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Abstract

The two seminal studies on westward intensification, carried out by Stommel and Munk over 70 years ago, are revisited to

elucidate the role of the domain aspect ratio (i.e.˜meridional to zonal extents of the basin) in determining the width and speed

of a western boundary current (WBC). We examine the general mathematical properties of the two models by transforming

them to differential problems that contain only two parameters — the domain aspect ratio and the non-dimensional damping

(viscous) coefficient. Simple proxies of width and speed (and hence the transport that equals their product) of the WBC are

derived from analytical solutions of the non-dimensional vorticity equations in the relevant region of the (damping, aspect

ratio) parameter space. These analytically determined proxies are then benchmarked against numerical simulations of the

corresponding time-dependent equations. In both models, the three proxies vary as a power law in the domain aspect ratio and

in particular, the non-dimensional transport varies linearly with the domain aspect ratio.
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Key Points:6

• Two classical model’s of wind-driven ocean circulation, Stommel (1948) and Munk7

(1950), are generalized in a manner that the spatial structure of the flow is explained8

by only two non-dimensional parameters — damping and the domain aspect ratio9

(the ratio of meridional to zonal extent of the basin).10

• Proxies based only on the two non-dimensional parameters are proposed to estimate11

the width and speed (and consequently the transport) of the western boundary cur-12

rent, and their validity is benchmarked against numerical simulations.13

• The dependence of the proxies on the domain aspect ratio is explicitly identified, in14

particular, the linear dependence of the non-dimensional transport on the aspect ratio15

is underscored.16
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Abstract17

The two seminal studies on westward intensification, carried out by Stommel and Munk over18

70 years ago, are revisited to elucidate the role of the domain aspect ratio (i.e. meridional19

to zonal extents of the basin) in determining the width and speed of a western boundary20

current (WBC). We examine the general mathematical properties of the two models by21

transforming them to differential problems that contain only two parameters — the domain22

aspect ratio and the non-dimensional damping (viscous) coefficient. Simple proxies of width23

and speed (and hence the transport that equals their product) of the WBC are derived from24

analytical solutions of the non-dimensional vorticity equations in the relevant region of the25

(damping, aspect ratio) parameter space. These analytically determined proxies are then26

benchmarked against numerical simulations of the corresponding time-dependent equations.27

In both models, the three proxies vary as a power law in the domain aspect ratio and in28

particular, the non-dimensional transport varies linearly with the domain aspect ratio.29

1 Introduction30

Perhaps the most striking characteristic of the surface circulation in an ocean basin is31

the east-west asymmetry: strong and narrow pole-ward currents often referred to as the32

“western boundary currents” (WBC) flow along the western boundary of the oceans while33

the return equator-ward flow is weak and wide. In the North Atlantic this current is the34

Gulf Stream, and it was known to oceanographers and explorers for a few centuries —35

see Stommel (1958) for a historical review. Similar WBCs exist in other basins as well and36

these include the Kuroshio in the North Pacific and the Brazil current in the South Atlantic.37

These currents transport large amount of heat from low to high latitudes, thus playing an38

important role in the climate system. The winds, though, are easterlies along the equator39

(the Trade winds) and westerlies around 40◦N. There are no strong northward winds along40

the western boundaries of the ocean basins and, as is well understood now, the WBCs are41

not obviously correlated with the overlying wind patterns.42

Henry Stommel, apparently in his first paper (Stommel, 1948, hereafter referred to as43

S48) as an oceanographer [see e.g. Kunzig (1999)] was the first to formulate a simple, yet44

comprehensive, mathematical model of the WBCs. S48 is now regarded as a seminal paper45

(e.g. http://empslocal.ex.ac.uk/people/staff/gv219/classics.d/oceanic.html) in theoretical46

physical oceanography. S48’s model probably provided the simplest possible explanation47

for the existence of WBCs: in this linear and frictional model on the β−plane the ocean was48

taken to be a rectangular box with a flat bottom forced by a cos(latitude)-dependent zonal49

wind pattern. (Munk, 1950, hereafter referred to as M50) further extended this work to a50

different frictional (viscous) parameterization and a more general form of the wind stress.51

In the last 70 years, both models have been modified and extended to further explore the52

phenomenon of westward intensification in different settings or to evaluate the importance53

of different specific processes and terms in the governing equations (Munk & Carrier, 1950;54

