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Abstract

Nighttime airglow images observed at the low-latitude site of São João do Cariri (7.4S, 36.5W) showed the presence of a

medium-scale atmospheric gravity wave (AGW) associated with the 21 August 2017 total solar eclipse. The AGW had a

horizontal wavelength of ˜1,618 km, observed period of ˜152 min and propagation direction of ˜200 clockwise from the north.

The spectral characteristics of this wave are in good agreement with theoretical predictions for waves generated by eclipses.

Additionally, the wave was reverse ray-traced and the results show its path crossing the Moon’s shadow of the total solar

eclipse in the tropical North Atlantic ocean at stratospheric altitudes. Investigation about potential driving sources for this

wave indicate that the total solar eclipse as the most likely candidate. The optical measurements were part of an observational

campaign carried out to detect the impact of the August 21 eclipse in the atmosphere at low latitudes.
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Key Points:14

• A multi-instrumented observational campaign was carried out in Brazil to15

study the effects of 21 August 2017 solar eclipse;16

• Medium-scale gravity waves were observed in the airglow over the Northeast-17

ern Brazil;18

• Analyses including reverse ray-tracing indicate the eclipse as the likely source19

for an observed medium-scale gravity wave.20
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Abstract21

Nighttime airglow images observed at the low-latitude site of São João do Cariri22

(7.4oS, 36.5oW) showed the presence of a medium-scale atmospheric gravity wave23

(AGW) associated with the 21 August 2017 total solar eclipse. The AGW had a24

horizontal wavelength of ∼1,618 km, observed period of ∼152 min and propaga-25

tion direction of ∼200o clockwise from the north. The spectral characteristics of26

this wave are in good agreement with theoretical predictions for waves generated27

by eclipses. Additionally, the wave was reverse ray-traced and the results show its28

path crossing the Moon’s shadow of the total solar eclipse in the tropical North At-29

lantic ocean at stratospheric altitudes. Investigation about potential driving sources30

for this wave indicate that the total solar eclipse as the most likely candidate. The31

optical measurements were part of an observational campaign carried out to detect32

the impact of the August 21 eclipse in the atmosphere at low latitudes.33

Plain Language Summary34

The Moon’s shadow during a total solar eclipse introduces horizontal temper-35

ature gradients in the atmosphere and screens the ozone layer from solar heating.36

The shadow also travels supersonically producing instabilities that can generate the37

so-called atmospheric gravity wave (AGWs). AGWs associated with eclipses are ex-38

pected to have periodic oscillations with periods ranging from just a few minutes to39

hours. Additionally, these AGWs can have horizontal wavelengths as large as thou-40

sand of kilometers. It is also possible to estimate the propagation path of the AGWs41

into the atmosphere by solving a system of equations that govern their propagation.42

This methodology is similar to that of tracing a ray of light that propagates in a43

varying environment. In the present work, an AGW in the northeast of Brazil was44

observed with spectral characteristics that indicate association with the 21 August45

2017 total solar eclipse. In addition, the ray path matched the Moon’s shadow in46

the stratosphere corroborating with the observational inferences. The AGW was ob-47

served by optical instruments during the nighttime, more than three hours after the48

end of the eclipse and over 2,000 km away from the Moon’s shadow.49

1 Introduction50

Wind shear, convection and topography are often cited as the main sources of51

atmospheric gravity waves (AGWs) (e.g., Clemesha & Batista, 2008; Vadas et al.,52

2009; X. Liu et al., 2019, and references therein). However, events capable of creat-53

ing disturbances in vertical pressure gradient and gravity balance might also induce54

the generation of AGWs. A solar eclipse produces a strong horizontal gradient of55

temperature and ionization flux in the atmosphere across the sunlit and covered ar-56

eas. Additionally, the umbra moves supersonically creating instabilities at different57

levels of the atmosphere, which generate a wide spectum of AGWs (e.g., Fritts &58

