method to turbidite deposits (Lesshafft &590

Marquet, 2010; Parkinson et al., 2017; Nakao & Naruse, 2017). For example, ge-591

netic algorithm applied in Nakao and Naruse (2017) first initializes a population of592

parameters and then optimizes the population of parameters through selection and593

mutation. Eventually, the parameters left can successfully reconstruct the target tur-594

bidite. However, each epoch of optimization requires the results of selection from the595

previous epoch, and thus the calculation of the forward model cannot be parallelized596

over epochs. In adjoint method used by Parkinson et al. (2017), control variables597

within the forward model of turbidity currents are first initialized and inputted into598

the numerical model. The turbidite deposit profile is calculated and compared with599

the target values using a cost function. Gradients of the cost function (objective func-600

tion) for control variables are calculated analytically. If the result is decided to be601

less than optimal, the adjoint model will run and control variables will be adjusted by602

descent method. The adjusted control variables will again be inputted into the nu-603

merical model. This cycle is repeated until the reconstructed deposit profile is judged604
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to be optimal, thus the iteration of calculation cannot be performed simultaneously.605

By contrast, DNN explores the general functional relationship between the turbidite606

deposited and the current, making it applicable to turbidity currents in general. For-607

ward model calculation to produce training datasets can be perfectly parallelized, such608

that the amount of time needed for calculation reduces greatly.609

Since parallelization of forward model calculation greatly reduced the time for610

calculation, a more accurate and realistic forward model with heavier calculation load611

was able to be implemented. As a result, the forward model used in this research is612

much better at capturing the spatio-temporal evolution of turbidity current in com-613

parison to forward model used in previous research (Falcini et al., 2009; Parkinson et614

al., 2017). Falcini et al. (2009) used a steady flow forward model, whereas our forward615

model is a non-steady flow model that reproduces the evolution of flow over time. The616

method implemented in Parkinson et al. (2017) omitted the effect of entrainment, a617

significant part of sediment transport in turbidity currents. As a result, their recon-618

structed values of flow height, concentration, and grain diameter of the turbidite were619

2.56 km, 0.0494%, and 103 µm, respectively (Parkinson et al., 2017). These values620

were largely off the expected range when examined based on the objective values col-621

lected from the turbidite deposits. By contrast, our predictions lie relatively close to622

the original values collected and the effect of sediment suspension was incorporated in623

our forward model. Another improvement from previous research is that the forward624

model used in this case applies to turbidite datasets of multiple grain-size classes.625

By contrast, Lesshafft and Marquet (2010) proposed a method based on direct626

numerical simulation (DNS) of the Navier-Stokes equations. However, the calculation627

costs of the method were extremely high, making it unrealistic to apply the method628

to natural scale turbidites. The computational cost of DNS was scaled to Re3, thus629

limiting the effectiveness of DNS to only experimental scale flows (Biegert et al., 2017).630

As a result, the maximum value of Reynolds number attained in previous numerical631

simulation using DNS was 15,000 (Cantero et al., 2007), which corresponds to 3.0 cm/s632

for velocity and 50 cm for flow height. Thus, their methodology cannot be applied to633

natural scale turbidites.634

7 Conclusions635

In this study, a new method for the inverse analysis of turbidite using DNN was636

verified with actual flume experiment data. In comparison to previous methods, DNN637

proved to be an efficient method for inversion of turbidity currents without compromis-638

ing the accuracy of reconstruction. DNN performed well for verification with artificial639

datasets, judging by the standard deviation and bias of the reconstructed parameters.640

In terms of the application of DNN to experiment data, deposit profiles were well641

reconstructed; however, the initial flow conditions did not match the measured values642

perfectly.643

The reconstructed flow heights H for PP1 and PP2 were 0.132 m and 0.159 m,644

respectively, which were good matches with the measured values 0.116 m and 0.123645

m. H reconstructed for BS1 and BS2 were 0.127 m and 0.156 m, respectively, andH646

measured were 0.209 m and 0.199 m, which exhibited larger differences than those647

for PP1 and PP2 but were still reasonable. H was underestimated for BS1 and BS2.648

On the other hand, Td was underestimated for all experiments. For BS1 and BS2649

the reconstructed values were 188 s and 120s, respectively, and measured values were650