Veronis, 1966a, 1966b; Pedlosky, 2013; Vallis, 2017, and references therein).55

As in S48 and M50, a large number of these subsequent studies employed the dimen-56

sional form of the governing equations which are the time-independent rotating linearized57

shallow water equations compounded by friction and forcing. These dimensional models58

include numerous parameters: the zonal and meridional extents of the basin; either the co-59

efficient of linear drag (i.e. the coefficient in the Rayleigh frictional term) or the kinematic60

eddy viscosity (i.e. the coefficient in parameterization of the viscous term); the amplitude61

(and possibly meridional structure) of the wind stress; the gradient of Coriolis frequency62

(β−effect). Here we present an alternate, concise, formulation that can be employed to63

investigate the depth averaged wind-driven ocean circulation is a non-dimensional form of64

the equations and this formulation involves fewer (non-dimensional) parameters.65
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The aim of this study is to underscore the role of the domain aspect ratio (i.e. the ratio66

between the basin’s meridional and zonal extents) in S48’s and M50’s models of westward67

intensification. In our non-dimensional formulation of the models, the domain aspect ratio68

is one of the two parameters that determines the solutions of the differential equations69

[while the other parameter is the non-dimensional frictional (viscous) coefficient]. A few of70

the previous studies that followed S48 and M50 [e.g. Pedlosky (2013); Vallis (2017)] have71

also employed the non-dimensional form of the equations but none of these addressed the72

effect of the domain aspect ratio on the solutions. For instance, in the most succinct model73

proposed by Vallis (2017) the number of non-dimensional parameters is reduced to one74

[i.e. the frictional (viscous) coefficient] but this model studies the dynamics of the flow in75

a square basin where the meridional and zonal extents are identical. Our approach yields76

explicit expressions for the proxies of the transport, width and speed of the WBC in terms77

of the two non-dimensional model parameters. The results demonstrate that all of these78

proxies depend sensitively on the domain aspect ratio.79

The paper is organized as follows. Section 2 sketches the derivation of the two-80

parameter, non-dimensional, vorticity equations corresponding to S48’s and M50’s models81

and outlines the solution for the stream function ψ in the two cases. Explicit expressions82

for the width, speed and transport of the WBC are derived from these solutions for ψ. The83

applicability of these analytical expressions for relevant values of the model parameters is84

validated in Section 3 by simulating the time-dependent equations and we discuss the results85

and conclude in Section 4.86

2 The two-parameter differential problems, their solutions and associ-87

ated proxies88

2.1 S48’s non-dimensional counterpart89

We begin by scaling S48’s dimensional vorticity equation for the spatial structure of the90

stream function as follows: x (the zonal coordinate) on Lx; y (the meridional coordinate)91

on Ly and ψ (the stream function) on γβL3
y where Lx and Ly are the zonal and meridional92

dimensions of the barotropic ocean, respectively, β is the meridional gradient of the Coriolis93

frequency and γ = τ0

(
π

ρ0H0βL2
y

)(
Lx

βL2
y

)
is the non-dimensional amplitude of the wind stress,94

τ0, with H0 — the depth of the basin and ρ0 — water density in the barotropic ocean. With95

this scaling the non-dimensional form of S48’s vorticity equation is:96

α∇2ψ +
∂ψ

∂x
= sin(πy) (1)

α = r

(
Lx
βL2

y

)
, ∇2 = δ2

∂2

∂x2
+

∂2

∂y2
. (2)

Here ∇2 is the Laplacian, δ =
Ly

Lx
is the ratio of meridional and zonal extents of the97

basin (refereed to as the domain aspect ratio) and α is the non-dimensional parameter98

(referred to as the damping) proportional to r — the Rayleigh friction coefficient. Variants99

of (1) appear in many textbooks e.g. Vallis (2017). It is evident from (1) and (2) that the100

two parameters, α and δ, govern the structure of the flow in the basin. The no normal101

flow conditions at the basin’s boundaries mandate that the stream function ψ satisfies the102

boundary conditions: ψ(x, 0) = ψ(1, y) = ψ(x, 1) = ψ(0, y) = 0.103

It should be stressed that due to the different scaling employed in the two works, α104

in (1) differs from the same coefficient that appears in S48’s dimensional equation: in the105

present study the boundary conditions are imposed at x = 0; 1 and y = 0; 1 whereas in106