Luo, 1993, and references therein). More details on the generation of gravity waves59

and acoustic gravity waves during an eclipse can be found in Knížová and Mošna60

(2011), who used plain language to explain this process.61

After a series of publications about the generation of gravity waves by solar62

eclipses in the beginning of the 1970s decade (Chimonas & Hines, 1970, 1971; Chi-63

monas, 1974), several experiments were carried out to investigate the characteristics64

of these gravity waves in the neutral atmosphere and their manifestation as travel-65

ing ionospheric disturbances (TIDs) in the ionosphere. The early experiments in-66

cluded observation of the eclipse of 7 March 1970 solar eclipse over the central and67

east coast of North America, which showed only some agreement between observa-68
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tions and theoretical predictions (e.g., Davis & Da Rosa, 1970; Arendt, 1972; Lerfald69

et al., 1972; Sears, 1972).70

Several other experiments followed up trying to reconcile observations and the-71

ories related to AGWs and TIDs induced by eclipses (e.g., Beer & May, 1972; Frost72

& Clark, 1973). For instance, the experiments performed on 30 June 1973 identified73

AGWs and TIDs that were likely associated with the total solar eclipse that was ob-74

served crossing central Africa (e.g., Schödel et al., 1973; Anderson & Keefer, 1975;75

Broche & Crochet, 1975; B. W. Jones & Bogart, 1975). On 23 October 1976, AGWs76

and TIDs were also observed in South Australia associated with the eclipse (e.g.,77

Beer et al., 1976). A few years later, on 26 February 1979, an eclipse was observed78

over North America and Greenland and new studies on the ionospheric responses to79

eclipses were conducted (e.g., Narcisi et al., 1983).80

During the 1980s, only two solar total eclipses crossed the continental areas,81

one on 16 February 1980 over Africa and Asia and another on 29 March 1987 over82

Africa. Again, AGWs and TIDs were observed during those events (e.g., Hanuise83

et al., 1982; Mohanakumar & Sankaranarayanan, 1982). In the 1990s, five eclipses84

were observed over inhabited areas (11 July 1991, 03 November 1994, 24 October85

1995, 8-9 March 1997 and 11 August 1999). Unfortunately, only a few AGW/TID86

experiments were performed during those events (e.g., Altadill et al., 2001; Aplin &87

Harrison, 2003; T. B. Jones et al., 2004). In the past two decades at least ten total88

solar eclipses occurred (21 June 2001, 04 December 2002, 08 April 2005, 29 March89

2006, 01 August 2008, 21-22 July 2009, 13-14 November 2012, 03 November 2013,90

21 August 2017 and 02 July 2019) over continental areas which allowed important91

ground-based observation of AGWs and TIDs (e.g., Zerefos et al., 2007; Afraimovich92

et al., 2007; Chen et al., 2011; Paul et al., 2011; Amabayo et al., 2014; K. V. Kumar93

et al., 2016; S. Kumar et al., 2016; Paulino et al., 2018; Vargas, 2019).94

From the observations, several aspects of AGWs and TIDs induced by eclipses95

were learned. For instance, it was found that bow waves, generated by the Moon’s96

shadow traveling at a supersonic speed, could be detected in parameters of neutral97

atmosphere and ionosphere. It was also found that periodic AGWs/TIDs with pe-98

riods ranging from a few up to tens of minutes and wavelength extending up to a99

thousand kilometers could be observed during eclipse events. It must be pointed out100

that the spectral characteristics of the observed AGWs/TIDs depend on the distance101

where they were measured to the umbra of the eclipse. Furthermore, the wind sys-102

tem and the dissipative processes impose a natural filtering system, which limits the103

observable spectrum of AGWs at different atmospheric levels.104

The total solar eclipse on 21 August 2017 presented a major opportunity to105

advance the understanding of the characteristics of AGWs (e.g., Coster et al., 2017,106

and references therein) and other atmospheric phenomena associated with the eclipse.107

