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Abstract

This study assesses the sub-seasonal predictability of the weekly mean geopotential height anomaly at 500 hPa and its relation-

ship to teleconnections over the Northern Hemisphere in winter. The skill over the North Pacific, Canada, and Greenland is

higher than over other areas for week-3 and -4 forecasts. These peaks correspond to the centers of action for the Pacific–North

American (PNA) pattern and the North Atlantic Oscillation (NAO). PNA (NAO phase) predictions are better for El Niño years

at lead times of 4 weeks (2–4 weeks). The effects of La Niña forcing on PNA and NAO forecasts are small compared with the El

Niño forcing. Numerical models tend to predict a negative PNA at lead times of 3–4 weeks in La Niña years. The improvement

in the mid-latitude upper-level jet rather than in the atmospheric response to ENSO forcing in the tropics is important for

better S2S prediction.
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Key Points: 9 

 Mid-latitude teleconnections contribute to higher forecast skill over North Pacific, North 10 

America, and North Atlantic at S2S timescales. 11 

 Forcing associated with El Niño can enhance the sub-seasonal predictability of mid-12 

latitude teleconnections. 13 

 Accurate prediction of the mid-latitude jet plays an important role in teleconnection 14 

forecasts at S2S timescales. 15 
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Abstract 17 

This study assesses the sub-seasonal predictability of the weekly mean geopotential height 18 

anomaly at 500 hPa and its relationship to teleconnections over the Northern Hemisphere in 19 

winter. The skill over the North Pacific, Canada, and Greenland is higher than over other areas 20 

for week-3 and -4 forecasts. These peaks correspond to the centers of action for the Pacific–21 

North American (PNA) pattern and the North Atlantic Oscillation (NAO). PNA (NAO phase) 22 

predictions are better for El Niño years at lead times of 4 weeks (2–4 weeks). The effects of La 23 

Niña forcing on PNA and NAO forecasts are small compared with the El Niño forcing. 24 

Numerical models tend to predict a negative PNA at lead times of 3–4 weeks in La Niña years. 25 

The improvement in the mid-latitude upper-level jet rather than in the atmospheric response to 26 

ENSO forcing in the tropics is important for better S2S prediction. 27 

 28 

Plain Language Summary 29 

Weather forecasts at medium-range timescales are basically skillful because of the evolution of 30 

numerical weather prediction systems. However, numerical models generally struggle to make 31 

accurate predictions at Sub-seasonal to seasonal (S2S; 2 week to 2 month range) timescales. 32 

Atmospheric low-frequency variability and atmosphere–ocean–land coupled processes are 33 

potential sources of improvements to S2S forecast skill. This study investigates the forecast skill 34 

of weekly mean atmospheric variability and its relationship to dominant teleconnections over the 35 

Northern Hemisphere in winter. The Sub-seasonal forecast skill (3–4 weeks) is higher over the 36 

North Pacific, Canada, and Greenland than over other areas. These regions correspond to the 37 

centers of action of the Pacific–North American (PNA) pattern and the North Atlantic 38 

Oscillation (NAO). Sub-seasonal forecasts of PNA and NAO are better in El Niño years than in 39 

neutral years. This indicates that ENSO conditions can enhance sub-seasonal predictability 40 

through improvements to PNA and NAO forecasts. In contrast, the numerical model used here 41 

tends to have a negative PNA bias in La Niña years. Both higher skill in certain regions and the 42 

negative PNA bias depend on the predictions of the upper-level jet in mid-latitudes. The upper-43 

level jet predictions in mid-latitudes rather than the atmosphere-ocean coupling process 44 

predictions in tropics plays an important role in S2S timescales. Therefore, reducing the bias in 45 

mid-latitudes would improve the S2S forecasts. 46 

 47 

1 Introduction 48 

Sub-seasonal to seasonal (S2S) weather predictions have attracted increasing attention in 49 

recent years (Brunet et al., 2010). At medium-range timescales, forecast skill mainly depends on 50 

the initial atmospheric conditions (White et al., 2017). However, there are many contributions to 51 

predictability at S2S timescales. Atmosphere–ocean–land interactions (e.g., sea surface 52 

temperature, sea ice, snow cover, soil moisture) and atmospheric low-frequency variability (e.g., 53 

teleconnections and polar vortices) also affect forecast skill at S2S timescales. 54 