S48’s study the basin’s width and length appear separately in the boundary conditions in107

addition to α (that appears in the differential equation itself).108

Our particular choice of scaling enables us to lump the five dimensional parameters109

in S48’s model — zonal and meridional extent of the basin, gradient of Coriolis frequency,110
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wind stress amplitude and Rayleigh friction coefficient — into just two non-dimensional111

ones: α and δ (that appears in the first term of the Laplacian). The two-parameter vorticity112

equation, (1), succinctly brings out some general and salient features of the depth averaged113

wind-driven circulation in a rectangular basin which will be highlighted below.114

For sufficiently smooth solutions the flow in the interior of the basin is expected to115

be frictionless in which case α∇2ψ can be neglected there and the vorticity equation, (1),116

reduces to ∂ψ
∂x = sin(πy) i.e. the equivalent of Sverdrup balance (Sverdrup, 1947). On117

the other hand, neglecting the planetary vorticity gradient term
(
∂ψ
∂x

)
yields the dominant118

balance in a non-rotating basin in which case the vorticity equation (1) reduces to α∇2ψ =119

sin(πy), i.e. Poisson’s equation that can be solved using conventional techniques.120

The interplay between the three terms in the inhomogeneous partial differential vorticity121

equation, (1), can be easily interpreted by repeating the procedure employed in S48 to obtain122

the general form of solutions of (1). An explicit expression for the solution ψ is given by123

ψ(x, y) =
1

απ2
sin(πy)(peAx + qeBx − 1) (3)

where124

p =
1− eB

eA − eB
q = 1− p

and125

A = − 1

2αδ2
+
π

δ

√
1 +

1

4π2α2δ2
,

B = − 1

2αδ2
− π

δ

√
1 +

1

4π2α2δ2
.

The corresponding explicit expressions for u and v are:126

u(x, y) =
∂ψ

∂y
=

1

απ
cos(πy)(peAx + qeBx − 1) (4)

v(x, y) = −δ ∂ψ
∂x

= − δ

απ2
sin(πy)(pAeAx + qBeBx) (5)

For completeness, we list in the Supporting Information some typos in S48’s expressions127

for u and h (but not ψ itself). With the scaling adopted in the present study the dimensional128

counterparts of u and v (denoted by u∗ and v∗, respectively) are: u∗ = uγβL2
y and v∗ =129

vγβL2
y.130

2.1.1 Analytic approximations in limiting cases for S48’s model131

For a given value of δ, the spatial distribution of the streamlines in the basin is deter-132

mined by the value of α, the only other free parameter in (1). Figure 1(a),(c) depicts the133

stream function for two α-regimes of S48:134

(i) α ≤ O(1) (i.e. weak damping)135

(ii) α > O(1) (i.e. strong damping).136

In these two regimes of α the complicated expressions in (3), (4) and (5) can be greatly137

reduced as is shown below.138

For α ≤ O(1), the solution of ψ in (3) becomes linear in x and thus can satisfy only139

one boundary condition out of two. This solution is commonly assumed to approximate the140
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Figure 1. The stream functions in different regimes of the α parameter-space in the two models

for δ = 2π/10: (a),(b) weak damping [α ≤ O(1) in S48’s model and |α| ≤ O(10−3) in M50’s model]

— there exists a narrow fast flowing current along the western edge of the basin; (c),(d) strong

damping [α > O(1) in S48’s model and |α| > O(10−3) in M50’s model] — the stream function is

(nearly) symmetric about x = 0.5 which indicates that there is no westward intensification.

exact solution for ψ in the frictionless interior of the basin while a different approximation141

applies in the narrow, frictional, boundary layer adjacent to x = 0. Figure 1(a) depicts this142

narrow boundary layer for α = 0.1 where the stream function first decreases fast with x at143

small x and then increases slowly with x for large x. In the range of α ≥ O(1), the solution ψ144

is symmetric about x = 1
2 and can satisfy the two boundary conditions, ψ(0, y) = 0ψ(1, y).145

This is demonstrated in the symmetric stream function depicted in Figure 1(c) for α = 10.146

The explicit expressions of ψ in the two ranges of α are given in the Supporting Information.147

