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Abstract

Inverse methods form the basis of many investigations of the structure of the lithosphere-asthenosphere system as they provide

the basis for physics-based subsurface imaging from surface and/or near-surface measurements. Steady increases in compu-

tational capabilities and methodological improvements have resulted in increasingly detailed three-dimensional models of the

Earth based on inverse methods. While these models can show an impressive array of features, it may be difficult for non-

specialists to assess which aspects can be considered reliable and which are tenuous, or are artefacts of the mathematical

formulation or data collection. In this paper we address the fundamental issues of feature reliability due to limited resolution

and model sensitivity to data noise for researchers who do not work with intimately with inverse methods. We include and

introductory overview of the mathematical formulation of inversion methods and define commonly used terms and concepts.

We then present two case studies based on data from USArray in the western United States. The first case study utilizes

magnetotelluric array data to construct a three-dimensional model of electrical resistivity to a depth of approximately 300 km.

We use this example to demonstrate fundamental issues regarding data fit, data coverage, and model parameterization. The

second case study discusses how we can incorporate petrological and mineral physics information directly into the inversion

approach to create models that are compatible with constraints on the temperature and composition of the lithosphere. We

will discuss the implications for practical use of these models in interpretations and provide guidelines on how to evaluate such

models.
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Abstract

Inverse methods form the basis of many investigations of the structure of

the lithosphere-asthenosphere system as they provide the basis for physics-

based subsurface imaging from surface and/or near-surface measurements.

Steady increases in computational capabilities and methodological improve-

ments have resulted in increasingly detailed three-dimensional models of the

Earth based on inverse methods. While these models can show an impressive

array of features, it may be difficult for non-specialists to assess which as-

pects can be considered reliable and which are tenuous, or are artefacts of the

mathematical formulation or data collection. In this paper we address the
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fundamental issues of feature reliability due to limited resolution and model

sensitivity to data noise for researchers who do not work with intimately with

inverse methods. We include and introductory overview of the mathemati-

cal formulation of inversion methods and define commonly used terms and

concepts. We then present two case studies based on data from USArray in

the western United States. The first case study utilizes magnetotelluric ar-

ray data to construct a three-dimensional model of electrical resistivity to a

depth of approximately 300 km. We use this example to demonstrate funda-

mental issues regarding data fit, data coverage, and model parameterization.

The second case study discusses how we can incorporate petrological and

mineral physics information directly into the inversion approach to create

models that are compatible with constraints on the temperature and com-

position of the lithosphere. We will discuss the implications for practical use

of these models in interpretations and provide guidelines on how to evaluate

such models.

Keywords: Inverse Methods, Lithosphere

1. Introduction

The rigid lithosphere, and its transition to rheologically weak upper man-

tle across the lithosphere-asthenosphere boundary (LAB), are fundamental

features of Earth’s plate tectonic system, with the LAB constituting the

principal detachment within the global plate tectonic system (e.g., Rychert

and Shearer, 2009). The imaging and interpretation of processes and struc-

tures within the lithosphere and the asthenospheric mantle is advancing as

geophysical data and methods along with complementary petrological and
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mineral physics studies improve. However, lithospheric and LAB structures

show complexity in both scale and detail, especially beneath the continents

(e.g., Eaton et al., 2009), and differing methods of inversion and charac-

terization, including thermal, seismic electrical, rheological and petrological

techniques, may resolve different features within a lithosphere-asthenosphere

transition zone between rigid to convecting mantle. In addition, inverse prob-

lems commonly exhibit mathematical ill-posedness and often have limited

resolution, which result in high model sensitivity to data noise and in models

that exhibit non-uniqueness and/or strong trade-offs between their param-

eters, respectively. Geophysical inversion is thus a powerful tool to image

lithospheric structure and processes but its results must be tested and inter-

preted carefully in this context to avoid mis- and/or over-interpretation.

Here, we overview methodological and information issues of geophysical

inversion in the context of studies of the lithosphere and asthenosphere. The

text is addressed to an audience interested in applying geophysical inversion

techniques but not necessarily familiar with the theoretical, practical, and

interpretation problems inherent to the method. We first overview the math-

ematical description of inverse problems and solution approaches. Some of

these concepts are also illustrated in the appendix through a highly simplistic

Bouguer slab gravity problem that illustrates fundamental issues relevant to

geophysical inversions. In the second part, we focus on practical aspects of

geophysical inversion problems: finding the balance between model regular-

ization and data fit, the effect of data coverage, and the influence of the model

parameterization. To that aim we present an instructive example using mag-

netotelluric data from the EarthScope USArray project. In the third part we
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deal with geophysical inversions focused on the primary (i.e., temperature,

composition etc.) rather than the secondary (e.g., seismic velocities, elec-

trical conductivity, density) physical parameters commonly used to describe

the Earth. We illustrate the coupling between geophysical, petrological and

mineral physics and the inherent issues and limitations attached to integrated

inversions for the Earth’s physical state in an study case where we invert sur-

face wave, heat flow and elevation data for the lithospheric thermochemical

structure in two columns representative of different tectonic terranes covered

by the EarthScope USArray project.

2. Mathematical Characteristics of Inverse Problems

The generation and interpretation of physical models from data is a fun-

damental activity of geophysics. Ideally, we collect data that can constrain

a unique model that is consistent with true Earth properties to arbitrary

accuracy. Practical and theoretical issues, however, often prevent this. We

summarize these issues and considerations in the context of the interpretation

and characterization of lithosphere-scale Earth models for a broad commu-

nity of geoscientists. Readers interested in more detailed development and

discussion are invited to consult more specialized and extensive references on

the subject (e.g., Tarantola, 1987; Baumeister, 1987; Menke, 1989; Kirsch,

1996). The following development utilizes the conventions and development

in the text and appendices of Aster et al. (2018). Note in particular that vec-

tors and matrices are denoted below as bold face lower-case and upper-case

symbols, respectively.

Inverse problems, and the assessment and interpretation of their solutions,
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can present multiple mathematical and philosophical challenges, even when

underlying physical and mathematical models are effectively exact. Principal

issues are conceptually depicted in Fig. 1.

2.1. The Forward and Inverse Problems

Conceptually, we may envision a “true” Earth model, which may be de-

terministic (i.e., we retrieve a single set of model parameters or coefficients),

or statistical (i.e., the model is a probability density function). We wish

to estimate the Earth model through the collection and inversion of rel-

evant data. The relationships between data and model are characterized

by the mathematical mapping between model and data parameters (the for-

ward problem), reciprocally, between data and model parameters (the inverse

problem) (Figure1). The forward and inverse problems are solved by mathe-

matical and/or algorithmic procedures, which we generically denote as g and

g−1, and which may be implemented using methods that range from closed-

form mathematical expressions to complex iterative operations. The data

are commonly time- and/or space-registered sets of numbers, ideally with

reliable error estimates. The Earth model may be a corresponding set of

time- and/or space-registered physical values, a probability density function,

or parameters in a functional relationship. The forward problem of mapping

models m to data d can be characterized as

g(m) = d (1)

and the inverse problem as

g−1(d) = m . (2)
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Model Space
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Forward
Problem

Inverse
Problem

Data Null Space

Model Null Space

Models that can 
be constrained 
by data in the 

inverse problem

Data that can be 
�t by some model 

in the forward 
problem

Figure 1: Schematic relationship between the forward and inverse problems, and the

model and data spaces. The forward problem and inverse problem are the mathematical

and/or algorithmic procedures used to map between the two spaces. The data null space

encompasses data projections that cannot be fit by any model (and this contribute only

to the data misfit). The existence of a nontrivial (empty) data null space thus results in

a nonzero data residual (14). The model null space encompasses models that cannot be

constrained by any data via the inverse mathematical model, because they produce zero

data predictions when inserted into the forward problem. The existence of a nontrivial

model null space will result in imperfect model resolution.
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2.2. Linearity and Nonlinearity

If a general mathematical operator f is linear, then it satisfies superpo-

sition and scaling, such that

f(m1 +m2) = f(m1) + f(m2) (3)

and

f(αm) = αf(m) . (4)

Mathematical linearity in forward and inverse problems is associated with

a rich body of insightful and practical mathematics and with very widely

utilized solution methods (e.g., Menke, 1989). If g is a linear forward problem

operator, (3) implies that the data set predicted by a superposition model

m1+m2 is just the sum of the two respective data sets, d1+d2, predicted by

models m1 and m2. (4) implies that multiplying a model by a scalar α scales

the predicted data by that same factor (and thus implies that the predicted

data from the zero model is also zero). If a forward problem is linear, d and

m are vectors describing the data and model, and g is a corresponding vector

operation for the forward problem, then the forward problem can always be

expressed in the form of a linear system of equations

g(m) = Gm = d (5)

where G is an appropriately sized matrix.

Geophysical inverse problems may be either linear (e.g., a basic gravity

inversion for a density distribution), or nonlinear (e.g., seismic refracted-ray

tomography or magnetotelluric inversion). Nonlinear problems are gener-

ally more complicated to approach because the powerful formalisms of lin-
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ear algebra and integral and differential transformations do not directly ap-

ply. However, many nonlinear solution methods invoke iterative linearization

strategies (e.g., Nocedal, 2006). Nonlinear problems may be additionally

complicated by the presence of multiple locally optimal solutions.

2.3. Rank Deficiency, Ill-Posedness, and Resolution

Ideally, a noise-free data set dtrue can be inverted to recover a unique

model that is equal to the true Earth model, mtrue, so that

g−1(dtrue) = mtrue . (6)

However, this ideal situation is non-realizable due to both theoretical and

practical reasons.

First, some projection of mtrue, m0 may lie in the model null space (Fig.

1). Null space models by definition have no influence on the forward model-

predicted data, so that

dtrue = g(mtrue) = g(mtrue + m0) . (7)

and the data vector elements will thus contain no information that can con-

strain m0. If g is linear, (7) can always be written in matrix form ((5))

as

dtrue = G(mtrue + m0) = Gmtrue + Gm0 = Gmtrue (8)

where G is a matrix that implements the forward problem. The model null

space in the linear case is thus the set of all models where

Gm0 = 0 (9)
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which is the set of all model parameters whereby the columns of G can

be linearly combined by the matrix-vector product (9), with the coefficients

being the elements of m0, to produce the zero vector. If such a linear com-

bination is possible for nonzero coefficients (i.e., m0 6= 0), then G is rank

deficient. Rank deficiency commonly arises in inverse problems (e.g., tomog-

raphy) because some combinations of the model parameters (e.g., adjacent

seismic velocity cells or nodes in a tomography problem) are not uniquely

determined by the available data. An instructive visual example of null-space

models for magnetic data is shown in Maus and Haak (2003).