The path of the umbra crossed the continental United States (US) (e.g., McInerney108

et al., 2018), and allowed, perhaps, the most comprehensive set of experiments to be109

conducted to date.110

In addition to the experiments in the US, a multi-instrumented campaign of111

observations was carried out in the Northeast region of Brazil. The experiment was112

performed to determine the effects of the 21 August 2017 eclipse in the upper at-113

mosphere at low latitudes including the occurrences of AGWs. The geographical lo-114

cation of the instruments operated during the campaign allowed, for the first time,115

this type of nighttime observations in Brazil. Signatures of gravity waves induced by116

eclipses have, however, already been observed in the rotational temperature during117

the night of 29 March 2006 (Aushev et al., 2008).118
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In the present work, the main results of the observations made by an all-sky119

imager located at São João do Cariri (7.4o S, 36.5o W, dip angle: 11oS) are pre-120

sented and discussed. The imager detected a medium-scale AGW just three hours121

after the end of eclipse, which occurred over the Atlantic ocean around 21:04 uni-122

versal time (UT). The observed wave shows spectral characteristics and propagation123

direction that are compatible with their generation by an eclipses. Additionally, the124

potential propagation path of the AGW was derived using reverse ray-tracing and it125

was found that the position of the likely source is within the region of the umbra in126

the stratosphere. Finally, observations of horizontal wind made at the same site us-127

ing a Fabry-Perot Interferometer also indicate signatures of large-scale gravity waves128

in the thermosphere associated with the eclipse (Harding et al., 2018), which rein-129

forces that AGWs induced by the 21 August 2017 solar eclipse can be observed far130

away from its source.131

2 Image Analysis and Results132

Coordinated multi-instrumented observations of the upper atmosphere were133

made around the total solar eclipse of 21 August 2017 in the Northeast region of134

Brazil. The main objective of those observations was the detection of gravity waves135

and ionospheric disturbance associated with the eclipse. The network of instruments136

included: (a) three digisondes (e.g., Batista et al., 2017) located at São Luís (2.58o137

S, 44.2o W), Fortaleza (3.87o S, 38.41o W) and Cachoeira Paulista (22.67o S, 45.00o138

W); (b) one very high frequency (VHF) coherent backscatter radar (e.g., Rodrigues139

et al., 2013) at São Luís; (c) one meteor radar at Cachoeira Paulista (e.g., A. R. Paulino140

et al., 2012); (d) a network of fluxgate magnetometers distributed over the Brazil-141

ian territory (e.g., Denardini et al., 2018); (e) one Fabry-Perot interferometer at São142

João do Cariri (e.g., Makela et al., 2009) and (f) one all-sky airglow imager at São143

João do Cariri (e.g., I. Paulino et al., 2016). In this note, the investigation focused144

on the observations made by the all-sky imager. The main results of these observa-145

tions were presented and discussed during the 42nd COSPAR Scientific Assembly146

(Paulino et al., 2018).147

Images of the near-infrared OH and atomic Oxygen at 630.0 nm (OI6300) air-148

glow emissions were collected during the night of 21 August 2017 every two minutes149

in order to properly monitor the AGW activity in the mesosphere and lower ther-150

mosphere region after the end of the eclipse over the northeast of Brazil. The nom-151

inal height of the peak for the OH is ∼87 km and the emission is proportional to152

the concentration of Ozone and Hydrogen. Therefore, it reflects the variation in the153

minor constituents of the mesosphere and lower thermosphere (MLT). The nominal154

height of the OI6300 emission is ∼250 km and the emission intensity is proportional155

to the concentration of O2, N2 and electrons in the thermosphere, which reflects156

variation in the concentration of ionospheric plasma. Signatures of AGWs propa-157

gating southward and southwestward were identified in the OH images after 00:00158