From the expression given by (3) [and the two examples of ψ shown in Figure 1(a),(c)]148

one can infer that the width of the boundary layer depends on α, but the details of this149

dependence are not obvious since the coefficient A in equation (3) also depends on α. To150

determine the details of the dependence, we integrate the vorticity equation (1) w.r.t. x151

from x = 0 (i.e. the western boundary) to x = εbc, where εbc � 1 is the width of the WBC152

defined as the smallest value of x where u
v is not small (i.e. the magnitude of u is similar to153

that of v). We further assume that inside the boundary layer, (i) u � v, so the Laplacian154

term can be approximated by ∇2ψ ≈ −δ ∂v∂x and (ii) the meridional speed at x = εbc is155

negligible compared to its value at x = 0 i.e. v(εbc, y) � v(0, y). With these assumptions156

the integration of (1) yields the following simple expression for εbc:157

εbc(y) = αδ
1(

1
v(0,y) + 1

δ

) ≈ αδ2, (6)

The second equality that makes εbc independent of y holds provided v∗ ∼ 2 m s−1 which158

for γ ∼ 5×10−5 and Ly ∼ 6000 km translates to 1
v(0,y) ∼ 10−2 which is negligible compared159

to 1
δ > 1 (for Lx ∼ 10000 km). For realistic parameter values where this estimate of εbc160

holds, it is linear with both α and δ2. For typical values of α of 0.02, and for the above161

values of Ly and Lx, the width of the boundary layer is εbc ∼ 0.007 i.e. about 70 km.162
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To quantify the speed of the WBC we propose another proxy — the maximum speed163

of the WBC i.e. vbc = v
(
0, 12
)

[it can be easily verified that vbc attains its maximal value164

at (x = 0, y = 1/2)]. The expression for vbc, obtained by substituting x = 0 and y = 1/2 in165

(5), is given by:166

vbc = − δ

απ2
(pA+ qB). (7)

Following this expression, the corresponding dimensional maximal speed of the WBC167

is given by: v∗bc = vbcγβL
2
y. Numerical computation show that the term pA+ qB decreases168

with α hence (7) implies that vbc ∝ 1
αn where n > 1 (see also Section 3 below).169

Having identified proxies for the width and maximal speed of the current we are now170

in position to formulate an expression for the transport of the WBC. The non-dimensional171

transport, Tr, is given as Tr = εbc
(
1
2

)
v
(
0, 12
)

which, under the assumption 1

v(0, 12 )
,� 1

δ172

simplifies to:173

Tr ≈ αδ2v
(

0,
1

2

)
= − δ

3

π2
(pA+ qB) (8)

The dimensional depth integrated transport is given by Tr∗ = Tr × γH0LxβL
2
y.174

2.2 M50’s non-dimensional counterpart175

The non-dimensional counterpart of M50’s vorticity equation, obtained by employing176

the scaling proposed in this study, is given by:177

α∇4ψ +
∂ψ

∂x
= sin(πy) (9)

where α = −µ Lx

βL4
y

is the damping, µ (∼ 104 m2 s−1) is the (dimensional) horizontal eddy178

viscosity and ∇4 = δ4 ∂4

∂x4 + 2δ2 ∂4

∂x2∂y2 + ∂
∂y4 . We note that contrary to (2), α here is179

negative. This dissimilarity arises because, unlike the parametrization in S48, in M50’s180

model the damping is parametrized by a biharmonic function. Also, in addition to stream181

function vanishing at the edges of the basin, another set of boundary condition needs to be182

specified in order to solve the 4th order equation (9) — there should be no flow tangential to183

the basin’s edges i.e. ∂ψ
∂x

∣∣∣
x=0,1

= ∂ψ
∂y

∣∣∣
y=0,1

= 0. Following the mathematical steps in Munk’s184

original paper yields the following solution of (9):185

ψ = − sin(πy)

(
1− x+

1

λ
eλ(x−1) − e−λ(x/2)

[
cos

(√
3λx

2

)
+

1− 2/λ√
3

sin

(√
3λx

2

)])
(10)

where λ =
(

1
−αδ4

)1/3
.186

2.2.1 Analytic approximations in limiting cases for M50’s model187

Figure 1(b),(d) depicts the stream function for small and large damping in M50’s model.188

For large damping the stream function shown in Figure 1(d) is not entirely symmetric about189

x = 1
2 . Also, unlike the behavior of the stream function in S48’s model, the stream function190

in M50’s model skews more towards the eastern boundary with the increase in damping.191

This, less than optimal, behavior of the stream function in M50’s model occurs because the192

stream function does not vanish identically along the eastern boundary and is, instead, a193

function of α itself.194

We now proceed to obtain the proxies for the width, speed and transport for M50’s195

non-dimensional counterpart. Integrating the vorticity equation to obtain the width of the196