Another important situation that commonly arises in inverse problems is

where the solution is highly sensitive to small changes in the data. Consider a

linear problem expressed as a model vector m and a forward problem matrix

G. We seek a solution m that fits the data by satisfying (5). To achieve

this, we seek an appropriate inverse matrix that recovers m given d. If G is

a square matrix and is not rank deficient (or equivalently, is nonsingular), it

will have a unique inverse G−1 and the inverse problem is straightforwardly

solved as

m = G−1d (10)

where G−1 is the standard inverse of a square matrix where

G−1G = GG−1 = I (11)

and I is an identity matrix.

If G is not square, a pseudo- or generalized inverse can be constructed to

solve the inverse problem. A widely implemented generalized inverse is the

9



Moore-Penrose pseudoinverse, G†, which produces a solution

m† = G†d . (12)

The solution given by (12) is of considerable practical interest in that it has

two often desirable least-squares properties. First, the solution is minimum-

length, in the sense that the 2–norm of the model

‖m†‖2 =
√
m2
†,1 +m2

†,2 + . . .+m2
†,n . (13)

will be minimized. Second, the pseudoinverse solution will have a minimum

data misfit in the sense that the 2–norm of the residual vector characterizing

the 2–norm distance between observed and model-predicted data

‖r‖2 = ‖d−Gm†‖2 (14)

is minimized. These two properties result in m† having no projection in

the model null space, since any such projection would increase (13) without

changing (14).

The normalized degree to which small changes (e.g., errors caused by

noise or round-off) in the elements of d may affect the model obtained in

(10) or (12) is bounded by the condition number, c, of G. This relationship

is characterized for a general norm by

‖m− m̂‖
‖m‖

≤ c
‖d− d̂‖
‖d‖

(15)

where d is noise-free data, d̂ is perturbed (e.g., noisy) data, m is the model

recovered from d and m̂ is the perturbed model recovered from d̂. For the 2–

norm and Moore-Penrose generalized inverse solution, the condition number

is given by

c = cond(G) = ||G||2||G†||2 =
√
λmax/λmin (16)
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where the λ are the maximum and minimum (real-valued) eigenvalues of

the (square and symmetric) matrix GTG. A system of equations with a

large condition number is referred to as ill-posed. In an ill-posed inverse

problem, exact (or nearly so), data fitting, even if mathematically possible,

is ill-advised. This is because, practically speaking, data will always have

some level of inaccuracy. Fortunately, useful solutions to such problems can

be found by fitting the data to an appropriate tolerance, as dictated by the

data uncertainty, often while imposing additional stabilizing and/or physical

constraints on the model as described below.

Geophysical inverse problems are commonly ill-posed because the physics

of the associated forward problems are characterized by integral equations

(or in their discretized versions, by approximating Riemann sums) in which

rapid or sharp (in time or space) model variations become highly smoothed

in their influence on predicted data (e.g., Avdeev, 2005). The corresponding

inverse solution will thus conversely exhibit high sensitivity to data noise or

other data perturbations. In linear problems, discretizing such systems into

systems of linear equations (5) can produce G matrices with extremely large

condition numbers. In the case of a rank deficient G, the condition number

will be effectively infinite, since λmin, and perhaps other eigenvalues of GTG

in (16), will be zero.

Rank deficiency and ill-posedness present formidable challenges to inverse

problems. However, if data acquisition and model parameterization are well

designed, their effects can be minimized so that valuable models may still be

recovered in such problems. One key approach to eliminate rank deficiency

and reduce ill-posedness is to impose additional, stabilizing, constraints via

11



regularization (e.g., Farquharson and Oldenburg, 1998; Aster et al., 2018).

A conceptually analogous process, the use of probabilistic model priors, is

utilized in Bayesian inversion (described below).

2.4. Classical and Bayesian Approaches

The above theoretical development for inverse problems, which commonly

incorporates a data set with an associated statistical uncertainty, a determin-

istic forward and inverse problem, and in which a ”preferred” model (or set of

models) is solved for subject to constraints, may be referred to as a classical

perspective (e.g., Tarantola, 1987; Aster et al., 2018). In this viewpoint, the

recovered model m is an estimate of Earth properties that we seek, through

experiment design, data collection, and an inverse methodology. Such models

are described by functions or by discrete parameters.

In the Bayesian philosophy, the model is a probability density function

constrained via the mathematics of the forward problem and is conditioned

to be statistically optimal with respect a priori model constraints or model

priors. Bayesian models are commonly estimated using computationally in-

tensive (e.g., Markov Chaim Monte Carlo) sampling methods and have be-

come extensively utilized in geophysics as computational and data resources

have expanded (e.g., Malinverno and Briggs, 2004; Tarantola, 2005; Roy and

Romanowicz, 2017).

Bayes’ Theorem

q(m|d) =
f(d|m)p(m)

c
(17)

is the fundamental equation of Bayesian inference and Bayesian inverse the-

12



ory, where the constant

c =

∫
all models

f(d|m)p(m) dm . (18)

q(m|d), the posterior distribution, is the probability of a model m, given

a data set d, p(m) is an assigned prior distribution that provides added

statistical constraints to the solution, and f(d|m) is a likelihood function

that calculates the probability of observing the data d given a model m.

In practice, f(d|m) is commonly repeatedly calculated for a range of trial

models using the mathematics of the forward problem to successively sample

the desired posterior probability q for a given data set. If the dimension of

the model space m is large, this sampling must be done cleverly (e.g., using

Metropolis-Hastings Markov Chain Monte Carlo or other such methods) to

efficiently sample q, or the sampling process may become intractable for even

very fast computers. c is a normalizing factor to scale the posterior so that

it is a proper probability density function (i.e., so that it integrates to one

over all models), but calculating its value is often noncritical. A remarkable

and valuable aspect of (17) is that it accommodates linear and nonlinear

likelihood functions with equal facility.

Once a posterior distribution is estimated it can be interrogated to re-

trieve probabilistic statements about the model (e.g., what is the probability

that values within a particular region of a seismic velocity structure lies is

within a specified range or region (e.g., the lithopshere or asthenosphere).

Sometimes, the specific model that maximizes q(m|d); referred to as the

maximum a posteriori or MAP model) is also reported, although appropri-

ate accompanying probabilistic information about the posterior distribution

is required to put it into context.
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A point of mathematical unification between the classical and Bayesian

approaches (which will be utilized in the inversion discussed in Section 4)

occurs for the least-squares solution that minimizes an objective function of

the form

[Gm− d]TC−1D [Gm− d] + [m−mref]
TC−1M [m−mref]) (19)

(e.g., Tarantola, 2005; Aster et al., 2018). Here, mref is a reference model (or

prior, in the corresponding Bayesian problem) with covariance matrix CM

and CD is the data covariance matrix. The first term specifies that the data

be fit in the sense that the 2–norm of C
−1/2
D (Gm − d) will be small. The

second term introduces regularization by specifying that the solution m be

close to mref in the sense that the 2–norm of C
−1/2
M (m−mref) will be small,

where the −1/2 exponents indicate the matrix square roots of the inverse

covariance matrices in (19). The balance between data fit versus adherence

to the regularization condition is controlled by the inverses of the covariance

weighting matrices CD and CM . The least-squares minimizing solution to

the classical minimization problem 19 is identical to the MAP solution for

the corresponding Bayesian problem there the prior distribution mref has an

multivariate (MVN) distribution specified by its mean value and CM , the

data elements are MVN distributed as described by their values and CD.

The solution may be found by solving the least-squares problemC−1/2D G

C
−1/2
M

m =

 C
−1/2
D d

C
−1/2
M mref

 . (20)

and will have a covariance matrix given by

C̃M =
(
GTC−1D G + C−1M

)−1
. (21)
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2.5. Model Uncertainty and Resolution

Both the classical and Bayesian methodologies would at first appear to of-

fer straightforward ways to estimate model uncertainty. In the classical case,

one may propagate a data covariance matrix or a Monte-Carlo set of random

data realizations through the solution methodology to produce confidence

interval and model parameter correlations (the formal or stochastic uncer-

tainty). In the Bayesian case, probabilistic bounds on model features may

be calculated as marginal probabilities of the posterior distribution. How-

ever, for ill-posed or rank deficient problems a larger epistemological issue

commonly arises because of solution nonuniqueness, ill-posedness.

In the classical methodology, nonuniqueness and ill-posedness are ad-

dressed by imposing regularization. The mathematical form of the resulting

solution bias is typically chosen to limit the range of ”good” models to those

with (hopefully) realistic properties. Many regularization approaches have

been explored and applied for such problems, and multiple approaches may

be implemented simultaneously. Example regularization strategies include

penalizing a solution size metric (e.g., defined by the 2–norm (13), or other

sense), its smoothness, minimizing excursion from some reference model (e.g.,

(19)), minimizing the number of allowed discontinuities and their magni-

tudes, imposing model sparsity, specifying non-negativity or other restric-

tions to parameter bounds, or implementing a more coarsely parameterized

model with fewer but better resolved model parameters, a process referred

to as regularization by discretization. However, the solution bias induced by

regularization is difficult to usefully quantify because the true Earth model

is of course unknown and any true model projections in the model null space

15



cannot be constrained by data. In insightful synthetic examples (where the

“true” model is specified) regularization bias can commonly be shown to be

much larger than the stochastic uncertainty.

The effects of regularization bias may be usefully assessed by calculating

and interpreting the model resolution. For a general discretized linear prob-

lem, if we suppose the true model were mtrue, and the associated predicted

data set were dtrue, then the associated forward problem (5) will be the linear

system of equations

dtrue = Gmtrue . (22)

Solving the inverse problem for this data set by applying a suitable inverse

operator, such as the Moore-Penrose pseudoinverse, G†, gives

m† = G†dtrue = G†Gmtrue = Rmtrue . (23)

However, in a rank deficient and/or regularized problem the resolution matrix

R will not be an identity matrix, and m† will thus not generally be equal to

mtrue, even for the “perfect” noise-free data of (22). The resolution matrix,

and (23) thus describes the linear mapping of mtrue to m† for a linear inverse

problem. For any hypothetical Earth model, mtest, we can thus characterize

and assess its noise-free recovery via inversion as

mrecov = Rmtest . (24)

In addition the recovery of the ith model parameter can be evaluated by

considering an impulsive mtest in (24) that consists of all zeros, save a value

of one in the ith element (or equivalently, by examining the ith column of R).

Resolution of the ith model parameter is considered “perfect” if the elements
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of the corresponding resolution matrix column are zeros except for a value of

one in the ith element. However, in limited resolution inversions the recovery

of impulse test models will result in nonzero elements of the model vector

that span multiple parameters, as we will see in the case study for North

America below.

In a nonlinear problem, no such mathematically compact representation

of resolution as (23) exists, but the mapping of a test model to a correspond-

ing recovered model mrecov can be similarly calculated as the operation

mrecov = g−1 (g(mtest)) (25)

where g and g−1 represent vector-valued forward and inverse operators, re-

spectively. For very large nonlinear problems, such as full seismic waveform

adjoint tomography (e.g., Bozdağ et al., 2016; Lloyd et al., 2019), the com-

putational cost of implementing (25) may be very high, and direct resolution

tests of this type may not be practical, although some usable approxima-

tions exist (Fichtner and Trampert, 2011). Similar resolution exercises using

test models and inversions of synthetic data can be performed in a Bayesian

context.