UT.159

To estimate horizontal AGW parameters (e.g., observed period, wavelength160

and direction of propagation) in the images, two techniques were used: (1) The two-161

dimensional Fast Fourier Transform (FFT) and cross-correlation spectrum (Garcia162

et al., 1997) and (2) Analysis of keograms (e.g., Shiokawa et al., 2009). The first163

technique is often used to estimate parameters of small-scale gravity waves and the164

second one is better used to study medium-scale gravity waves (e.g., I. Paulino et165

al., 2011; Campos et al., 2016; Essien et al., 2018).166

The observations were complemented by additional numerical analysis. Reverse167

ray-tracing analysis was carried out to estimate the propagation path and to iden-168

tify potential sources for the observed waves. The ray-tracing methodology is de-169
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scribed in Vadas and Fritts (2009) and has already been used to investigate sources170

of AGWs in the equatorial region (e.g., Sivakandan et al., 2016, 2019). In summary,171

the ray path for AGWs propagating into the atmosphere is obtained solving the fol-172

lowing set of equations:173

dxi
dt

= Vi +
∂ωIr

∂ki
= Vi + cgi (1)

and174

dki
dt

= −kj
∂Vj
∂xi

− ∂ωIr

∂xi
(2)

where xi and ki are the position and wavenumber of the wave at a given time, Vi175

is the neutral wind velocity, ωIr is the intrinsic frequency and cgi is the group ve-176

locity. Repeated indices indicate summation, e.g., “j”. Temperature from the Naval177

Research Laboratory Mass Spectrometer Incoherent Scatter Radar 2000 (NRLMSIS-178

00, Picone et al., 2002) and winds from the Horizontal Wind Model 2014 (HWM-14,179

Drob et al., 2015) were used as input for the ray-tracing technique.180

Analysis of the OH all-sky images show the occurrence of small- and medium-181

scale AGWs. The reverse ray-tracing results for small-scale AGWs (observed peri-182

ods of ∼10 min and horizontal wavelengths of ∼ 30 km) showed that these waves183

reached tropospheric altitudes in the region near the observatory, i.e., only a few184

hundred of kilometers away. In addition to small-scale waves, two medium-scale185

gravity waves were identified, the first medium-scale AGW had a period of ∼47 min,186

a horizontal wavelength of ∼580 km and propagated to the southeast. The result187

from the ray-tracing indicated that the likely source was located over the ocean,188

to the northwest of the observatory. The second medium-scale AGW is going to189

be the focus of the present investigation. It had a period of ∼150 min, a horizon-190

tal wavelength of ∼1,600 km and propagated southwestward (azimuth of 200o from191

the North clockwise). Therefore, the propagation direction suggested a connection192

with the eclipse.193

Figure 1 shows the keogram results for the all-sky images when a medium-scale194

AGW was observed. Panels A) and B) of Figure 1 show the East-West (E-W) and195

North-South (N-S) cuts of the images as a function of the time (keograms), respec-196

tively. From the keograms, amplitudes (Am), horizontal wavelength (λH), observed197

period (τ), horizontal phase speed (cH) and propagation direction (φ) are derived.198

These parameters are indicated in Panel C) which also shows the spectrum of fluc-199

tuations in the E-W direction. Panel D) shows the spectrum of fluctuations in the200

N-S direction and the uncertainty in the derived parameter values. Details about the201

derivation of these parameters of AGWs from keograms can be found in Appendix202

A of Figueiredo et al. (2018). One can see in Figure 1A) one crest on the central203

portion of the keogram, while Figure 1B) shows one crest in the beginning and one204

valley to wards the end part of the keogram. Note that, besides the medium-scale205

structure, the keograms also show other small oscillations.206
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Figure 1. Keogram analysis for East-West (left side) and North-South (right side). Panels
(A) and (B) show the keograms from the airglow images. Panels (C) and (D) show the amplitude
of the main oscillations.