WBC (as was done for S48’s non-dimensional counterpart in the previous sub-section) is197

not an effective method because it yields a much too complicated algebraic equation in εbc.198
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Thus, for the non-dimensional equivalent of M50’s model we propose that the width of the199

WBC is defined as the smallest value of x > 0 where v(x, y = 1
2 ) vanishes. The velocity of200

the WBC corresponding to this model is given by:201

v(x, y) = −δ ∂ψ
w

∂x
. (11)

Here ψw is the stream function close to the western boundary of the basin. The value202

of x closest to 0 at which v
(
x, y = 1

2

)
vanishes [determined by substituting y = 1/2 in (11)203

and finding the root using Mathematica] is:204

εbc =
2√
3λ

cos−1

(
− 2λ− 1

4λ2 − 4λ− 4

)
≈ π√

3
(−α)

1
3 δ

4
3 (12)

The approximation in (12) holds for λ � 1 which is satisfied for typical values of205

dimensional parameters that correspond to λ > O(50). The dependence of the width of206

WBC on δ in both (6) and (12) highlights the importance of the domain aspect ratio in the207

dynamics of westward intensification.208

We now propose that in M50’s model a proxy of the speed of the WBC is the average209

speed of the current between x = 0 and x = εbc at y = 1
2 . Using (11), it is straightforward210

to determine:211

vbc =
1

ε

∫ ε

0

v

(
x,

1

2

)
dx =

δ

ε
ψw
(
x = ε, y =

1

2

)
≈ 2

5
(−αδ)− 1

3 + δ (13)

Under the same assumption, the non-dimensional transport in the boundary current as212

calculated from Tr = εbcvbc is given by:213

Tr = εbcvbc = δ

(
3

4
+ 2(−αδ4)

1
3

)
≈ 3

4
δ +O(δ2) (14)

Surprisingly, in both S48’s and M50’s models the calculated transports of the WBCs214

are nearly independent of α – the dissipation parameter. This is due to the opposing power215

law α-dependencies of the width of the WBC and the typical meridional velocity in it. In216

the next section we numerically validate these analytical results.217

3 Numerical validation218

The proxies, εbc, vbc and Tr, obtained in the previous section are validated here in two219

ways — (i) by comparing them with the numerical calculations of the exact expressions220

and (ii) by benchmarking these proxies against diagnostics that we propose to quantify the221

width and speed calculated from numerical simulations of the corresponding time-dependent222

equations.223

3.1 Exact expressions versus approximations for the proxies224

Figure 2(a),(b) depict the proxies: εbc, vbc and Tr as a function of α in the two models:225

the circles denote the values given by the exact expressions and the solid lines — the cor-226

responding approximate expressions derived above. In both models, the width of the WBC227

increases and its speed decreases with a (near) power law dependence on damping the (α for228

S48’s model and |α| for M50’s model). As is apparent from Figure 2(a),(b), the power law229

dependence of both the width and the speed of the WBC on α is valid for over two decades230

in both the models. In S48’s model, however, the value of εbc shown in Figure 2(a) is not231

accurate for α > O(1) because the expression for εbc in (6) is not valid in this regime since232

the approximation 1
v(0,y) �

1
δ does not apply there. Thus, we conclude that the effect of α233

–7–
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Figure 2. Non-dimensional width (εbc), speed (vbc) and transport (Tr) of the WBC as a function

of α and δ in the two models, in panels (a),(b) the domain aspect ratio is set to δ = 2π/10 and in

panels (c),(d) the damping is set to α = 0.02 for S48’s model and α = −3× 10−6 for M50’s model.

Circles show the exact value of the proxy and the solid line is the approximation. The ‘exact value

circles’ are not plotted for vbc in S48’s model because no approximation is made to calculate the

proxy vbc in S48’s model.

on the spatial structure of ψ (and hence on the width of the WBC) is limited to α < O(1)234

in S48’s model. Unlike S48’s model, α affects the spatial structure of the flow in M50’s235

model over a wider range because ψ(x = 0) varies with α [while in S48 ψ(x = 0) = 0]. The236

limitation on the validity of equation (6) is also reflected in the slight change of the slope237

of the vbc (red) curve in Figure 2(a).238

In M50’s model the exact value of vbc oscillates with α, however, the overall increase239

in vbc with a decrease in damping (|α|) is clearly evident and the approximate expression240

accurately captures the trend. As for the curve of the transport in M50 – it changes in a241

similar pattern to that of S48 as both shows negligible variation with α. The oscillations242

in the exact values of vbc and consequently the Tr in M50’s model arise because of the243

combination of cos and sin terms in ψ which have a significant contribution close to the244

western edge of the basin.245

Up to this point our analysis focused on the way that α affects the dynamics in the246

two models and we now turn to the effect of the other non-dimensional parameter — δ.247