Resolution is typically demonstrated and evaluated in published results

using one or more resolution tests. One approach is to show the recovery of a

test or idealized Earth model using (23 or 25). This may be done for a single

perturbed parameter or a region of parameters (e.g., a representative sub-

surface feature), calculating synthetic data from this test model, sometimes

adding data noise (although a formal calculation of R should be performed

without data noise), and finally recovering a model using the preferred solu-

tion method. The recovery of a test model can provide valuable confirmatory
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insight into critical aspects of feature localization (e.g., the resolvability of a

seismic low velocity zone), amplitude, and other key metrics of a model. A

commonly implemented special case of resolution testing is to use an alter-

nating (e.g., “checkerboard”) test model (e.g., Fishwick, 2010). For suitably

small linear problems, if R is known, this process can be performed using

(24), but for problems with very high dimensional model spaces the full cal-

culation of the resolution matrix may be infeasible. However, instructive

diagonal elements of R can be estimated stochastically in such situations

(MacCarthy et al., 2011).

To Illustrate the concepts of this section with a simple example, we have

included a demonstration example of a very simple gravity inverse problem

in the Appendix to this paper.

3. Imaging and Interpretation of the Lithosphere-Asthenosphere

System Using Inverse Modeling

The ultimate value of an inverse model depends on three critical issues.

First is the method of solution and implications of model resolution and/or

stochastic uncertainty. In essence, this issue reflects how closely the recovered

model may represent the unknown true model. Second, is the (frequent)

post-inversion interpretation or formal mapping of the model with respect to

other physical quantities of interest, which often differ from the model units.

Examples are the mapping of seismic velocity or electrical conductivity to

temperature, composition, and or phase state. This second issue may require

a relatively straightforward mapping or may be approached as a subsequent

inverse problem, in which case it often includes the characteristic challenges
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of ill-posedness and/or non-uniqueness. Third is the model interpretation

in terms of relevant structure, history, and/or processes, which is commonly

approached in the context of hypothesis testing.

3.1. Case Study: Magnetotelluric Inversion of USArray Data in the Western

U.S.

To illustrate the issues above for imaging at the lithospheric scale, we fo-

cus on the western United States where the large-scale EarthScope USArray

initiative has provided a unprecedented density of uniform and high-quality

geophysical observations (e.g., Trabant et al., 2012; Kelbert, 2019). In par-

ticular seismological and magnetotelluric (MT) measurements have been col-

lected on an unparalleled scale and sparked new insights into lithospheric

structure in this region and more broadly (Long et al., 2014). Similar large

geophysical array initiatives have more recently been launched in Australia,

China and, to a lesser extent, in Europe (e.g., Robertson et al., 2016; Li

et al., 2018; Hetényi et al., 2018). This example illuminates the difficulties

in assessing the appropriate level of fit and finding an inversion model that

represents the true Earth reliably.

For our initial demonstration we will focus on the MT inversion. MT is a

passive electromagnetic technique that utilizes the natural time variations of

naturally occurring electromagnetic fields at the surface recover subsurface

resistivity (e.g., Chave and Jones, 2012). Studies that utilize the USArray

MT data include (Patro and Egbert, 2008; Zhdanov et al., 2011; Kelbert

et al., 2012; Meqbel et al., 2014; Bedrosian and Feucht, 2014). While these

studies generally agree on many of the first–order features, they also show

differences (particularly related to the deeper features, where resolution be-
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Figure 2: Topographic map of the northwestern United States. Locations of EarthScope

USArray magnetotelluric (MT) stations used in the MT inversion case study in Section

3 are shown as green circles. Blue stars mark sites evaluated in the northern Basin and

Range (W) and Wyoming Craton (E) provinces in the integrated petrophysical-geophysical

modelling case study of Section 4 (Table 1). Black borders indicate physiographic unit

boundaries.

20



comes more challenging) that reflect different inversion methodology choices.

One of the first questions when inverting geophysical data in practice is

how well we should seek to fit the observations with our models, given that

measurements will unavoidably contain systematic or random errors that

may be difficult to estimate. Data misfit can be usefully summarized by the

root-mean-square (RMS) value, given by the 2–norm of the weighted residual

vector normalized by the number of data points (14)

Φ =

√√√√ 1

m

m∑
i=1

(
di −G(m)i

σi

)2

=

√
1

m
‖rw‖. (26)

Here, di is the ith data point, m is the number of data points, the G(m)i are

the corresponding predicted data produced by the forward problem using a

model of interest m, the σi are uncertainties (usually standard deviations)

associated with each observation, and ‖rw‖ is the 2–norm of 1/σi weighted

residual terms, as modified from (14).

If the σi are standard deviations characterizing normally distributed and

independent data errors, then ‖rw‖2 is distributed as the chi-square distribu-

tion with m−n degrees of freedom, where n is the number of model parame-

ters. For m >> n, the expected value of ‖rw‖2 is m, and the expected value

of Φ under these conditions is one. More generally, the discrepancy principle

(e.g., Aster et al., 2018) specifies that a heuristic data fit target in regular-

ized problems where n > m is to also seek solutions where Φ ≈ 1. Values

much smaller than unity indicate that the average residual term is below the

estimated noise level, i.e., we match the data better than the uncertainty.

For ill-posed problems this is especially inadvisable because the over-fitting

of noisy data will typically result in very large amplitude, wildly oscillating,
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or otherwise unrealistic models. Conversely, Φ values much larger than one

indicate that the mismatch between observations and predicted data is much

larger than the estimated noise and the model does not sufficiently reproduce

the observations. This can occur due to approximate or improper mathemat-

ical forward modeling, underestimation of data errors, and/or high degrees

of regularization. While this strategy provides a simple criterion to judge

the result and a strategy for choosing regularization parameters, in practice

it may be difficult to apply rigorously (e.g., Miensopust, 2017; Aster et al.,

2018), again because data uncertainties σi are often difficult to estimate. For

example, when inverting Bouguer-corrected gravity data, we can estimate

uncorrelated instrument noise well, but it is difficult to assess the effect of

terrain inaccuracies in the Bouguer correction. Similarly, in MT inversion,

rigorous statistical methods are employed to estimate uncertainty bounds

on the data (Chave, 2017). However, the presence of artificial electromag-

netic sources (e.g., electrified livestock fences or other artificial interference),

may produce erroneous data with inappropriately small uncertainty estimates

(e.g., Rao et al., 2014).

Because of these difficulties, we may not be able to achieve an RMS value

near unity for any model or may choose in favor of a more highly regularized

and conservative model. Such a model will not reproduce the data as well

but may also is more likely to contain unwarranted structure.

Figure 3 shows the comparison between data (symbols) and synthetic

data (curves) produced by the forward problem for models with different

RMS levels Φ. As is common practice in MT imaging, we plot apparent re-

sistivity (ρa) and phase (ϕ) of the four impedance elements as a function of
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Figure 3: Comparison between data (symbols) and synthetic predictions (lines) for three

different levels of RMS data misfit: Φ = 1.3 (upper left), Φ = 1.7 (upper right), Φ = 2.4

(lower panels).
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period (T ). Although the data are plotted with error bars, at most periods

the length of the formal error bars is smaller than the size of the data sym-

bols. Furthermore, observed apparent resistivity and phase vary smoothly as

a function of period, which is also suggestive of the high quality of the mea-

surements. The recovered model for Φ = 1.3 reproduces the observations at

this site nearly perfectly, with only a few data points deviating visibly from

the synthetic data predicted by the model. The highest deviations occur at

the smallest and largest periods, which are influenced by the most shallow

and deepest structures in the model, respectively. Such issues can occur

due to paramterization issues, such as when the model cell size is not small

enough (for the short periods) or the model does not extend deep enough (for

the long periods). In this case these points appear to be downward shifted

compared with the trend indicated by the rest of the measurements and thus

the most likely explanation is a systematic shift caused by mild data noise

that was not fully accounted for in the formal error estimate.

Imposing additional regularization to produce a data misfit increase to

Φ = 1.7, we start to see some model deviations. Particularly where the data

change rapidly as a function of frequency, e.g., the xy-component apparent

resistivity at periods between 500-1,000 s, the changes in the synthetic data

are less pronounced. This becomes even more evident when regularization

is further increased so that Φ increases to 2.4 (bottom plot in Figure 3). In

this case, we observe that the synthetic data follow the general shape of the

observations but does not reproduce the finer-scale details.

This kind of behavior is typical for regularized inversions in general and

not a particular property of MT data. Rapid changes of data as a function
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Figure 4: Horizontal slices through MT inversion models for different levels of misfit and

regularization at a depth of 15 km (top row) and 50 km (bottom row). The red line shows

the location of profiles in Figure 5.

of period, time or space are typically caused by abrupt changes in model

properties. Regularization reduces the ill-posedness of the inverse problem,

as explained above, by restricting the spatial variability of the model parame-

ters (smoothness regularization corresponding to minimizing first differences

between adjacent model values is used in this demonstration), or the devia-

tion from a prior model (e.g., Egbert and Kelbert, 2012). This prevents the

appearance of spurious structures due to noisy data, but also limits the abil-

ity of the inversion to fit the observations. Thus, it is necessary to balance

the data fit with the degree of model structure and judging which trade-off

between level of fit and parameter variability is realistic, commonly by ex-

ploring a suite of models that correspond to differing levels of regularization.
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3.1.1. The Trade-off Between Data Fit and Resolution

Figure 4 shows two horizontal slices through the three resistivity models

with different values of Φ, and Figure 5 shows vertical E-W slices along the

red profiles in Figure 4. The basic appearance of all these models is very

similar. This reflects the stabilizing effect of the regularization, in this case,

an imposition of smoothness. Close inspection does reveal some differences,

however. As expected from the preceding discussion, the model with the

lowest Φ value and least regularization displays the strongest resistivity con-

trasts, particularly at the shallowest depths. Moreover, we find a few small

low resistivity features at 15 km depth that are only visible in the model with

lowest value of Φ and any of these features are only associated with individual

measurement sites in that the anomalies only occur in the model cell directly

below a station site. This is an indication that with Φ = 1.3 we are starting

to allow structures that are not necessarily well constrained, i.e., we also fit

aspects of the data that are due to noise. At Φ = 1.7 this effect is reduced

so that most structures extend over larger areas. This trend continues when

Φ increases further to 2.4 and the model correspondingly becomes smoother.

The long-wavelength resistivity image remains similar, but we start to lose

details and the absolute contrasts are further reduced.

Based on trade-off between data fit and model smoothness (imposed by

the level of regularizatoin), a Φ value between 1.3 and 1.7 is inferred to be

optimal for this inversion. Within this range of misfit, the data fit is broadly

within in the expected range based on data uncertainty estimates, the change

of models is small, and interpretations will be consistent.

