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Abstract

Recent developments in space-based surveying methods of Earth’s topography, including the differential synthetic aperture
radar interferometry (DInSAR), increased the availability of options for monitoring of land subsidence. However, DInSAR
methods require expert knowledge, specialized software, and are time-consuming. Here, we demonstrate that a land subsidence
signal in the difference of freely available global digital elevation models (DEMs), e.g., SRTM and TanDEM-X, is identifiable
using a simple statistical method. This finding opens up a venue to develop a dedicated computer application to identify land
subsidence or uplift of the order > 20 mm yr. Such an application would allow for the monitoring of the impacts of underground
mining, earthquakes, landslides, volcanic activities, and similar effects on the Earth’s topography. This software will provide
a useful and cost-effective approach to scan the global DEMs for the benefit of many land planning and management agencies
around the world.
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Key Points: 13 

 Land subsidence or uplift signals can be identified using digital elevation models.  14 

 The difference between past and recent global digital elevation models reveals a land 15 

subsidence signal at the level of 20 mm yr
-1

.  16 

 Geoprocessing or an artificial intelligence approach can assist in identifying land 17 

deformations using dedicated software. 18 
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Abstract 21 

Recent developments in space-based surveying methods of Earth’s topography, including the 22 

differential synthetic aperture radar interferometry (DInSAR), increased the availability of 23 

options for monitoring of land subsidence. However, DInSAR methods require expert 24 

knowledge, specialized software, and are time-consuming. Here, we demonstrate that a land 25 

subsidence signal in the difference of freely available global digital elevation models (DEMs), 26 

e.g., SRTM and TanDEM-X, is identifiable using a simple statistical method. This finding opens 27 

up a venue to develop a dedicated computer application to identify land subsidence or uplift of 28 

the order > 20 mm yr
-1

. Such an application would allow for the monitoring of the impacts of 29 

underground mining, earthquakes, landslides, volcanic activities, and similar effects on the 30 

Earth’s topography. This software will provide a useful and cost-effective approach to scan the 31 

global DEMs for the benefit of many land planning and management agencies around the world.  32 

 33 

Plain Language Summary 34 

Land deformation is common throughout the globe and can potentially cause immense damage 35 

and loss. To monitor and manage incidences of land deformation, experts have developed a 36 

range of approaches that use spatial data about the Earth’s surface captured by space-based 37 

satellites. However, most, if not all, of these approaches are costly and not readily available as 38 

they require expert knowledge, specialized software, and enormous amounts of time and other 39 

resources. Yet, we have found an alternative approach that uses freely available data in the form 40 

of global digital elevation models. By applying a simple statistical method that calculates 41 

differences in elevation of the same area between two considerably separate time periods, this 42 

approach can isolate and identify areas of rupture, movement or other forms of deformation of 43 

the Earth’s topography as a result of natural events such as earthquakes and volcanic activities or 44 

human-made activities such as underground mining. By developing a suitable software 45 

application that uses this approach, the cost of detecting and monitoring land deformation can be 46 

significantly reduced, thus improving land survey and management efforts around the world. 47 

1 Introduction 48 

Underground mining has been attributed to several undesirable physical effects on the 49 

Earth’s surface, including mining-induced land deformations and landslides. In populated areas, 50 

underground mining can interfere with the anthropogenic infrastructure, leading to extensive 51 

damage or destruction, and could endanger human safety. Some measures have been proposed to 52 

mitigate the impacts of mining. Still, the successful implementation of these measures depends 53 

on several factors, including financial constraints and local politics, as well as precise and 54 

updated information on the spatial extent and velocity of land deformation. The latter can be 55 

obtained thanks to recent developments in the spaceborne surveying methods of the Earth’s 56 

surface, including the Synthetic Aperture Radar Interferometry (InSAR) (Crosetto & Pasquali, 57 

2008; Rosen et al., 2000), Differential Synthetic Aperture Radar Interferometry (DInSAR) 58 

(Crosetto et al., 2000), Persistent Scatterers Synthetic Aperture Interferometry (PsInSAR) 59 