The Pacific–North American (PNA) pattern is a dominant atmospheric teleconnection 55 

over the wintertime Northern Hemisphere (Wallace and Gutzlar, 1981). Atmospheric circulation 56 

associated with the PNA has a significant influence on the surface temperature and precipitation 57 

over North America (e.g., Yu et al., 2019). The North Atlantic Oscillation (NAO) is another 58 

dominant atmospheric variability (Walker and Bliss, 1932; Hurrell, 1995). The phase and 59 
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strength of the NAO affect westerlies from the west coast of North America to Europe. Thus, the 60 

NAO has a significant impact on the weather of North America and western and central Europe. 61 

Although some studies have attributed the PNA to an internal atmospheric variability (e.g., 62 

Straus and Shukla, 2000, 2002), other studies have found that the El Niño–Southern Oscillation 63 

(ENSO) affects the PNA (and the Tropical–Northern Hemisphere pattern) through an 64 

extratropical response (e.g., Hoskins and Karoly, 1981; Soulard et al., 2019). In addition, the 65 

forcing associated with ENSO can modify the NAO phase (Zhang et al., 2015, 2019; Toniazzo 66 

and Scaife, 2006). 67 

Extended-range ensemble predictions are conducted routinely by operational numerical 68 

weather prediction (NWP) centers around the world, and a database for such predictions was 69 

established by the S2S prediction project (Vitart et al., 2017). Many studies have focused on 70 

improvements to S2S prediction; e.g., forecast skills for Madden–Julian Oscillation (MJO) and 71 

its teleconnections (e.g., Tseng et al., 2017; Vitart, 2017), synoptic systems (e.g., Quinting and 72 

Vitart, 2019; Zheng et al. 2019), extreme events (e.g., DelSole et al., 2017; Lin, 2018; Wang and 73 

Robertson, 2019), and the sea ice edge (Zampieri et al., 2018, 2019) have been evaluated using 74 

this S2S dataset. Lin (2020) investigated the S2S forecast skill in the Northern polar region and 75 

showed that the skill depends on Arctic Oscillation and MJO phases. In this study, we investigate 76 

the forecast skill of operational S2S predictions for weekly mean atmospheric variability over the 77 

Northern Hemisphere. We focus on the relationship between spatial distribution of forecast skill 78 

and teleconnection patterns, particularly the PNA and NAO. 79 

 80 
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2 Data and Methods 81 

2.1 Data 82 

We used ensemble reforecast data from the S2S prediction project database (Vitart et al., 83 

2017) from five NWP centers: Environmental and Climate Change Canada (ECCC), the 84 

European Centre for Medium-range Weather Forecasts (ECMWF), the Japan Meteorological 85 

Agency (JMA), the US National Centers for Environmental Prediction (NCEP), and the UK Met 86 

Office (UKMO). We only used reforecast data from ensemble prediction systems (EPSs) in 87 

operation in 2018. The configuration of each EPS is summarized in Table S1. The EPSs of the 88 

ECMWF, NCEP, and UKMO use a coupled atmosphere–ocean model, whereas those of the 89 

ECCC and JMA use an uncoupled model. One model version was used for all reforecast data of 90 

the JMA and NCEP EPSs, whereas several model updates were applied to the ECCC, ECMWF, 91 

and UKMO EPSs. Because data availability differs among the NWP centers, we used the 92 

ensemble reforecast data initialized each Thursday for the period 1999–2010 for all the EPSs. 93 

Therefore, the ECCC, ECMWF, and NCEP datasets have exactly the same initial dates, the 94 

number of which is greater than those of the JMA and UKMO datasets. These reforecast data 95 

have a grid spacing of 2.5° and a temporal resolution of 1 day. 96 

The ECMWF Reanalysis (ERA)-5 data (Hersbach et al., 2019) were used to evaluate the 97 

reforecast data. The reanalysis data have the same grid spacing and temporal resolution as the 98 

forecast data. 99 

 100 

2.2 Weekly mean forecast skill  101 

The forecast skill was evaluated using the weekly mean geopotential height anomaly at 102 

500 hPa (Z500 anomaly) in winter (December, January, and February; DJF). For ECCC, 103 