Determining analytically the dependence of vbc and consequently of Tr on δ in S48’s model248

is not straightforward because of the complicated dependence of (pA + qB) in (3) on δ.249

Nevertheless, Figure 2(c) shows that εbc, vbc and Tr vary as a power law in δ with exponents250

approximated by 2, −1 and 1 respectively, and that the differences between the exact and251

the approximate curves are negligible.252

In contrast to S48’s model, the (approximate) dependence of εbc, vbc and Tr on δ253

in M50’s model is straightforward [refer to (12), (13) and (14)]. Figure 2(d) depicts the254

aforementioned proxies as a function of δ. Each proxy follows a power law in δ and the255

exponents for εbc, vbc and Tr are given by 4
3 , ∼ − 1

3 and ∼ 1 respectively. The second terms256

in the expressions of vbc and Tr in (13) and (14) are small corrections and do not affect257

significantly the exponents of the proxies. There are slight deviations between the exact258

and the approximate curves of εbc as a function of δ. Additionally, the approximations for259

–8–
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Figure 3. Dimensional stream functions (a) for S48’s model — (α, δ) = (0.025, 2π/10) and

(b) for M50’s model — (α, δ) = (−3 × 10−6, 2π/10); panels (c),(d) are same as (a),(b) but for

δ = 0.5π/10. Note that the meridional extent of the basin in (c),(d) is one-fourth of that in (a),(b).

vbc and Tr accurately capture the overall trends of the exact curves (but not the highly260

oscillatory behavior that arises from the sensitivity of these variables to the calculation of261

the various terms in the boundary layer).262

3.2 Numerical simulations263

The numerical simulations described below were carried out using the time-dependent264

shallow water equation (SWE) dimensional solver (Gildor et al., 2016; Shamir et al., 2019).265

This solver employs the finite difference method to solve SWEs on the β−plane. The266

simulations are carried out on an Arakawa C grid and the time differencing follows a leapfrog267

scheme. Though the solver can include nonlinear terms, for the purpose of this study,268

nonlinear terms were neglected. The reader should refer to Gildor et al. (2016) and Shamir269

et al. (2019) for a more detailed description of the solver.270

The simulations presented in the present study were carried out using a barotropic ocean271

with the same characteristics as in S48 i.e. on an equatorial β−plane (i.e. f0 = 0), forced by272

a wind stress which varies as −τ0 cos(πy/Ly) (where τ0 is the amplitude of the wind stress273

and y and Ly denote the same dimensional quantities as in the preceding sections). Two274

of the dimensional parameters remained fixed in all the simulations presented below — the275

value of the gradient of Coriolis frequency (given by β = 2× 10−11 m−1 s−1) and the zonal276

extent of the basin given by (Lx = 10000 km). The other three dimensional parameters in277

the two WBC models i.e. the damping coefficients [Rayleigh friction coefficient (r) in S48’s278

model and horizontal eddy viscosity (µ) in M50’s model], the maximum amplitude of the279

prescribed forcing (τ0), and the meridional extent of the basin (Ly) are varied such that α280

and γ remain constant and the effect of δ can be examined. The boundary conditions are: u∗281

= 0 along the basin’s meridional boundaries and v∗ = 0 along the basin’s zonal boundaries.282

The numerical solver is integrated until a steady state is reached. The steady state of the283

time-dependent simulations is defined as the state at which the dependent variables in the284

SWEs (u∗, v∗ and η∗) do not evolve any further for a sufficiently long time.285

Figure 3(a),(c) depicts the dimensional stream function (ψ∗) in a steady state obtained286

by specifying the dimensional parameters as in S48’s model (and the corresponding values287

–9–



manuscript submitted to JGR: Oceans

0 50 100 150 200 250 300 350 400 450 500

0

0.5

1

1.5

2

2.5

m
er

id
io

na
l s

pe
ed

 (
m

/s
)