A more detailed examination of data misfit above and beyond the Φ misfit
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Figure 5: Vertical slices along the red line in Figure 4 for different levels of RMS Φ. From

top to bottom Φ = 1.3,Φ = 1.7,Φ = 2.4.

measure can also be insightful when assessing a regularized inversion. A map

view of misfits (Figure 6) for this problem shows that, for Φ = 1.3, at most

stations the misfit for all four components of impedance is comparable to

the average misfit, i.e., most sites show a misfit between 1.0 and 2.0. There

are a few isolated sites where the misfit exceeds 5.0 in a single component.

However, these are surrounded by sites that are well fit. This suggests that

the high misfit is caused by erroneous data with small error estimates or

highly localized structures. When the overall data fit increases, we see that

not only the average misfit at most sites increases, but also the variability

of the misfit. This is particularly apparent when looking at the maps for

Φ = 2.4 in Figure 6. While many sites still show a misfit comparable with

the average, now a significant number of sites exhibits outlier misfit values
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Figure 6: Maps of data misfit terms in (26) displayed at individual station sites. The

overall misfit levels are Φ = 1.3 (top left), Φ = 1.7 (top right) and Φ = 2.4 (bottom).
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(e.g., larger than 5). Furthermore, we observe clusters of sites that show

spatially correlated high misfits. This further suggests that there are larger-

scale features of the true resistivity structure that are inadequately reflected

in the model. This impression is also confirmed by the plots of misfit as a

function of period and site number in Figure 7.

At the two smaller Φ value models, data with high misfit typically occurs

in spatial isolation and neighbouring data show low misfit values. In contrast,

for the highest (Φ = 2.4) misfit model, we observe broad regions of misfit both

along the period axis and the stations axis, i.e., we note several sites that have

significant misfit across all periods and certain period bands are not well fit

for many sites. Clustering of data points with high misfit in the spatial and

period domains is an indicator of model over-regularization. In such cases,

it is still necessary to closely inspect the data for possible systematic error

issues. For example, in MT the period band between 1-10 s, the so-called

dead band, tends to be noisier then other periods due to low signal levels

(e.g., Chave and Jones, 2012) and disturbances from artificial noise sources

can affect clusters of measurement points even over relatively large distances

(e.g., Evans et al., 2011) and lead to regionally spurious data. While plots

of misfit for each measurement sites as shown in Figure 6 can be utilized

for most geophysical methods, the more detailed view provided by Figure 7

is method specific. For seismic tomography a suitable alternative is to plot

travel-time or phase discrepancies for each ray-path (e.g., Fichtner et al.,

2009), for example. In any case, a comprehensive look at the discrepancy

between observations and model predictions is necessary to assess the quality

of the model.
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Figure 7: Misfit as a function of station number and period for the individual components

of the impedance tensor. The overall data misfit levels are Φ = 1.3 (top left), Φ = 1.7

(top right) and Φ = 2.4 (bottom) as described above.
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Figure 8: Horizontal slices through the model at 15 km (top) and 50 km (bottom) for

different amounts of sites from 50% coverage to full coverage with all available sites (100%).

We show sites that were used in the inversion as dots in the lower panel.

The preceding considerations are part of the canon of standard methods

used to assess geophysical inversion results and to assess optimal regulariza-

tion levels, and thus can be found, to varying degree, in well-characterized

and fully assessed inversion asessments (e.g., MacCarthy et al., 2011; Rao

et al., 2014; Ben Mansour et al., 2018). A densely sampled Φ versus model

“roughness” curve encompassing many models is commonly examined in such

studies to estimate a preferred model with optimal trade-off between data

misfit and regularization (e.g., Aster et al., 2018).
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3.1.2. Data Coverage and Model Discretization

A feature that sets USArray apart from many other geophysical data

sets at the continental scale is that it encompassed quasi-regularly spaced

uniform high-quality stations virtually across the entire conterminous U.S.

In contrast, many geophysical field campaigns at large scale have relatively

uneven station coverage due to diverse practical challenges (e.g., Evans et al.,

2011; Dong et al., 2016; Moorkamp et al., 2019). Here, we show the effects

of uneven data coverage on the inversion results for the MT problem. While

the general analysis above on noise levels, data fit, regularization, and model

assessment above is largely independent of the geophysical method, the fol-

lowing discussion is more method specific. MT is an inductive method and

as such each measurement site is sensitive to resistivity variations within a

sensitivity kernel where model sensitivity to a particular measurement gen-

erally decreases with distance from the acquisition site. Therefore, removing

one or two stations from a region will alter the inversion model and its res-

olution, and such a perturbation to the model will generally be lesser for

deep or generally more distant model features. When MT data are collected

from a spatially well sampled array, “deep” will be approximately on the

order of the station separation. Surface wave tomography, gravity, and mag-

netic inversions, although based on different physics, are similar in having

spatially broad sensitivity kernels. Ray theoretical seismic tomography, as

a counterexample, has more restrictive (e.g., along-ray-path) sensitivity ker-

nels and may thus show qualitatively different model sensitivities to changes

in station geometry.

To assess the effects of variable station density on the USArray MT in-
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Figure 9: Vertical slices along the red line in Figure 8 for 100% coverage (top), 75%

coverage (middle) and 50% coverage (bottom).

version, we consider two decimated data sets from the full set of USArray

data: one where we randomly remove 25% of the sites, and one where we

remove a further 25%, resulting in a net station reduction of 50%. Figure 8

shows the locations of the selected stations for each of these data sets (bot-

tom panel). We invert each of these data sets and Φ = 1.7 to make the

inversions comparable in terms of data fit.

We show a comparison of the resulting models in Figures 8 and 9. At first

glance the results look surprisingly similar for the three station density levels.

However, on closer inspection we can identify some significant differences,

particularly in the horizontal slices and at shallow depth (15 km). We will

discuss three areas in particular (marked A, B and C in Figure 8): At 15 km

depth we observe several small conductive structures in region A with 50%
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site coverage. These become less pronounced at 75% and disappear virtually

completely when we use all sites in the inversion. Comparing the locations

of sites included in the inversion, we can see that these features are located

near isolated stations and thus primarily included to fit the data at these

sites without further constraints.

Region B exhibits one of the biggest gaps in site coverage at 50%. There,

the situation is reversed compared to region A. With full site coverage we ob-

serve a significant conductor with some internal heterogeneity. At lower sites

coverage this conductor starts to fade, the resistivity in the region increases,

and internal details are lost. Still, we can identify it as a region of enhanced

conductivity compared to the surrounding regions. At a depth of 50 km,

region C is another area were site coverage changes drastically. Despite this,

the changes in the models are relatively small. Close inspection reveals some

differences in the absolute value of resistivity and the location of boundaries

of more resistive structures, but the differences are surprisingly small given

that we incorporate date within a radius of more than 100 km.

The vertical slices (Figure 9) along the red transect in Figure 10 also

show illustrative differences. Towards the western end of the profile, struc-

tures are very similar, and there only appears to be some minor difference

in the thickness of the crustal conductor. The region E, though does show

more pronounced differences. With full coverage (top panel in Figure 9), we

can see a disruption of the crustal conductor and that the eastern limb of

the conductor submerges below the western limb, as may be the signature

of a major crustal fault. This part of the transect coincides with the eastern

limit of Snake River Plain and the transition into the Middle Rocky Moun-
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Figure 10: Horizontal slices through the inversion models at depths of 15 km (top) and

50 km (bottom) for two different types of horizontal discretization. The left-hand side uses

horizontal cell sizes of 15 km as in the example above, the right-hand side is an inversion

with horizontal cell sizes of 30 km.
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tains geologic province where strong changes in crustal velocity and density

have been observed (DeNosaquo et al., 2009; Yuan et al., 2010). When the

station density is reduced (middle and bottom panels), we can still see a

trace of the feature, but the geometry seems to be reversed. For both 75%

and 50% coverage the eastern limb is now located above the western limb.

In the inversion with full station density we have a collection of sites with

inter-station distances that are significantly smaller than average. All of

these sites are missing in the randomly reduced coverage inversions. For a

more complete assessment of the situation we would need to perform reso-

lution tests (e.g., by using idealized faulty resistivity structures, generating

synthetic data, and then inverting under identical assumptions) to validate

which aspects of the data are sensitive to the geometry of the feature. Still,

from these results we can see that with reduced coverage we can still identify

many of the significant features, but with decreased coverage the resolution

becomes too low to make detailed interpretations of geometric relationships.

Note that this station decimation perturbation is depth-dependent and the

shallower regions of the model are more affected than the deeper ones, since

deeper features of the model are constrained by data at multiple stations in

all cases.

We will next discuss relevant effects of model discretization, in this case

the dimensions of the cells used to parameterize our model. In our MT mod-

eling and inversion algorithm we partition the subsurface resistivity into con-

stant resistivity rectangular prisms of fixed sizes. While not the only option,

this block model parameterization is widely used in geophysical modeling

(e.g., Podvin and Lecomte, 1991; Egbert and Kelbert, 2012; Kolawole et al.,
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Figure 11: Vertical slices through the inversion model along the red lines in Figure 10 with

a horizontal discretization of 15 km (top) and 30 km (bottom).

2017). Changing the block sizes has two effects: i) Larger prisms will stabilize

the inversion procedure but will reduce resolution and hence our ability to

potentially resolve fine-scale structure. This is the process of regularization

by discretization introduced in Section 2.5. ii) More subtly, forward model-

ing accuracy may become adversely affected by large cell sizes (Podvin and

Lecomte, 1991; Avdeev, 2005). Our discretization for the previous inversions

(15 km horizontal and 1-20 km vertical, increasing with depth) was chosen

to satisfy i) and ii) and also ensure computational feasibility. We now double

the horizontal discretization to 30 km. This leaves only 1-2 cells between the

measurement sites and pushes the forward modeling algorithm beyond what

is recommend for accurate results. The resulting inversion models and the

comparison with the finer discretization are shown in Figures 10 and 11.

Interestingly we can fit the observations to the same level of misfit as

before. Comparing the models, the first observation is that conductivity

contrasts are strongly enhanced with the coarser discretization; with bigger

cellsm conductors tend to be more conductive and resistors more resistive
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than with smaller cells. There are also notable differences in the geome-

tries of these structures and particularly at 15 km the model with a coarse

discretization has blocky artefacts. Still, at depth the general qualitative

conclusions, i.e., the location of conductors without regard for their absolute

conductivity, is similar in both models. For vertical slices (Figure 11), the

blocky appearance of the coarsely discretized model is even more apparent.

Although we are using all of the stations in the inversion, the crustal scale

feature E, discussed above, cannot be identified in the coarse discretization.

Instead, the model suggests an abrupt change in the thickness of the crustal

conductor. Here, we clearly reach the limit of what can be resolved with such

large prisms and the algorithm replaces the fine scale changes with something

that produces an approximately equivalent synthetic response that obscures

the nature of the feature.