Figure 2 shows the path of the medium-scale AGW derived from the reverse207

ray-tracing assuming two distinct background wind patterns. The dashed red line208

represents the results for zero wind model. The solid green line represents the re-209

sults for the HWM-14 winds. Comparison using zero wind and modeled wind gives210

an idea about the effect of the wind in changing the trajectory of the wave into the211

atmosphere. In the present case, only small differences were noted. Furthermore, the212

black heavy line shows the path of the Moon’s shadow and the blue spots represent213

regions with cold clouds, which can indicate local instability. Cloud temperature in-214

formation was obtained from Geostationary Operational Environmental Satellites215

(GOES) from the infrared images of the clouds. The occurrence of cold clouds has216

been used to identify convection and potential sources of small-scale AGWs (Dare-217

Idowu et al., 2020). The color bar on the top of Figure 2 shows the temperature218

scale in degrees Celsius. The blue spots in Figure 2 indicate the occurrence of con-219

vection near the end of the eclipse path, in the Amazon region and over the North220

tropical Atlantic ocean. Note that the ray-tracing results show that the path of the221

medium-scale AGW crossed the end of the eclipse and extended horizontally over222

1000 km to the northeast direction.223
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Figure 2. The ray path of the gravity wave on a geographical map. The red dashed line rep-
resents the ray path using zero wind condition and the solid green line represents the HWM-14
wind condition. The black heavy line represents the Moon’s shadow. The rainbow spots represent
clouds in which the estimated temperature is shown in the color bar on the top. Colder clouds
are shown in violet and indicates deep convection and very high clouds.

Figure 3 shows the results for the temporal evolution of the gravity wave ray224

path into the atmosphere. Again, results for the HWM-14 wind model and for zero225

winds converge to similar paths. The horizontal black line represents the altitude226

where the ray path crossed the Moon’s shadow, which is around 34.4 km altitude,227

i.e., in the stratospheric heights. These results show that this medium-scale gravity228

wave likely had its sources in the north tropical Atlantic ocean.229
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Figure 3. Extension of Figure 1 for the vertical propagation of the medium-scale AGW
against the time. The horizontal black line represents the altitude where the ray path of the
waves crossed the Moon’s shadow.

3 Discussion230

It was shown in Figure 1 that the medium-scale AGW started to be observed231

around 00:00 UT (21:00 local time) over São João do Cariri. This starting time is232

more three hours after the end of the eclipse over the Atlantic ocean. Using the hor-233

izontal phase speed of ∼176 m/s derived from keograms, one can estimate that the234

wave travelled ∼2,218 km in 3.5 hours. The point in which the ray path of medium-235

scale AGW crossed the Moon’s shadow (see Figure 2) is located at 10.98oN and236

28.63oW and it is ∼2,230 km away from the observatory. Therefore, the propagation237

speed suggests that the source of the observed AGW could be at this point. Besides238

the Moon’s shadow, there is indication of convection around that region. Moreover,239

around the point in which the ray-path reached the troposphere there is no indica-240

tion of convection, which makes tropospheric source to be considered unlikely.241

–8–



manuscript submitted to Geophysical Research Letters

The next point to be analyzed is the vertical propagation of the medium-scale242

AGW derived from the reverse ray-tracing analysis. Figure 3 shows the vertical ray243

path of the medium-scale AGW inferred using HWM-14 winds and no winds for244

comparison purposes. The ray paths for the two cases are similar since the AGW245

had a high horizontal phase speed and it could easily escape from critical and turn-246

ing levels in the atmosphere. Figure 3 shows that the wave would have travelled for247

more than five hours from the surface up to the OH layer and it would have crossed248

the Moon’s shadow at around 34.4 km altitude and 21:06 UT (wind model condi-249

tion). From this point onwards, it took more than 3 hours for the wave to reach the250