ECMWF, and NCEP, the week-1 forecast corresponds to the average of the first 7 forecast days, 104 

the week-2 forecast to forecast days 8 to 14, etc. When the 4
th

 day of a weekly mean falls in DJF, 105 

we include the weekly mean in the analysis. For the JMA and UKMO, we regard the week-1 106 

forecast as the period of the week-1 ECCC forecast beginning within a 3-day window centered 107 

on the initialization. For example, the week-1 UKMO forecast begins 9 Jan 1999 and extends 5 108 

days to 14 Jan 1999, corresponding to the week-1 ECCC forecast initialized on 7 Jan 1999. Each 109 

model’s climatology was estimated for each forecast lead time using reforecast data for 1995–110 

2010 (1998–2010 for ECMWF and 1999–2010 for NCEP), within a 31-day time window 111 

centered on each initial day and a 7-day forecast time window centered on the forecast lead time 112 

of interest. The forecast skill was evaluated using the correlation between analyzed and predicted 113 

weekly mean Z500 anomalies at each grid point (i.e., “correlation skill” in Scaife et al. (2017)). 114 

Because of the small ensemble size of the reforecast, we focus on the skill of ensemble mean 115 

forecasts. 116 

 117 

2.3 ENSO, PNA, and NAO indices 118 
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The ENSO conditions for each year were determined according to the seasonal Ocean 119 

Niño Index (ONI) obtained from the NOAA Climate Prediction Center webpage 120 

(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php). We 121 

consider years with ONI ≥ 0.8 (ONI ≤ −0.8) in DJF as strong El Niño (La Niña) years. 122 

The PNA index was calculated according to the pointwise definition of Wallace and 123 

Gutzler (1981). The Z500 anomaly is normalized by the climatological standard deviation (CSD) 124 

for each model. The CSD was estimated from the same reforecast dataset as used for the 125 

calculation of the model climatology at each lead time. 126 

The NAO index was calculated by projecting the predicted Z500 anomaly in the region of 127 

(20°–90°N, 90°W–90°E) onto the first mode of the empirical orthogonal function (EOF) of the 128 

monthly mean Z500 anomaly from ERA5. 129 

 130 

3 Results 131 

3.1 Forecast skill over the Northern Hemisphere 132 

The correlation skill over the Northern Hemisphere is greater than 0.6 for lead times of 133 

up to 2 weeks (not shown), but the skill drops rapidly over the Arctic and the Mediterranean Sea 134 

for lead times of 3 weeks (Fig. 1a–e). The skill is, however, ≥0.4 and significant at the 99% 135 

confidence level over the North Pacific, Canada to the south of Greenland, and Florida. Although 136 

the skill is almost zero over most regions of the Northern Hemisphere in the week-4 forecast, 137 

significant skill exists in these regions (except over Canada in the ECCC and JMA forecasts). 138 

These higher forecast skills compared with other areas are also evident in the week-5 ECMWF, 139 

NCEP (except over Canada), and UKMO forecasts. These results suggest that the weekly mean 140 

Z500 anomaly is predictable in certain mid- to high-latitude regions at S2S timescales. These 141 

regions correspond to the centers of action of the PNA and NAO. Therefore, we focus on the 142 

relationship between forecast skill and these teleconnections in subsequent sections. 143 

 144 

3.2 Composite of the Z500 anomaly during El Niño and La Niña years 145 

The composite Z500 anomaly calculated from the reanalysis during El Niño years (red 146 

panels in Fig. 2a and b) is positive over the Arctic, Kamchatka Peninsula, and Eastern Europe, 147 

and negative over the northeast Pacific and the North Atlantic. The anomaly corresponds to a 148 

positive PNA pattern over the North Pacific to North America and a negative NAO over the 149 

North Atlantic. During La Niña years, the anomaly calculated from the reanalysis is positive over 150 

the North Pacific (blue panels in Fig. 2c and d), the west coast of North America, and from the 151 

Kara Sea to eastern Europe, but negative over the Pacific side of the Arctic Ocean and China. 152 

Unlike El Niño years, the composite calculated from the reanalysis in La Niña years does not 153 

exhibit clear PNA or NAO patterns. The anomaly over North America is particularly small in the 154 

reanalysis. Note that the composites calculated from the reanalysis for JMA and UKMO are 155 

slightly different to those for ECCC, ECMWF, and NCEP (red and blue panels in Fig. 2) because 156 

of differences in the sample sizes used by each NWP center. However, these differences are 157 
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much smaller than the differences between the composites of the analyzed and predicted 158 

anomalies. 159 

The predicted anomaly during El Niño years is similar to the analyzed anomaly for all 160 