Meqbel et al. (2014) performed similar experiments with the same data

set but using a somewhat different inversion algorithm (shown in their sup-

plementary material) and the results are also briefly discussed in Miensopust

(2017). They report some similar observations, e.g., increased conductivity

contrast, but cannot fit the data as well with the coarse mesh. This is likely

due to problems with near surface structures that cannot be accommodated

in their inversion but their effect is accounted for in our approach (Avdeeva

et al., 2015). This also explains why our results are relatively similar at

depth, while Meqbel et al. (2014) see some significant differences. This ex-

ample illustrates the complex resolution interactions that can occur between

structures in different parts of the model in inverse problems.

The above experiments have highlighted some issues when performing
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three-dimensional inversions of geophysical data for lithospheric structure

due to data uncertainty, ill-posedness and imperfect resolution, and station

density. Still, with reasonable resolution and assessment of data fit versus

model smoothing, most of the first-order structures are stable and we have

confidence that they are required by the data and reflect the true Earth

structure, albeit with limited resolution. Of course, in many cases we want

to move from qualitative comparisons to quantitative statements, particularly

when inferring quantities of geological interest such as composition or melt

fraction. The following section provides an example on how this critical

interpretation step may be approached in a joint inversion context.

4. Geophysical Inversions for Physical State

Initial results from geophysical inversion studies are commonly presented

as collections of relevant physical parameters (e.g., seismic velocities, elec-

trical conductivity, density) describing properties of the Earth’s interior.

These parameters are typically subsequently used to make inferences about

the physical/thermodynamic state of the Earth (e.g., temperature, pressure,

composition) (e.g., Jones et al., 2013). This conversion, however, is never

straightforward and requires the formal definition of at least two functional

relationships.

The first such relationship is that between the data and the set of gov-

erning physical parameters, i.e., the forward problem operator as introduced

in Section 2. An important example is the relationship between travel times

and seismic velocity structure. In this case, the forward model often incorpo-

rates approximations to the full wave propagation physics (e.g., ray theory
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assumptions), which may introduce resolution or other artifacts in the results.

The second level of functional relationship is between the set of governing

physical parameters (e.g., seismic velocity) and specific physical properties of

interest that may include composition, pressure, water content, and temper-

ature. Since this set of fundamental parameters (e.g., temperature) controls

the second set of governing physical parameters (e.g., seismic velocity), they

are sometimes referred to as the primary and secondary parameters, respec-

tively (e.g., Khan et al., 2011; Afonso et al., 2016a; Fullea, 2017). Such

relationships are often multi-valued or ill-posed in regions of the parame-

ter space, thus introducing non-uniqueness and/or noise sensitivity issues.

An example is the relationship between seismic travel time observations and

elevated temperature and/or partial melt conditions, both of which reduce

seismic velocity.

The combined inverse problem described above introduces additional com-

plexity (e.g., the thermodynamic relationship between temperature, pressure,

composition and bulk rock seismic velocities) to the net primary-secondary

forward operator that now links primary parameters with data. As with

many inverse problems, the associated operator g is typically rank deficient,

reflecting a nontrivial model null space, and/or ill-posed, indicative of strong

model sensitivity to data noise. As elaborated earlier, a solution to these

challenges is to incorporate regularization, resolution analysis and testing,

and sometimes a strategic choice of parameterization that is particularly rel-

evant to a hypothesis test or other goal.
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4.1. Integrated Geophysical-Petrological Joint Inversion

Integrated geophysical-petrological approaches utilize a self-consistent frame-

work where jointly estimated secondary parameters of differing types, such as

seismic velocities (e.g., Khan et al., 2011), density (e.g., Fullea et al., 2015)

or electrical conductivity (e.g., Vozar et al., 2014) are linked by the com-

mon subsurface thermochemical conditions via thermodynamic and mineral

physics considerations (e.g., Connolly, 2005; Kuskov et al., 2014). Therefore,

integrated approaches, both based on forward modelling (e.g., Afonso et al.,

2008; Fullea et al., 2009, 2011, 2012) and inversion (e.g., Khan et al., 2006,

2009; Afonso et al., 2013a,b, 2016b), estimate primary parameters such as

temperature, bulk composition, water and melt directly from geophysical ob-

servations. Here, we briefly summarize and demonstrate via an illustrative

lithosphere-scale example the main components in the integrated geophysical-

petrological approach. This example includes the basic characterization

(e.g., the lithosphere-asthenosphere boundary and mantle geotherm) and

the petrological and the mineralogical components (e.g., the thermodynamic

framework and mineral physics) of the ensemble primary parameter inverse

problem.

4.2. The Lithosphere-Asthenosphere Boundary and Mantle Geotherm

The lithosphere-asthenosphere boundary (LAB) defines the lithosphere in

terms of its dynamics (rigid outermost lid/plate) and temperature (conduc-

tive Vs convective heat transport). Lithosphere and LAB characterizations

have been widely presented as inferred from secondary physical parameters,

including seismic velocities, seismic and electrical anisotropy, and electrical

resistivity (e.g., Eaton et al., 2009). A common approach is to consider the
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magnitude and vertical gradient of Vs as a proxy for the LAB (e.g., Rychert

and Shearer, 2009) although there is no straightforward mapping between

seismic parameters and temperature and viscosity given heterogeneous sili-

cate petrology, grain size, the effects of H2O, and other complexities (e.g.,

O’Donnell et al., 2017). Furthermore, the best choice(s) of the appropri-

ate threshold seismic velocity or gradient for estimating the transition depth

from mantle lid to asthenosphere, remain controversial (e.g., Bartzsch et al.,

2011). Likewise, the strong electrical conductivity change commonly associ-

ated with the LAB could be influenced by multiple factors, i.e., partial melt

and/or the presence of relatively small amounts of H2O (e.g., Karato, 2012;

Schmerr, 2012). Seismic receiver function studies show a relatively clear

velocity contrast at the LAB for thinner continental crust or oceans (e.g.,

Rychert et al., 2005; Kawakatsu et al., 2009; Hansen et al., 2015) but the

signal is less clear in thick, cratonic terranes (e.g., Eaton et al., 2009; Kind

et al., 2012; Foster et al., 2014). Based on the geotherm, the lithosphere

can be defined as the portion of the upper mantle where heat conduction

is dominant, so that the base of the lithosphere would correspond to the

depth of a prescribed isotherm, usually in the range 1250-1330◦C. Below

such isotherm the low mantle viscosity permits convective processes and vig-

orous mantle stirring. Hence, the sublithospheric geotherm is customarily

described by an adiabatic gradient, generally assumed to be in the range

0.35-0.6◦ C/km. In this conception, the (thermal) LAB can in principle

be described by the intercept of a conductive geotherm and the adiabatic

geotherm (e.g., Priestley and McKenzie, 2006). An alternative description is

to define a thermal buffer/transitional layer connecting the convective and
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adiabatic domains where heat transfer is controlled by both conduction and

convection mechanisms(Afonso et al., 2008; Fullea et al., 2009). The bound-

ary of the mechanical lithosphere or stagnant lid will be in the vicinity of

the thermally defined lithosphere but its location will be dictated by both

pressure (depth) and by minor mantle components that influence viscosity.

4.3. Thermodynamic Framework and Mineral Physics

Earth’s mantle compositional space is usually defined within the ma-

jor oxide system CaO-FeO-MgO-Al2O3-SiO2 (CFMAS) or Na2O-CaO-FeO-

MgO-Al2O3-SiO2 (NCFMAS). The NCFMAS system accounts for >98 wt.

% of the crust and mantle and is thus considered to be an excellent starting

basis for modeling mineral phase assemblages. The NCFMAS space can be

treated as six independent variables specifying the weight proportion of each

of the major oxides) (e.g., Afonso et al., 2008; Fullea et al., 2015) or as a

single-parameter basalt-harzburgite mixture with either a chemically equili-

brated bulk composition (e.g., Khan 2016) or as a mechanical mixture of the

basaltic and harzburgitic end-members (Xu et al., 2008). Other authors have

shown that the number of independent oxides in geophysical applications can

be effectively reduced to one or two (e.g., Afonso et al., 2013a).

From a chemical standpoint, the lithospheric mantle is thought to be pri-

marily peridotitic, with olivine being the volumetrically dominant mineral

phase (>40%). Mantle peridotite composition is generally characterized ac-

cording to fertility, i.e., enrichment in the basaltic component that relates

to melt extraction. The more refractory or infertile the peridotite, the more

the SiO2-, CaO- and Al2O3-enriched melt phase has been extracted, leav-

ing an MgO-enriched solid residue. A commonly used fertility index is the
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magnesium number (Mg#=MgO/(MgO+FeO)). The Mg# of a perdotite in-

creases almost linearly with the amount of melt extraction (e.g., Herzberg,

2004). The sub-lithospheric mantle is thought to be more fertile than the

lithospheric mantle (where greater melt extraction has generally occurred).

Under the assumption of thermodynamic equilibrium (T > 500◦C) sta-

ble mantle mineral assemblages can be determined using a Gibbs free energy

minimization approach (e.g., Connolly, 2005, 2009) using thermodynamically

self-consistent databases (e.g., Stixrude and Lithgow-Bertelloni, 2005, 2011;

Ricard et al., 2005; Matas et al., 2007; Piazzoni et al., 2007), and bulk sec-

ondary physical parameters can be estimated using constituent elastic mod-

uli, electrical conductivity and density of the stable end-member minerals

(e.g., Connolly and Kerrick, 2002; Afonso et al., 2008; Fullea et al., 2011). In

the case of seismic velocities, partial melt and anelasticity effects are highly

relevant, especially at high temperatures (e.g., Karato, 1993; Sobolev et al.,

1996; Goes et al., 2000; Cammarano et al., 2003). Recent laboratory studies

detect a decrease in shear wave velocity (Vs) and shear wave attenuation (Qs)

of up to 50% and an order of magnitude, respectively, for a melt fraction of

4% (Chantel et al., 2016). Furthermore, experimental studies suggest a pro-

gressive, Vs-decreasing effect of anelasticity below the solidus temperature

(e.g., Yamauchi and Takei, 2016; Takei, 2017). Water plays a major role in

the electrical conductivity of minerals through proton conduction from differ-

ent chemical species within the crystal lattice and at grain boundaries (c.f.,

Fullea, 2017, and references therein). In spite of controversial experimen-

tal results (e.g., Karato and Dai, 2009; Yoshino, 2010) there is a consensus

in that water considerably increases electrical conductivity of nominally an-
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hydrous minerals. A further factor that can potentially enhance electrical

conductivity of upper mantle minerals is interconnected melt (e.g., Gaillard,

2004; Tyburczy and Waff, 1983; Ni et al., 2011; Miller et al., 2015). Overall,

the effective conductivity of a partially molten rock depends on the melt frac-

tion and the conductivities of the bulk rock and melt, with different mixing

rules connecting the bulk rock and the melt being proposed in the literature

(e.g., Waff, 1974; Glover, 2010; Laumonier et al., 2017).