OH layer altitude of ∼ 87 km. Therefore, according to the ray-tracing results, po-251

tential source for the observed AGW would be located in the stratosphere (∼34 km252

altitude) over 11oN and 28.5oW.253

In general, deep convection clouds, like the ones that can be seen in Figure 2254

near the end of the path of the eclipse extend up to a pressure level of about 70 hPa,255

which is approximately 17.7 km in altitude (e.g., Sherwood et al., 2004). So, one256

can wonder if such a structure could excite gravity waves in the stratosphere. Ob-257

servations during the Spread-F experiment (SpreadFEx) campaign carried out also258

over Brazil in 2005 found similar convective plumes (Vadas et al., 2009). Vadas and259

Fritts (2009) calculated the effects of a single convective plume and small convective260

cluster that can be compared to the present case study. They found that the most261

dominant spectrum of AGWs generated by these plumes included small-scale gravity262

waves with a horizontal wavelength shorter than 400 km and reaching the OH layer263

altitudes within an hour. Therefore, the only possible way that the observed convec-264

tive system could excite gravity waves in the stratosphere would be through body265

forcing producing secondary gravity waves in the stratosphere, which is unlikely ac-266

cording to the simulations made by Vadas and Fritts (2009).267

Given the lack of plausible convection sources, the eclipse become a strong can-268

didate as the source of AGWs along the path of the Moon’s shadow by the screen-269

ing of the ozone layer from solar heating. Predictions of AGWs generated by eclipse270

showed dominant periodicities in the atmospheric fields from 2 to 4 hours (Fritts &271

Luo, 1993). This is in good agreement with the present observations. They have,272

however, calculated the horizontal scale of the structures more likely to be observed273

in the lower thermosphere to be over 5,000 km.274

Optical observations by Aushev et al. (2008) also revealed periodicities associ-275

ated with the 29 March 2006 total solar eclipse in good agreement with the present276

results. Furthermore, a wide spectrum of TIDs has been observed during eclipses277

with periods ranging from a few minutes (e.g., Davis & Da Rosa, 1970) up to a cou-278

ple of hours (e.g., J. Y. Liu et al., 1998), which is close to the period of the observed279

medium-scale AGW.280

Regarding the 21 August 2012 total solar eclipse, a temperature reduction281

of 1 K and increase by a factor of 2 in the ozone were predicted by Whole Atmo-282

sphere Community Climate Model-eXtended (McInerney et al., 2018). As a result of283

these changes in the atmospheric composition and dynamics, large-scale disturbances284

(TIDs) were observed in the ionosphere associated with the eclipse (e.g., Coster et285

al., 2017). Finally, a wave-like signature of the bow wave generated by the eclipse286

was observed in the neutral winds by a Fabry-Perot interferometer over São João do287

Cariri (Harding et al., 2018) and over Carbondale (37.7oN, 89.2oW) using airglow288

red and green lines (Aryal et al., 2019).289
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4 Conclusions290

In summary, a medium-scale AGW was detected associated with the 21 August291

2017 eclipse. Of particular importance is that the wave was observed at low lati-292

tudes and about 2,000 km away from the eclipse path (umbra). The AGW was ob-293

served using an all-sky imager located in São João do Cariri approximately 3 hours294

after the end of the eclipse. The wave had an observed period of ∼2.5 hours and295

an horizontal wavelength of ∼1,620 km. Additionally, the observations showed that296

the wave propagated to the southwest with an azimuth of ∼200o clockwise from the297

North.298

The spectral characteristics of the observed wave match theoretical prediction299

for AGW generated by solar eclipses. Furthermore, reverse ray-tracing simulations300

were performed and the results corroborate with potential wave sources located301

around 11oN, 28.5oW and 34 km altitude, which was the position where the grav-302

ity wave ray path crossed the Moon’s shadow in the stratosphere. This is the first303

time that a gravity wave generated by an eclipse was captured by an all-sky airglow304

camera in the MLT region during the nighttime.305
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