NWP centers for the week-1 and -2 forecasts, but with a weaker amplitude in the week-2 forecast 161 

(Fig. S1a and b). The week-3 forecasts from ECMWF and UKMO have composite patterns 162 

similar to the reanalysis, but those of ECCC, JMA, and NCEP are less similar to the reanalysis 163 

(see correlation coefficients in Fig. 2a). In particular, the positive anomaly over the Arctic and 164 

Canada is largely absent from the NCEP forecast. Although the anomaly weakens further in the 165 

week-4 forecasts (Fig. 2b), the week-3 and -4 forecasts, except for the 4-week JMA forecast, 166 

show a wave train over the North Pacific, Canada, and Florida, which corresponds to the positive 167 

PNA pattern. In addition, anomalies in the North Atlantic correspond to the negative NAO 168 

pattern in the week-3 forecasts, except for that from NCEP. As Scaife et al. (2014) showed, the 169 

UKMO model clearly predicts the negative NAO pattern even at a lead time of 4 weeks. The 170 

week-4 NCEP and UKMO forecasts show a higher correlation coefficient than the other NWP 171 

centers. These results suggest that the anomalies associated with the PNA and NAO were well 172 

predicted at S2S timescales during El Niño years by the NWP centers, but with a much smaller 173 

amplitude than that seen in the reanalysis. 174 

During La Niña years, the positive anomaly over the North Pacific is well predicted at 175 

lead times up to 4 weeks by all NWP centers (Figs S1c–d and 2c–d). The negative anomaly over 176 

the Bering Strait is also well predicted up to lead times of 3 weeks, but the anomaly is stretched 177 

(shifted towards North America) in the ECCC and UKMO (ECMWF, JMA, and NCEP) 178 

forecasts. As a result, a negative PNA-like pattern is predicted at lead times of 3 and 4 weeks. 179 

This negative PNA-like pattern does not appear in the reanalysis. These results indicate that 180 

these NWP models tend to predict a negative PNA-like pattern in response to La Niña forcing at 181 

S2S timescales. 182 

 183 

3.3 Forecast skill for PNA and NAO indices 184 

The correlation skill and root-mean-square error (RMSE) between analyzed and predicted 185 

PNA indices are approximately 0.5 and 0.6, respectively, in the week-3 forecast (Table 1 and 186 

Fig. S2b). At this lead time, no consistent differences in PNA prediction exist between El Niño 187 

and neutral years among the NWP centers. The week-4 forecast for El Niño years has a higher 188 

correlation skill and a smaller RMSE than in neutral years for all NWP centers except UKMO. 189 

This result indicates that S2S predictability for PNA amplitude and phase is enhanced during El 190 

Niño years. The correlation skill (RMSE) is also higher (lower) for La Niña years than neutral 191 

years in the week-4 ECCC, ECMWF, and JMA forecasts, but is lower (higher) for La Niña years 192 

than neutral years in the week-4 NCEP and UKMO forecasts. That is, the forecasts generated by 193 

the NWP centers during La Niña years are inconsistent, even the week-4 forecasts. 194 

Both the correlation skill and RMSE for the NAO forecasts were higher during El Niño 195 

years than neutral years for the week-2 -3, and -4 forecasts (Table 1 and Fig. S3). This suggests 196 

that the prediction of the NAO phase is more accurate during El Niño years than neutral years, 197 

but the predicted NAO amplitude is not. In contrast to the PNA index, the impact of El Niño 198 
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forcing on the forecast skill for the NAO is evident after the week-2 forecasts. The week-4 199 

UKMO forecast is of particularly high skill (≥0.6) in El Niño years. A larger increase in 200 

correlation skill is found for the ECMWF (0.56), NCEP (0.41), and UKMO (0.59) forecasts than 201 

for the ECCC (0.2) and JMA (0.1) forecasts for El Niño years in the week-4 forecasts. During La 202 

Niña years, the correlation skill of the NAO index is generally high compared with that of 203 

neutral years for all NWP centers up to a lead time of 4 weeks, except for the week-3 ECMWF 204 

and UKMO forecasts. The RMSE in La Niña years, however, is comparable to that in neutral 205 

years. These results indicate that the NAO phase is more predictable than the NAO amplitude for 206 