4.4. Case Study: The Physical State of the Wyoming Craton and Northern

Basin and Range, North America

We illustrate some of the issues related to integrated geophysical-petrological

modelling of the lithospheric structure. For the sake of simplicity, we will

restrict the input data here to fundamental mode Rayleigh and Love seismic

surface waves), topography and heat flow, i.e., data that can be usefully mod-

elled following a 1-D approach. Surface wave phase velocity dispersion curves

are sensitive to vertical seismic velocitie profiles (Vp, Vs), density and seismic

attenuation (Q). The surface elevation, under the local isostasy assumption,

depends on the vertically integrated crustal and lithospheric mantle densities,

whereas surface heat flow depends on the crustal structure (radiogenic pro-

duction, thermal conductivity, thickness) and thermal lithospheric thickness

(c.f., Afonso et al., 2008; Fullea et al., 2009).

Our data include phase-velocity dispersion curves from global surface

phase-velocity maps estimate by the Automated Multimode Inversion (AMI)

(Lebedev et al., 2005) of seismic waveforms. AMI incorporates earthquake

recordings from 6242 stations (including EarthScope USArray) and 25496

events worldwide (Schaeffer and Lebedev, 2013; Celli, 2020). Fundamental
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mode phase velocities are inverted for maps at 98 different periods in the

10-460 s range, with a logarithmic sample-interval increase, and accounting

for azimuthal anisotropy. The lateral resolution averages 225 km over a

triangular grid. Data redundancy is exploited via a posteriori outlier rejection

to reduce the impacts of measurements errors on the phase-velocity maps.

The relative uncertainties estimated for the phase velocities are 0.3 % for

periods < 20 s, 0.2% for periods 20-50 s, 0.2-0.5% for periods 50-200 s, and

0.5% for periods > 200 s.

Seismic attenuation is included as a posteriori correction to anharmonic

velocities computed using thermodynamic arguments (e.g., Minster and An-

derson, 1981; Karato, 1993; Fullea et al., 2012) using

Vp = Vp0(T, P )

[
1−

(
2

9

)
cot
(πα

2

)
Q−1s

]
(27a)

Vs = Vs0(T, P )

[
1−

(
1

2

)
cot
(πα

2

)
Q−1s

]
(27b)

Q−1s = A

[
T0 d

−1 exp

(
−E + V P

RT

)]α
(28)

Q−1p = (4/9)Q−1s (29)

and assuming an infinite quality factor for the bulk modulus, i.e., Q−1K → 0.

VP0 and VS0 are the unrelaxed high frequency anharmonic velocities at a given

temperature (T ) and pressure (P ) and bulk composition. A =750 s−α µmα

for the empirically-determined exponent α = 0.26 (Jackson et al., 2002), R

is the universal gas constant, d is the grain size, E is the activation energy,

V the activation volume, and T0 is a reference period. To minimize the im-

pact of uncertainties in Qs on the Vs vs. phase velocity relationship, our

seismic velocity profiles have a reference period (50 s) that is in the middle
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of the frequency range used in this study (Liu et al., 1976; Lebedev and Van

Der Hilst, 2008). Mantle grain size is controlled by the trade-off between

crystal growth (increased d) and recrystallization (decreased d) and remains

substantially uncertain. Measurements of d from mantle xenoliths are in

the range 3-10 mm (e.g., Karato, 2008) but may be affected by deforma-

tion during the exhumation process. The effects of melt on seismic velocities

and Q are computed according to the experimental model of Chantel et al.

(2016) and Hammond and Humphreys (2000). The mantle melt fraction rep-

resents a typical example of a parameter that contributes to the inversion

ill-posedness as characterized earlier in this paper. Small changes in melt

fraction produce a large effect on seismic velocities and attenuation, and,

therefore, on predicted surface wave phase velocities to be matched against

data during the modeling procedure. Furthermore, available laboratory re-

sults measuring melt effects on seismic velocities differ, and this contributes

to the uncertainties in the output parameters. To mitigate ill-posedness here,

we include a near-solidus pre-melt contribution (e.g., Yamauchi and Takei,

2016; Takei, 2017) to linearly smooth out the effect of melt on attenuation

over a temperature range in the neighborhood of the solidus (Bonadio et al.,

2018). We assume that the mantle peridotitic dry solidus and liquidus from

Katz et al. (2003) and references therein to estimate melt fraction. In this

way we do not explicitly include melt fraction as an inversion parameter but

implicitly account for it through the mantle geotherm and solidus curve.

We use two illustrative locations from differing tectonic provinces: the

Wyoming craton (WC) and the North Basin and Range terrain (NBR) (Fig-

ure 2). The average topography, surface heat flow and Moho depth data are
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Column Elevation Surface heat flow Moho depth

Wyoming craton (WC) 1.9±0.2 km 60±15 mW/m2 43.4±4.4 km

North Basin and Range (NBR) 1.4±0.1 km 70±10 mW/m2 31.2±4.6 km

Table 1: Data and prior Moho depth with uncertainties for the integrated geophysical-

petrological inversion case study. For locations corresponding to the two columns see the

two blue stars in Figure 2

listed in Table 1. The Moho depths are taken from the global CRUST1.0

model (Laske et al., 2013) with uncertainties estimated by Szwillus et al.

(2019) based on geostatistical interpolation of controlled source seismic data

from the U.S. Geological Survey [USGS] Global Seismic Catalog [GSC] database

(Mooney, 2015). In Fig. 12 we show the Rayleigh and Love surface wave

phase velocity data used in this study. Synthetic phase velocity dispersion

curves are computed using a version of the MINEOS code (Masters et al.,

2011) assuming the ak135 reference model for depths > 400 km (Kennett

et al., 1995).

We define our model space in terms of primary parameters: tempera-

ture and composition of the lithosphere and upper mantle. Our fundamental

variable is the thickness of the lithosphere, ZLAB, here defined as the 1300◦C

isotherm, and also as the chemical boundary between the lithosphere and the

underlying sublithosphere. The temperature within the lithosphere is esti-

mated by solving the 1-D heat conduction steady state equation in a model

domain defined by the fixed temperature boundary conditions at the surface

topography and the LAB depth (Fullea et al., 2012). The inclusion of the

heat conduction equation imposes an additional level of (physical) regular-

ization in our inversion regarding the seismic velocity gradient with depth.
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Figure 12: Rayligh (top) and Love (bottom) surface wave dispersion phase velocity curves

used as input data in the inversion for physical state in this study. Left and right plots

correspond to lithospheric columns WC and NBR respectively (Table 1; Figure 2).
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Below the lithosphere we invert for a thermal buffer of variable thickness

(<50 km) transitioning the thermal lithosphere to the adiabatic (convec-

tive) mantle. The adiabatic mantle is parameterized by the temperature at

three equally spaced depths from the base of the thermal buffer (assumed to

be Tbuff = 1400◦C) to the top of the transition zone at 400 km. Sublitho-

spheric temperatures are vertically regularized depending on the lithosphere

and thermal buffer thickness by constraining the excursion from a reference

adiabatic gradient of 0.5◦ C/km (only departures ≤100◦C are allowed). The

chemical parameter space is defined in terms of the bulk amount of Al2O3 in

two domains of lithosphere and sublithosphere. CaO-MgO major oxides are

assumed to be correlated to Al2O3 based on global petrological data bases

(Afonso et al., 2013a, and references therein), using

MgO = 49.369− 4.106 · Al2O3 + 0.3438 · (Al2O3)
2 (30)

CaO = −0.164 + 0.90 · Al2O3 (31)

and FeO is fixed (Table 2). We also invert for: i) crustal structure as three

layers of variable thickness defined by Vs and density; and ii) radial crustal

anisotropy at 56, 80, 110, 150, 200, 260, 330, and 400 km depth within the

mantle. The Moho depth is allowed to depart from the reference/prior value

from CRUST1.0 within the uncertainties estimated by Szwillus et al. (2019).

Crustal P-wave velocities are computed from the Vs using fixed Poisson ratios

(or equivalently, Vp/Vs) (Table 2). Radial anisotropy is here defined as:

φ =
Vsh − Vsv

Vs
(32)

where

Vs =
2Vsv + Vsh

3
(33)
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Fixed parameter value

Thermal conductivity crust 2.2/2.5/2.1 W/(m ◦K)∗

Vp/Vs 1.75/1.75/1.81∗

Crustal radiogenic production 0.9 µW/m2

Mantle radiogenic production 0.01 µW/m2

FeO lithosphere 8.1 wt%

FeO sublithosphere 8.05 wt%

LAB temperature 1300◦C

Table 2: Fixed parameters in the geophysical-petrological inversion case study. ∗Values

separated by “/” correspond to the upper/mid/lower crustal layers.

and Vsv, Vsh and Vs are the are velocities of the vertically and horizontally

polarized S waves respectively, and Vs is the Voigt isotropic average (Vp is

assumed to be isotropic). Anisotropy represents an example of ill-posedness

in our forward problem since stratified models alternating strongly positive

and negative anisotropic layering often can fit the data essentially as well

as more physically realistic smooth varying models. We therefore regularize

the problem by minimizing the solution 2–norm difference with respect to a

smooth isotropic reference model in the objective function.

The inversion is framed into a non-linear least squares problem and thus

lies within the field of the classical deterministic inversion perspective as

defined in Section 2. We minimize an objective function that is a nonlinear

generalization of (19)

[g(m)− d]TC−1D [g(m)− d] + [m−mref]
TC−1M [m−mref]) (34)

where g(m) is the nonlinear forward model operator that implements the in-

51



tegrated geophysical-petrological modelling approach described above. The

left-hand term in (34) is a quadratic form corresponding to the square of

the weighted data misfit 2–norm that takes into account data uncertainties.

C−1D and C−1M are inverse observational and model covariance matrices respec-

tively, here assumed to be diagonal. The right-hand quadratic form term in

(34) regularizes the problem. C−1M is a diagonal matrix of squared weighting

factors for the respective elements of the reference (and regularizing) model

vector, mref, where the magnitudes of the diagonal elements in C−1M control

the manner in which the weighted model 2–norm C−12M (m−mref) is small. d

is the data vector containing the surface elevation, heat flow, and observed

phase velocity dispersion curves for Rayleigh and Love waves measured at 73

periods between 20 and 350 s. For the crustal parameters (velocity, density,

thickness), radial anisotropy, lithospheric thickness and mantle composition

the regularization term is explicit. In addition, there is an implicit reg-

ularization in the way the geotherm is modelled: thermal steady state in

the lithosphere (heat conduction domain) and adiabatic gradient(s) in the

sublithosphere (heat convection domain). Finally, the linearized pre-melt

anelastic parametrization in the vicinity of the solidus described above adds

further smoothing to the solution. The nonlinear system of equations is

iterative solved using the Levenberg-Marquardt approach.