362 s and 233 s. For PP1 and PP2, the reconstructed values were 635 s and 872 s,651

respectively, and the measured values were 936 s and 966 s. U was overestimated652

for all experiments, with PP1 and PP2 better reconstructed than BS1 and BS2. The653

reconstructed U for PP1 and PP2 were 0.118 m/s and 0.115 m/s, respectively, and654

measured values were 0.0608 m/s and 0.0923 m/s. The reconstructed U for BS1 and655
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BS2 were 0.330 m/s and 0.356 m/s, respectively, and measured values were 0.142 m/s656

and 0.113 m/s.657

Overall, DNN exhibited good performance for the inversion of artificial datasets658

and some parameters of the experiment data. The deposit profiles were well recon-659

structed, indicating the success of DNN in the exploration of the functional relationship660

between the initial conditions of flow and the resulting deposits. The results of ver-661

ification with artificial datasets and flume experiments reveal that the implemented662

forward model is competent in performing inverse analysis on turbidity currents, but663

needs to be more robust for application to a wide range of flow conditions. Improve-664

ment of forward models and parameters such as the entrainment function will be top665

priority in the future. Hyperparameter settings and internal structure of DNN also666

have room for improvement judging from the inversion result of artificial datasets.667

Application of DNN to field datasets will be the eventual goal.668

Appendix A Details of Forward Model Implemented669

A1 Example of Forward Model Calculation670

The forward model was tested with two sets of numerical simulations of turbidity671

currents. Testing was conducted using the forward model programmed for the pro-672

duction of artificial datasets for plastic particle only experiments. The settings of the673

numerical simulations are listed in Table A1, whereas the time evolution of the high674

CT,0, U0 simulation is shown in Figure A1 and the time evolution of the low CT,0, U0675

simulation is shown in Figure A2. In both cases, flow height H was greater toward the676

head of the current. H at the head of the current also grew over time (Figures A1A677

and A2A). Flow velocity U in the high CT,0, U0 simulation increased when the cur-678

rent propagated downstream (Figure A1B), while U in the low CT,0, U0 simulation679

increased initially then decreased as the current propagated (Figure A2B). The total680

volumetric concentration of sediment CT in flow decreased downstream in both cases681

(Figures A1C and A2C). In the high CT,0, U0 case, a larger portion of sediment was682

deposited downstream than in the low CT,0, U0 case (Figures A1D and A2D). The low683

CT,0, U0 case had the most sediment deposited toward the upstream end of flow.684

For the high CT,0, U0 simulation, a thicker deposit was observed for grain-size685

class 1 than for grain-size classes 3 and 4 (Figures A1E,G,H). Even though the initial686

concentrations of the finer grain-size classes 3 and 4 C3,0, C4,0 were higher than that687

of the coarser grain-size class 1 (C1,0), less fine sediment was deposited since it was688

more likely to stay suspended and be carried beyond the lower flow boundary by the689

high-velocity flow. For the low CT,0, U0 simulation, the grain-size class with a thicker690

deposit has a higher initial concentration. The coarsest grain-size class, grain-size class691

1, had almost all sediment deposited near the upstream boundary, while the finest692

grain-size class, grain-size class 4, had sediment spread out toward the downstream693

direction (Figures A2E,H). This happened because the low-velocity flow was unable694

to keep the coarse sediment suspended.695
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Table A1. Initial flow conditions of numerical simulations of turbidity currents.

High CT,0, U0 Low CT,0, U0

H0 (m) 0.15 0.15
U0 (m/s) 0.3 0.03
CT,0 0.06 0.005
C1,0 0.01 0.00025
C2,0 0.02 0.0025
C3,0 0.018 0.00175
C4,0 0.012 0.0005
cf 0.002 0.002
ro 1.5 1.5
Duration (s) 420 420
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Figure A1. Example of forward model calculation with high initial flow velocity and sediment
concentration (Table A1). A. Time evolution of flow height H. B. Time evolution of flow veloc-
ity U . C. Time evolution of total sediment volumetric concentration CT. D. Time evolution of
deposit profile ηT. E. Time evolution deposit profile of grain-size class 1 η1. F. Time evolution
of deposit profile of grain-size class 2 η1. G. Time evolution of deposit profile of grain-size class 3
η1. H. Time evolution of deposit profile of grain-size class 4 η1.
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Figure A2. Example of forward model calculation with low initial flow velocity and sediment
concentration (Table A1). A. Time evolution of flow height H. B. Time evolution of flow veloc-
ity U . C. Time evolution of total sediment volumetric concentration CT. D. Time evolution of
deposit profile ηT. E. Time evolution deposit profile of grain-size class 1 η1. F. Time evolution
of deposit profile of grain-size class 2 η1. G. Time evolution of deposit profile of grain-size class 3
η1. H. Time evolution of deposit profile of grain-size class 4 η1.
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A2 Sensitivity Tests of Forward Model696