La Niña years. 207 

 208 

3.4 Sea surface temperature (SST) anomaly and atmospheric response to ENSO forcing 209 

One of the most significant differences in EPSs among NWP centers is the atmosphere–210 

ocean coupling in the NWP model (Table S1). The composite SST anomaly calculated from the 211 

reanalysis is positive in the central Pacific during El Niño years (red shading in Fig. 3a, b). The 212 

positive anomaly is well represented in all NWP centers in the week-3 and -4 forecasts, although 213 

the anomaly extends farther into the eastern Pacific compared with that in the reanalysis. The 214 

negative anomaly of velocity potential (VP) in the upper troposphere associated with the positive 215 

SST anomaly is also predicted accurately by all NWP centers (contours in Fig. 3a, b). The 216 

differences in SST and VP anomalies in the tropics are small among the NWP centers, 217 

suggesting that the influence of the atmosphere–ocean coupling in the NWP model is small with 218 

respect to these processes. The differences in prediction among the NWP centers appear in the 219 

negative VP anomaly associated with the upper-level jet over the Northeast Pacific in week-4 220 

(green hatching in Fig. 3b). For the ECMWF, NCEP, UKMO, and reanalysis, the upper-level jet 221 

continues from the North Pacific to North America, and a negative VP anomaly appears over the 222 

northeastern Pacific. In contrast, the Pacific jet over the Pacific separated from the Atlantic jet in 223 

the ECCC and JMA forecasts. The negative VP anomaly over the northeastern Pacific is small in 224 

these two forecasts compared with the other NWP centers and the reanalysis. The upper-level jet 225 

acts as a waveguide in the mid-latitudes (Hoskins and Ambrizzi, 1993), and this difference 226 

would be one of the reasons for the lower correlation skill over Canada in the week-4 ECCC and 227 

JMA forecasts (Fig. 1a and c). 228 

During the La Niña years, the negative SST anomaly and convergent anomaly in the 229 

central Pacific are well represented by all of the NWP center forecasts (Fig. 3c, d). In the mid-230 

latitudes, the exit of the Pacific jet is located around 140°W in the reanalysis. However, the 231 

predicted Pacific jet reaches the west coast of North America in all of the forecasts made by the 232 

NWP centers. The distribution of the predicted Pacific jet would enhance Rossby wave 233 

propagation. The predicted Pacific jet possibly leads to the negative PNA bias seen in the week-3 234 

and -4 forecasts (Fig. 2c and d). 235 

 236 

4 Summary and Conclusions 237 
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In this study, we used operational ensemble forecasts to assess the sub-seasonal 238 

predictability of the weekly mean Z500 anomaly and its relationship to teleconnections over the 239 

Northern Hemisphere in winter. In the week-3 and -4 forecasts, the skill over the North Pacific, 240 

Canada, and Greenland was higher than in other areas. The correlation skills over these regions 241 

were approximately 0.4, and were significant at the 99% confidence level. However, the 242 

correlation skills over Canada were not significant for the week-4 ECCC and JMA forecasts. The 243 

peaks in the correlation skill correspond to the centers of action of the PNA and NAO. 244 

The forecast skill for the PNA phase and amplitude was largely independent of ENSO 245 

conditions up to a lead time of 3 weeks. The skill for the PNA phase and amplitude was better 246 

for El Niño years than neutral years at a lead time of 4 weeks. Although the skill associated with 247 

PNA was also better for La Niña years than neutral years, all of the NWP models showed a 248 

negative PNA bias. This tendency appears in the composite of the predicted Z500 anomaly and is 249 

expected to adversely affect predictions of surface temperature and precipitation over North 250 

America (DelSole et al., 2017; Wang and Robertson, 2019). The position of the exit of the 251 

Pacific jet in the predictions would lead to the negative PNA bias seen in La Niña years. The 252 

correlation skill and RMSE were higher for the El Niño years than neutral years in the week-2 to 253 

-4 forecasts, indicating that the NAO phase and amplitude forecasts are better and worse, 254 

respectively, during El Niño years at S2S timescales. The NAO phase predictions were better for 255 

the La Niña years than neutral years for lead times up to 4 weeks, but were not as good as those 256 

for the El Niño years. 257 

Thus, the PNA and NAO, which are important low-frequency atmospheric variabilities, 258 

control sub-seasonal predictability, and this conclusion is in agreement with much previous work 259 