In the absence of regularization, it is common in solving ill-posed prob-

lems to encounter model parameters that are nonphysical and outside of the

domain of the joint geophysical-petrological forward problem solver. Our

parameter space is heterogeneous in that it includes composition, tempera-

ture, thickness, seismic velocities, and density. This raises the characteristic
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joint inversion problem of choosing the most suitable CM coefficients in the

regularization term for the differing data types.

Finding an optimal balance between data fit and regularization/resolution

can be a complex task that will vary from study to study depending on the

noise characteristics, model parameterization, and the regularization condi-

tions. Here, we adopt a trade-off curve strategy where we begin from a high

level of homogeneous regularization in the iterative nonlinear inversion (i.e.,

constant and high value CM coefficients) and progressively reduce it for the

different parameter types guided by the value of m−mref after each inversion.

For instance, if for a given post-inversion parameter the associated element

of m −mref is greatly increased as a result of reducing its CM (parameter

variance) coefficient, in the next iteration the regularization coefficient for

that term is re-scaled and kept constant thereafter. For each inversion run

defined by a set of CM coefficients we then calculate the 2–norm of weighted

data misfit (i.e. left hand term in (34)) and the solution distance to the

reference model (the 2–norm of m−mref (i.e. right hand term in (34)). The

preferred models were selected based on a criterion of jointly minimizing both

the data misfit and the distance to the reference model so that the values of

the two quadratic terms in (34) for the preferred solution fall in the knee of

the trade-off curve between the two.

Inversion results are shown in Figures 13 and 14. The lithospheric thick-

nesses under WC and NBR columns are 145-160 km and 65-67 km respec-

tively. The Moho depth is less than CRUST1.0 in WC (39.3-40.7 km) and is

greater in NBR (32.3-34.8 km).The lithospheric mantle composition is found

to be relatively fertile in the two columns, and slightly more so in NBR
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(Mg# =89.26-89.65) compared to WC (Mg# =89.54-89.79). The sublitho-

spheric mantle composition departs little from the reference model. Radial

anisotropy is negative or slightly positive in the crust and strongly positive

in the first 100 km of the mantle both in WC and NBR columns (Figs. 13

and 14). Below 100 km there is zone of negative anisotropy (Vsv > Vsh;

(32)) that in the case of WC overlaps with the lowermost lithospheric mantle

and lithosphere-asthenosphere thermal boundary to about 200 km depth. In

NBR the zone of negative anisotropy is entirely within the sublithosphere

and extends down to 150-170 km depth. Below the negative anisotropy zone

there is again another region of mildly positive anisotropy that tends to zero

at the mantle transition zone (410 km).

Anelasticity has an important influence on these inversions, especially

at high temperatures and in the vicinity of the thermal LAB. To explore

uncertainties associated with attenuation modelling we considered a compre-

hensive range of values for the main physical parameters based on different

laboratory experiments and geophysical models (e.g., Faul and Jackson, 2005;

Jackson and Faul, 2010; Fullea et al., 2012; Priestley and McKenzie, 2013):

403-440 kJ/mol, 7.8-20 cm3/mol, and 1-30 mm for activation energy (E)

and volume (V ), and grain size (d), respectively, as described in (28). Tak-

ing the predicted attenuation values as a criterion we group the models into

three general categories: high, low, and reference attenuation (Figures 13

and 14). High attenuation models are characterized by small grain size and

low activation energy and volume; low attenuation models are defined by

large grain size and high activation energy and volume; we term as reference

models those that are in between the high and low attenuation end mem-
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ber models, and that show values comparable to other seismically derived

radial attenuation models, e.g., QL6 (Durek and Ekström, 1996), QR19 (Ro-

manowicz, 1995) or QMU3b (Selby and Woodhouse, 2002). The inversion

results show that the group of reference and low attenuation models tend

to predict consistent lithospheric/upper mantle models that match the con-

straining geophysical data in the inversion. High attenuation end member

models, on the other hand, predict comparatively different models (in terms

of lithospheric thicknesses in the case of WC, sublithospheric temperatures

and anisotropy in the two cases) that show significantly higher data misfits

(Figures 13 and 14). In particular, high shear wave attenuation and its effect

on Vs cannot be compensated by changes in other model parameters in our

joint inversion approach (i.e., conductive and adiabatic geotherms, thermo-

dynamically constrained seismic velocities, and densities). In the case of the

NBR column Vs experience a sharp drop in the vicinity of the LAB (Fig-

ure 14). This is due to lithospheric geotherm crossing or approaching the

(dry) solidus, with associated melt or pre-melt shear-wave anelasticity.

Several experimental studies have estimated the anelastic effect of melt

on seismic velocities (Hammond and Humphreys, 2000) and Qs (Chantel

et al., 2016). The geometry of interstitial melt is uncertain, and alternative

models have been proposed, ranging from triple junction tubular structures

to randomly-oriented ellipsoidal melt inclusion model or organized cuspate

films (e.g., Hammond and Humphreys, 2000, and references therein). In

Fig. 15 we show inversion results for differing melt anelastic laboratory-

based parameterizations and melt geometries. For comparison purposes we

also plot an inversion with no melt-related anelasticity. The inverted thermal
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Figure 13: Results of the inversion for physical state in column WC (Table 1). Top

row, from left to right: Geotherm, shear wave isotropic velocity, density, and magnesium

number. Bottom row, left: radial anisotropy and attenuation. Bottom row, right: residuals

(calculated minus observed) for Rayleigh and Love dispersion curves. Black, red and blue

lines correspond to reference, high and low attenuation models respectively, as described

in the text. Dotted, solid and dashed lines correspond to models with mantle grain sizes

of 1, 10, and 30 mm respectively.
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Figure 14: Results of the inversion for physical state in Column NBR (Table 1). See

caption in Fig. 13 for description
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and compositional mantle models accounting for melt anelasticity fit well the

input data and are all very similar except in terms of crustal velocities and

radial anisotropy. In contrast the melt-free model is not able to satisfactorily

fit the constraining data within the imposed physical regularization in our

approach. In the latter case, the inversion pushes the LAB upwards to fit

low input surface wave phase velocities via temperature increase, but no

physically meaningful value can be obtained. Therefore, we can conclude that

the physical regularization in our inversion approach requires independently

derived additional mineral physics constraints (i.e., anelasticity effects) to

fit the input seismic data. Our results also show that accounting for the

uncertainties arising from different experimental results and/or different melt

inclusion geometries in the physical description of seismic attenuation does

not compromise lithospheric thermochemical model consistency.

4.4.1. Uncertainty and resolution

Assuming Gaussian statistics for the data and model spaces, and for local

linearization, the model covariance matrix for the solution that minimizes

(34) can be calculated as generalization of (21) (Tarantola, 2005)

C̃M =
(
JTC−1D J + C−1M

)−1
(35)

where J is the Jacobian matrix (the matrix of partial derivatives of data

elements with respect to model parameters) evaluated at the solution model,

m, which has elements given by

Jij =
∂g(m)i
∂mj

. (36)

(35) will not in general be diagonal, even if CD and CM are. The compar-

ison of the pre-inversion (CM) (prior) and post-inversion (C̃M) (posterior)
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Figure 15: Effect of mantle melting in Column NBR (Table 1). Top row, from left to

right: geotherm, shear wave isotropic velocity, density, and magnesium number. Bottom

row, left: radial anisotropy and attenuation. Bottom row, right: residuals (calculated

minus observed) for Rayleigh and Love dispersion curves. Black lines are models inverted

following the experimental results of Chantel et al. (2016). Red and blue lines correspond

to models according to the experimental results of Hammond and Humphreys (2000) for

triple junction tubular and organized cuspate films interstitial melt geometries respec-

tively. Green lines correspond to a comparison model where no melt attenuation effects

are included. 59



model variance and covariances in this formalism provides us with a use-

ful method of estimating how consistently the model parameters have been

recovered by the input data, parameter correlations, and for assessing the

influence of regularization imposed in (34). If elements are C̃M not reduced

relative to CM , then the corresponding model parameters, rather than be-

ing constrained by the input data, are substantially being controlled by the

reference model through regularization, and the inversion has not resulted

in an appreciable refinement of these parameters. The corresponding model

variances, given by the square root of the diagonal elements of C̃M , are repre-

sentative of the inversion uncertainties subject to the choice of the reference

model uncertainties in CM . Note that this evaluation of regularized stochas-

tic model uncertainty, as biased by CM using the objective function form of

(34) is a complement to the model resolution testing approaches described

in Section 2.

A useful object that can be derived from C̃M is the correlation matrix,

C, which has elements given by (e.g. Tarantola, 2005)

Cij =

 C̃Mij√
C̃Mii

C̃Mjj

)

 ;−1 ≥ Cij ≤ 1 (37)

Model element pairs with indices i and j and Cij values near to 1 or -1 are

strongly correlated or anti-correlated, respectively. In such cases, data are

unable to constrain the two parameters independently but, in the limit of

|Cij| = 1, only a linear combination of them.

In our case study we observe that the largest variance reductions from CM

to C̃M correspond to the LAB and Moho depths, which had relatively wide

reference model variances (Fig. 16). The LAB depth, in particular, is the
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best resolved parameter by far since it indirectly controls (via temperature

distribution within the lithosphere and adiabatic sublithopheric gradients)

the values of many parameters throughout the whole column. Crustal seismic

velocities and radial anisotropy are also relatively well constrained by the

joint inversion of Rayleigh and Love surface wave phase velocities, which are

primarily sensitive to the vertically and horizontally polarized components

of the shear velocity respectively.

Sublithospheric temperatures are generally poorly constrained, particu-

larly for WC (Fig. 13). For NBR the shallowest sublithospheric temper-

atures (< 100 km) are comparatively better resolved because for shallow

lithospheres the sublithospheric layer is thicker and has more influence on

the predicted surface wave velocities (Fig. 14). Similarly, sensitivity to litho-

spheric mantle composition is more important in the WC column, by virtue

of the thicker lithospheric mantle compared to NBR. The situation is reversed

for the sublithospheric mantle composition where the largest (yet modest)

sensitivity lies in NBR column. Mantle composition constraints are rela-

tively weak. Mantle composition significantly affects density and, therefore,

the isostatic mass balance at lithospheric scale and the predicted surface el-

evation, but have only a mild effect on anharmonic seismic velocities, which

are however strongly controlled by temperature variations (e.g., Schutt and

Lesher, 2006). In addition, density has a relatively minor effect on surface

waves phase velocities. The relatively high uncertainties for composition in

our inversion can be understood in the light of the dominant weighting of

surface wave seismic data extending over a range of periods, mostly sensitive

to seismic velocity variations, compared to surface elevation data (a single
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measurement). We observe a strong anti-correlation in the mantle radial

anisotropy indicating that the inversion is not able to independently con-

strain all the vertical nodes in our discretization, which is an expression of

rank deficiency (Fig. 17) noted earlier. To different degrees the lithospheric

thickness is correlated with Moho depth and shallow sublithospheric temper-

ature, and anti-correlated with the thickness of the buffer thermal layer at

its base, and with mantle composition. Furthermore, there is a strong anti-

correlation among the crustal Vs values, Vs and crustal anisotropy, and a clear

trade-off between the lower crustal Vs and Moho depth. It must be kept in

mind that in our study the crustal physical properties (seismic velocities,

density) are not thermodynamically constrained but are free to vary inde-

pendently. Lithospheric mantle composition is moderately anti-correlated

with crustal density, reflecting the isostatic balance included in the inversion

via surface topography data fitting.