(a) S48's v* for ( , ) = (0.025, 2 /10)

bc
T

bc
D

v
bc
T

v
bc
D

v*

0 50 100 150 200 250 300 350 400 450 500

0

0.5

1

1.5

2
(b) M50's v* for ( , ) = (-3.2 10-6, 2 /10)

bc
T

bc
D

v
bc
T

v
bc
D

v*

0 50 100 150 200 250 300 350 400 450 500
x (km)

0

0.1

0.2

0.3

0.4

0.5

0.6

m
er

id
io

na
l s

pe
ed

 (
m

/s
)

(c) S48's v* for ( , ) = (0.025, 0.5 /10)

bc
T

bc
D v

bc
T

v
bc
D

v*

0 50 100 150 200 250 300 350 400 450 500
x (km)

0

0.05

0.1

0.15

0.2
(d) M50's v* for ( , ) = (-3.2 10-6, 0.5 /10)

bc
T

bc
D

v
bc
T

v
bc
D

v*

Figure 4. The meridional velocity along y =
Ly

2

[
v∗
(
x, y =

Ly

2

)]
in (a) S48’s model for

(α, δ) = (0.025, 2π/10) and (b) M50’s model for (α, δ) = (−3 × 10−6, 2π/10); panels (c),(d) are

same as (a),(b) but with δ = 0.5π/10. The dashed black lines mark the diagnostics for the width

(εDbc) and the speed (vDbc) of the WBC. The dotted red lines mark the analytical estimate (proxy),

εTbc = εbcLx, of the width and the speed, vTbc = vbcγβL
2
y, of the WBC. The expressions for εbc and

vbc are given by (6) [(12)] and (7) [(13)] respectively for S48’s [M50’s] model. For each simulation

discussed here, the forcing and zonal extent of the basin are set to γ = 5 × 10−5 and Lx = 10000

km respectively.

of α and δ are noted above these panels) while Figure3(b),(d) depicts the steady state ψ∗
288

obtained for parameters relevant to M50’s model (and here, too, the corresponding values289

of α and δ are noted above these panels). The reader should note that the meridional290

extent (Ly) of the basin in Figure 3(a),(b) is 2π × 1000 km, whereas in Figure 3(c),(d)291

Ly = π/2 × 1000 km. In all four cases the shape of the stream function is very similar to292

the non-dimensional stream functions (ψ) shown in Figure 1(a),(b). Moreover, for the given293

values of (α, δ), the ψ∗s obtained by multiplying the corresponding γβL3
y with ψ [given by294

(3) for S48’s model and (10) for M50’s model] agree very well with the stream functions295

shown in Figure 3.296

To benchmark our analytical expressions of the width (εbc) and speed (vbc) of the297

WBC against the values obtained by the numerical simulations, we propose the following298

(somewhat) arbitrary diagnostics:299

a) The width of the WBC (εDbc) is defined as the largest value of x for which300

v∗
(
x, y =

Ly

2

)
[the meridional velocity along y =

Ly

2 ] reaches half its maximum301

value; and302

b) The speed of the WBC (vDbc) is defined as the mean of v∗
(
x, y =

Ly

2

)
between 0 and303

εDbc.304

Figure 4(a),(c) shows v∗
(
x, y =

Ly

2

)
obtained from simulations carried out for two305

different sets of dimensional parameters in S48’s model. The dimensional parameters are306

chosen such that the value of α = r Lx

βL2
y

= 0.025 is the same in the two simulations. In307

contrast, the value of δ = Ly
Lx

reduces by a factor of 4 between the two simulations. Figure308
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4(b),(d) are the same as Figure 4(a),(c) except that v∗
(
x, y =

Ly

2

)
depicted is obtained from309

simulations carried out for two different sets of dimensional parameters in M50’s model. In310

these two cases as well, the dimensional parameters are chosen to ensure that α = −µ Lx

βL4
y

=311

−3.2 × 10−6 is the same while the value of δ reduces by a factor of 4 between the two312

simulations.313

As is evident from Figure 4(a),(c), the width of the WBC reduces from ∼ 80 km to ∼ 5314

km when δ reduces from 2π
10 to 0.5π

10 . This reduction in the width by a factor of 16 when δ is315

decreased by a factor of 4 is consistent with (6) which shows that εbc ∝ δ2 in S48’s model.316