The degree of sensitivity of the forward model against changes in the initial condi-697

tions of the flow and model parameters was tested (Table A2). Testing was conducted698

using the forward model programmed for the production of artificial datasets of plastic699

particle only experiments. Numerical simulations were conducted with different values700

of the six parameters H0, U0, CT,0, es, ro, cf . Other parameters were unchanged for701

the simulations.702

The results of the sensitivity tests revealed that changes in deposit profile occurs703

when the initial flow conditions differ (Figure A3). The volume of sediment deposited704

increased overall as H0 increased (Figure A3A). The same trend was observed for U0,705

and CT,0 (Figure A3B, C). Out of these three parameters, the amount of increase in706

deposit thickness was greatest for CT,0, and smallest for U0. With regard to model707

closure parameters, the resultant deposit profile exhibited nearly no change for different708

values of entrainment coefficient es (Figure A3D). Slightly lower amount of deposition709

was observed for greater es. An increase in the amount of deposition was observed710

as cf decreased (Figure A3F). The thickness of deposit increased moderately when ro711

increased.712

Table A2. Settings for sensitivity tests of forward model.

Case H0 (m) U0 (m/s) CT,0 es ro cf

1 0.15 0.15 0.03 GP 1.5 0.002
2 0.3 0.15 0.03 GP 1.5 0.002
3 0.05 0.15 0.03 GP 1.5 0.002
4 0.15 0.3 0.03 GP 1.5 0.002
5 0.15 0.05 0.03 GP 1.5 0.002
6 0.15 0.15 0.06 GP 1.5 0.002
7 0.15 0.15 0.005 GP 1.5 0.002
8 0.15 0.15 0.03 GPx2 1.5 0.002
9 0.15 0.15 0.03 GPx0.5 1.5 0.002
10 0.15 0.15 0.03 GP 2.0 0.002
11 0.15 0.15 0.03 GP 1.0 0.002
12 0.15 0.15 0.03 GP 1.5 0.01
13 0.15 0.15 0.03 GP 1.5 0.004
14 0.15 0.15 0.03 GP 1.5 0.001
15 0.15 0.15 0.03 GP 1.5 0.0005
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Figure A3. Sensitivity tests of deposit profile of artificial turbidites against change in initial
flow conditions and closure parameters (Table A2). A. Dependency on initial flow height H0.
B. Dependency on initial flow velocity U0. C. Dependency on initial total sediment volumetric
concentration CT,0. D. Dependency on sediment entrainment rate es. E. Dependency on ratio of
near-bed to layer-averaged concentration ro. F. Dependency on friction coefficient cf .
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Notation713

α1, α2 Parameters related to sediment entrainment714

cf Friction coefficient715

Ci Layer-averaged volumetric concentration of suspended sediment of the ith grain-716

size class717

CT Layer-averaged total concentration of suspended sediment718

Di Representative grain diameter of the ith grain-size class719

esi Entrainment rate of sediment of the ith grain-size class into suspension720

ew Entrainment rate of ambient water to flow721

Fi Volume fraction of the ith grain-size class in active layer722

g Gravitational acceleration723

H Flow height724

La Active layer thickness725

R Submerged specific density of sediment726

Rfi Dimensionless particle fall velocity of the ith grain-size class727

Repi Particle Reynolds number of the ith grain-size class728

ro Ratio of near-bed suspended sediment concentration to the layer-averaged concen-729

tration of suspended sediment730

S Slope gradient731

Sf Friction slope732

t Time733

Td Flow duration734

U Layer-averaged flow velocity735

u∗ Shear velocity736

wi Settling velocity of a sediment particle of the ith grain-size class737

x Streamwise distance738

ηi Volume per unit area of bed sediment of the ith grain-size class739

ηT Total volume per unit area of bed sediment740

κ Parameter related to artificial viscosity741

λp Porosity of bed sediment742

µ Dynamic viscosity of water743

ν Kinematic viscosity of water744

ρ Density of water745
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