5. Summary and Conclusions

Geophysical inverse problems present formidable challenges related to ill-

posedness and limited resolution. However, these issues can be usefully over-

come by imposing regularization constraints and through informed choices in

parameterization and experiment design. The two case studies presented in

Sections 3 and 4 demonstrate practical aspects of the fundamental mathemat-

ical concepts introduced in Section 2, and are representative of current inver-

sion approaches to investigate the structure of the lithosphere-asthenosphere

system

The inversion presented in Section 3 is framed into a homogeneous pa-
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those from CM ) for the different model variables in the inversion for physical state in the
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further details).
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rameter space defined by one secondary physical parameter (i.e., electrical

resistivity). The specific physical problem solved in this case is a 3-D MT

data inversion where the aim is to capture the spatial variations of resistiv-

ity as realistically as currently feasible to reveal the underlying physics of

induction for complicated geological structures. The case study is used to

illustrate typical practical problems found in geophysical inversions: finding

the appropriate balance between regularization and data fit, the effect of data

coverage, and the influence of the model parameterization. The map view

plots from the case study inversion (e.g., Figure 4) are useful to identify tec-

tonic boundaries or investigate subsurface geological processes affecting the

electrical resistivity of the crust and upper mantle. However, it is difficult

to resolve the lithosphere-asthenosphere boundary from the vertical slices in

Figure 7 or in general to uniquely translate the obtained conductivity maps

into lithospheric temperature, composition, or other properties of geological

interest.

In section 4 we present a second case study showing a 1-D joint inversion

of seismic, topography and surface heat flow data for thermochemical struc-

ture in two representative lithospheric columns for differing physiographic

provinces in the western U.S. We present a general methodology and illus-

trate some of the issues stemming from an inversion where the parameter

space is complex and defined by both primary (e.g., temperature) and sec-

ondary (e.g., crustal seismic velocity) physical magnitudes. The heteroge-

neous forward problems spanning geophysics, petrology and mineral physics

involved (e.g., heat equation, wave propagation, thermodynamic Gibbs free

energy minimization, and anelasticity) are currently tractable for simplified
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(e.g. 1-D profiling)model geometry or smaller models, strong (e.g., reference

model) regularization compared to inversions solely based on secondary pa-

rameters. Furthermore, geophysical inversions for the Earth’s physical state

are highly dependent on the availability and quality, of suitable theoreti-

cal relationships and laboratory measurements connecting secondary physi-

cal parameters (e.g., seismic velocities or resistivity) with the fundamental

variables generally used to describe Earth’s interior (e.g., temperature, com-

position, melt fraction, etc.). An advantage of this type of joint inversion is

it can be directly used to invert for physical state and to assess consistency

between diverse forward modeling approaches, bearing in mind the afore-

mentioned limitations. For instance, in our case study in section 4 Figure 13

can be interpreted directly in terms of lithospheric thickness and composi-

tion, or crustal temperatures by a wide range of Earth scientists outside of

geophysics. As a byproduct of the inversion, additional models of secondary

parameters relevant to the forward geophysical problems involved (i.e., man-

tle seismic velocities and density) are also produced. We note, promisingly,

that these secondary parameter models are mutually consistent when linked

to the common primary parameters defining the Earth’s physical state in the

joint integrated inversion.

As is commonly noted ”All models are wrong, but some models are useful”

(Box, 1976) – neither of the two case study lithospheric models presented here

of course captures the complete truth of Earth’s subsurface, but each provides

useful information about insightful aspects. The choice of the particular

geophysical inversion method and parameterization should always be directed

by data availability and type, a strong knowledge of the uncertainty and
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resolution issues, and overall by scientific objectives.

Considering the mechanics of the inversion and some of the major choices

that must be made when performing, evaluating, and interpreting geophysi-

cal inversions, we note that these must include the degree of fit to the data

(and the reliability of data error estimates), the selection and availability of

instrumentation sites, and the form of the model discretization, an under-

standing of resolution and bias, and assessment of parameter uncertainties

and correlations. A sign of robustness in the case studies presented here

is that fundamental large-scale structures (in the electrical resistivity pat-

tern and thermal thickness of the lithosphere) are consistently reproduced in

multiple and independently derived models, with intriguing differences that

may indicate new science or may arise from data limitations or methodolog-

ical artefacts. In making progress, the details of the inversion procedure,

particularly the effects of regularization and resolution, do matter and need

to be carefully laid out and justified. Parameter correlation and resolution

tests are essential tools in this. Unfortunately, for very large-scale models,

full uncertainty and resolution analyses, either deterministic or statistical,

may be intractable due to computational limitations. In the 1-D integrated

inversion study case presented here the reduced size of the problem allows

us to use some of the theoretical tools presented in section 2 to assess the

inversion. The reduction in model covariance and the correlation between

different model parameters (Figures 16 and 17 ) provide insight on the trade-

off dependencies between parameters and allow us to test different modelling

assumptions (e.g. thermal steady state, local isostasy, anelasticity), regular-

ization influences, and parameterization and on inversion resolution and to
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more clearly map the influences and modeling consistencies of the data.

In summary, modern geophysical inversion approaches provide a wealth of

information about the structure and composition of the lithosphere provided

quality data with appropriate coverage are available. As with any other

scientific technique, it is crucial to understand the capabilities and limitations

of geophysical inversions to avoid mis- or over-interpretation of the data, and

to present these limitations openly and in an interpretable form. The last

40 years of work in computational geophysical inverse methods coupled with

significant contributions from petrology and mineral physics have resulted in

algorithms that produce stable and reliable results for increasingly large-scale

and multi-data/multi-parameter problems. However, the more details and

precision we require, the more we have to assess the impact of our inversion

choices on the results. The risk of exploiting a powerful black box that

will always produce an Earth model is only too tantalizing. In this paper

we present an overview of useful theoretical and practical aspects regarding

inversion modelling, and we point to questions that one should always ask

about the output models. We hope that this will help practitioners concerned

with interpreting results, and improving on, of geophysical inversions in an

increasingly multidisciplinary context.
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7. Appendix. A Simple Example of a Geophysical Problem

As a simple demonstration of the concepts described in Section 2, consider

a simplified linear inverse problem of determining the density of two Bouguer

gravity anomaly slabs of known thickness. The forward problem, for a single

data point, d, is (e.g., Lowrie, 2007)

d = 2πΓ (h1ρ1 + h2ρ2) (38)

where Γ is Newton’s gravitational constant, d is a gravity measurement, and

ρ1 and ρ2 are the respective slab densities

To further simplify the example, we set h1 = h2 = h, giving

d = 2πΓh (ρ1 + ρ2) . (39)

It is obvious that: i) If we disregard noise, we will always get the same

result, as the data, d are independent of position. So, adding more measure-

ments will not give us new information unless there is data noise present. ii)

We cannot determine ρ1 and ρ2 independently, any combination of densities

that has the same sum will fit the data equally well.
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The generalization of the forward problem for two measurements isd1
d2


︸ ︷︷ ︸

d

= 2πΓh

1 1

1 1


︸ ︷︷ ︸

G

ρ1
ρ2


︸ ︷︷ ︸

m

(40)

G is square but is not invertible (it is rank deficient). The model null

space can be seen by inspection to be the set of all vectors κ(−1, 1), where

κ is a scalar. To produce a unique solution, it is necessary to introduce

regularization. For example, if we desire that the solution be small in the

sense that its Euclidian (2–norm) length

‖m‖|2 =
√
ρ21 + ρ22 (41)

is small (first-order Tikhonov regularization), we solve a modified system of

equations 
d1

d2

0

0

 =

G
αI

ρ1
ρ2

 (42)

where I is the 2 by 2 identity matrix and α is a scalar trade-off parameter. The

magnitude of αcontrols the weighting of the constraint equations between

achieving a least-squares fit to the data (α small) and minimizing the solution

2–norm (α large). This can be seen more explicitly in noting that the 2–

norm generalized residual in (14) in this regularized system of equations (42)

produces an objective function (”penalty” function to be minimized) of

‖d−Gm‖22 + α2‖m‖22 . (43)
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The corresponding normal equations solution for (42) is

m† = G†d (44)

where

G† =
(
GTG + α2I

)−1
GT . (45)

Applying some elemental matrix algebra gives the generalized inverse matrix

G† =
1

2πΓh

 1
α2+4

1
α2+4

1
α2+4

1
α2+4

 (46)

and the solution

ρ1 = ρ2 =
1

2πΓh

d1 + d2
α2 + 4

(47)

which for no noise, i.e., d1 = d2, and in the limit as α = 0, results in an unreg-

ularized and unbiased solution that fits the data exactly and has minimum

model 2–norm (41). In the presence of noise this solution is proportional

to the average of the two data values. This weighted averaging property of

least-squares solutions generalizes to many measurements. Furthermore, if

the data noise is Gaussian (described by a multivariate normal, or MVN, dis-

tribution), the model parameter estimates for an unregularized least-squares

solution to any linear inverse problem will also be Gaussian, since the model

parameters are all linear combinations of the data elements. However, if

α = 0, the expression (46) for G† is invalid, since GTG is singular. Intro-

ducing a value of α > 0 creates an invertible matrix in (46), but introduces

a bias that, in this case results in a reduction in the recovered densities. Al-

though this particular problem is not ill-posed, as noted above the addition

of regularization does commonly offer the additional advantage of stabilizing
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ill-posed systems of equations as reflected by a reduction in the condition

number (16).

The selection of an optimal balance between regularization and data fit

commonly involves assessing the trade-off between data fit and model regu-

larization. Two commonly used methods of selecting the trade-off parameter

(α, here) are the discrepancy principle, in which the (noisy) data are fit only

to an appropriate tolerance based on understanding of the data noise levels

(e.g., Farquharson and Oldenburg, 2004), and the estimation of an optimal

corner in the α-parameterized curve describing the relationship between data

fit and model regularization for a range of solutions (e.g., Moorkamp et al.,

2010).

Finally, we examine the resolution matrix

R = G†G =

 2
4+α2

2
4+α2

2
4+α2

2
4+α2

 (48)

that describes the ”smearing” of model information across the model due

to limited resolution. In this case, a true model (ρ1, ρ2) would produce

noise-free data that would then produce the inverse solution

ρ1 = ρ2 =
2

4 + α2
(ρ1 + ρ2) . (49)

The form of (48) thus reflects that this inverse problem is wholly unable

to resolve differences between the two slab densities but can resolve their

average. Equivalently, any model described by a null space vector κ(−1, 1)

can be added to a solution without affecting data fit.
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