Similarly, Figure4(b),(d) show that the width of the WBC reduces from ∼ 150 km to ∼ 25317

km when δ reduces from 2π
10 to 0.5π

10 in simulations based on M50’s model. This reduction in318

the width by a factor of 6 when δ is reduced by a factor of 4 is consistent with (12) which319

shows that εbc ∝ δ
4
3 in M50’s model.320

In all four cases shown in Figure 4, the differences between analytical estimate for the321

width and speed of the WBC (denoted by εTbc and vTbc) and their corresponding diagnostics322

(denoted by εDbc and vDbc) is less than a factor of 2. The agreement between our analytical323

obtained proxies and the proposed diagnostics for the width and the speed of the WBC324

further substantiates our findings, the implications of which are discussed in the next section.325

4 Discussion and Summary326

Since the introduction of the S48’s and M50’s models about 70 years ago, numerous327

theoretical and numerical investigations have been carried out to further explore the char-328

acteristics of westward intensification (Stommel, 1958; Hogg & Johns, 1995; Pedlosky, 2013;329

Vallis, 2017). Both S48’s and M50’s dimensional models clearly bring out the contribution330

of each source of vorticity: damping, planetary gradient and wind forcing in producing the331

characteristic east-west asymmetry of the flow in a basin. However, the precise contribution332

of each of the five dimensional parameters corresponding to the models i.e. Lx, Ly, β, τ0 and333

r/µ has only been partially analyzed or explained. In particular the effect of the domain334

aspect ratio δ =
Ly

Lx
has received no attention in the past 70 years.335

The formulation of S48’s and M50’s models in Vallis (2017) clearly highlights the effect336

of changes in r/µ and β on the characteristics of the WBC but this formulation assumes a337

square shaped basin and thus cannot be used to explored the effect that the basin’s aspect338

ratio has on the WBC. The role of the basin aspect ratio is the focus of the present work339

and our analysis is based on the formulation of the non-dimensional parameter δ =
Ly

Lx
as340

one of the two parameters in the properly scaled non-dimensional model.341

The results of the analysis developed here, demonstrate that in both S48’s and M50’s342

models, the width, speed and transport of the WBC each varies as a power law in δ for343

sufficiently small damping — α ≤ O(1) in S48’s model and |α| ≤ O(10−3) in M50’s model.344

The exponents of width, speed and transport of the WBC are 2, -1 and 1 respectively in345

S48’s model; and 4
3 −

1
3 and 1 respectively in M50’s model. A surprising and novel result of346

our analysis is that to first order the transport of the WBC in both models is linear with δ.347

For typical values of damping (α = 0.02 in S48’s and α = −3×10−6 in M50’s model), forcing348

(γ = 5 × 10−5), Lx = 10000 km and δ = 2π
10 , the estimated non-dimensional transport is349

0.55 in S48’s and 0.48 in M50’s model. The non-dimensional transport for identical values350

of α, γ and Lx as previously mentioned, but with δ = 0.25, drops to 0.14 in S48’s and 0.12351

in M50’s model. This linear dependence of the non-dimensional transport on the domain352

aspect ratio has not been quantified before and our study offers a clear appreciation of the353

role of δ in the S48’s and M50’s models of westward intensification.354

Another feature which emphasizes the treatment of δ as an important non-dimensional355

parameter for westward intensification comes out of the proxy for the width of the WBC356

in the two models [given by (6) and (12)]. We note that in S48’s model the proxy of the357
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WBC’s width ∼ αδ2 while in M50’s model the same proxy ∼ (−αδ4)
1
3 . Thus, for a constant358

α, a decrease in δ by a factor of 4 reduces the width of the WBC by a factor of 42 = 16 in359

S48’s model and by a factor of 4
4
3 = 6 in M50’s model — this analytic result is verified by360

the numerical simulations described in Section 3.2. Aside from confirming our findings, the361

agreement between the analytically calculated proxies of the width and speed of the WBC362

and the diagnostics of the same proposed for the numerical simulation validates that our363

steady state analysis is relevant to the time-dependent dynamics of the linearized system of364

SWEs describing the wind-driven circulation of a barotropic ocean.365

It is the proxies of width, speed and transport proposed in this study that enabled us to366

examine the intricate interplay between damping and domain aspect ratio in the westward367

intensification of wind-driven surface ocean currents. In particular, the dependence of trans-368

port of the WBC on the domain aspect ratio of the basin highlighted in this study cannot369

be determined using other scale analyses employed in theoretical physical oceanography.370

Similar proxies can also be developed in other ocean circulation models to better quantify371

the precise role played by a particular parameter in explaining a given phenomenon.372
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