(e.g., Lin et al., 2009; Matsueda and Palmer, 2018; Vitart, 2017). ENSO forcing, which is an 260 

important coupled atmosphere–ocean process, enhances sub-seasonal predictability by inducing 261 

teleconnections. This is consistent with cyclone track predictability at S2S timescales, as found 262 

by Zheng et al. (2019). The SST and VP anomaly indicate that a dynamic ocean model has little 263 

effect on forecasts of atmospheric response to ENSO forcing in the tropics at S2S timescales. On 264 

the other hand, the upper-level jet in mid-latitudes has a more significant influence on the 265 

forecast skill of the teleconnections than the atmospheric response in the tropics. Lee et al. 266 

(2019) showed that the position of the Pacific and Atlantic jets during different ENSO phases 267 

affects the European weather regime associated with MJO phase 3. Therefore, reducing the bias 268 

in mid-latitudes would improve the S2S forecasts. This conclusion is consistent with the results 269 

of teleconnections associated with the MJO, as reported by Lin (2020). As the ocean state, such 270 

as the Kuroshio–Oyashio extension (Zhou and Xie, 2017), influences the variability of the 271 

westerly jet in mid-latitudes, further studies are needed to evaluate the effects of atmosphere–272 

ocean coupling in NWP models on S2S predictions. 273 

 274 
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 375 

Figure 1. Correlation skill for the weekly mean Z500 anomaly at each grid point for the (a) 376 

ECCC, (b) ECMWF, (c) JMA, (d) NCEP, and (e) UKMO ensemble mean forecasts for the 377 

winters of 1999 to 2010. Hatching indicates correlation skills significant at the 99% confidence 378 

level. White circles indicate grid points used in the calculation of the PNA index. 379 

Figure 2. Composite Z500 anomaly calculated from the (a, c) week-3 and (b, d) week-4 380 

forecasts from ECCC, ECMWF, JMA, NCEP, and UKMO and the reanalysis (ERA5; red and 381 

blue outlines) during strong (a, b) El Niño and (c, d) La Niña years. The number of samples for 382 

each composite is shown in parentheses and the correlation coefficient between composites from 383 

each forecast and the reanalysis is shown at upper-right in each panel. The white circles are as in 384 

Fig. 1. 385 

Table 1. Correlation skill and RMSE between analyzed and predicted PNA and NAO indices in 386 

neutral years (N), and their differences between La Niña and neutral (L–N) years, and El Niño 387 

and neutral (E–N) years.  388 

Figure 3. As in Fig. 2, but for SST (red–blue shading) anomaly, velocity potential anomaly at 389 

200 hPa (contours, 5.0 × 10
5
 [m

2
/s] interval), and zonal wind at 200 hPa (green hatching 390 

indicating ≥25 [m/s]). 391 

 392 



Figure 1.





Figure 2.





 

 

 

 

ECCC ECMWF JMA NCEP UKMO 
week 3 week 4 week 3 week 4 week 3 week 4 week 3 week 4 week 3 week 4 

PNA 

Corr. 

skill 

N 0.52 0.20 0.53 0.28 0.39 0.03 0.48 0.20 0.40 0.35 
L–N -0.01 0.05 0.18 0.07 0.10 0.25 -0.12 -0.08 0.07 -0.13 

E–N -0.04 0.30 0.12 0.12 -0.01 0.35 -0.16 0.29 0.01 -0.03 

RMSE 

N 0.59 0.80 0.65 0.77 0.71 0.85 0.63 0.72 0.63 0.68 

L–N 0.01 -0.07 -0.14 -0.06 -0.06 -0.13 0.06 0.07 0.04 0.14 

E–N 0.03 -0.29 -0.18 -0.11 -0.09 -0.26 0.03 -0.13 -0.11 -0.09 

NAO 

Corr. 

skill  

N 0.28 0.03 0.41 0.01 0.39 0.33 0.37 0.10 0.39 0.11 
L–N 0.11 0.13 0.00 0.27 0.08 0.01 0.18 0.18 -0.12 0.07 

E–N 0.30 0.20 0.29 0.56 0.17 0.10 0.08 0.41 0.15 0.59 

RMSE 

N 1.94 2.10 1.71 2.02 1.85 1.83 1.77 2.05 1.78 1.98 

L–N -0.08 0.06 0.07 -0.11 -0.10 0.11 -0.13 -0.12 0.24 0.10 

E–N 0.35 0.69 0.39 0.44 0.58 0.94 0.76 0.31 0.34 0.02 
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