(Ferretti et al., 2000; Ferretti et al., 2001) and the Small Baseline Subset (SBAS) InSAR method 60 

(Berardino et al., 2002), which have significantly enriched the arsenal of surveying methods for 61 

monitoring and investigating land deformation. However, SAR interferometry-based methods 62 

require extensive computing resources and are time-consuming. In addition,  these approaches 63 
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demonstrate some technical incompetence under certain circumstances when it comes to 64 

detecting surface deformations. For instance, they cannot detect the North-South deformation 65 

component, and create layover and shadowing problems that might also obstruct the results 66 

depending on the topography. Alternatives are therefore needed that are not only simpler in 67 

approach, more efficient and accurate, but also cost-effective in terms of the time required to 68 

process the data.  69 

In this contribution, we demonstrate that freely available global digital elevation models 70 

(DEMs) can be used to identify land subsidence/uplift caused by mining activities. Our approach 71 

is based on comparing digital elevation models that were captured at two distant moments, 72 

during which time the deformation occurred. While this method is straightforward, it has perhaps 73 

deterred others from developing it further because of the limitations of the vertical accuracy of 74 

global DEMs on the order of a few meters and the magnitude of land deformations at the level of 75 

submeters, sometimes larger. Nevertheless, we have managed to develop this approach by 76 

performing the following tasks towards reaching the aim of this project: 77 

 We developed a raster of mining-induced land deformation of a test area in Turkey using 78 

the SBAS (Berardino et al., 2002) method.  79 

 Using regression analysis and hypothesis testing, we calculated the difference between 80 

the recent (2014) TanDEM-X DEM and the Shuttle Radar Topography Mission (SRTM) 81 

elevation data product as the reference dataset for the deformation and no-deformation 82 

regions. 83 

Our calculations detected an identifiable signal in the differences between the DEMs, 84 

which strongly correlated with the land deformations. This finding provides a strong impetus for 85 

developing an application that can quickly and efficiently scan and calculate differences in 86 

existing global DEMs and identify land deformations of both anthropogenic and natural origins 87 

that have occurred during the first decade of the third millennia around the world.   88 

2 Materials and Methods 89 

2.1 Area of Interests (AOI) 90 

The AOI is situated in the central northern part of Turkey. It borders the northern 91 

coastline of the Black Sea and covers an area of 17.7 km to the east and 11.5 km to the west. The 92 

geographic coordinates of the SW/NE corners of the AOI are (WGS84): (Lat/Lon): 41
o
24’44”/ 93 

31
o
43’24” and 41

o
31’04”/31

o
56’05”. The topography is well developed. The average terrain 94 

elevation is approximately 233 m a.m.s.l. The lowest and highest points are at sea level and 600 95 

m a.m.s.l., respectively. The dominant land cover (approximately 75 %) is forest, of which 90 % 96 

is comprised of the deciduous tree species.The coastal strip comprises of human settlements, 97 

including transportation and industrial infrastructure; the largest settlements are Zonguldak and 98 

Kozlu, with a total population of approximately 150,000 residents combined and are located in 99 

the western section of AOI. The largest industrial facility is a large power plant at Çatalağzı and 100 

located in the central north of the AOI. The main industry is underground mining of hard coal 101 

located underneath the Zonguldak and Kozlu towns and also in the central part of AOI. Mining 102 

has been conducted in the area for over 100 years (Arca et al., 2018). The mining operations 103 

have been carried out at a depth of 400 m to 600 m.  Over the years, many land deformation and 104 
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landslide events have been observed, leading to serious damage to properties and even to deaths 105 

(Arca et al., 2018). 106 

2.2 Data 107 

2.2.1 Shuttle Radar Topography Mission (SRTM) Digital Elevation Data Product 108 

The SRTM-1” (v.3) (SRTM) elevation data product is a well-known global DEM that has 109 

been used for many types of geospatial studies in several branches of science. The space shuttle 110 

“Endeavor” in February 2000 hosted the unique single-pass Synthetic Aperture Radar (SAR) 111 

instrument to acquire the data for processing using the SAR interferometry (InSAR) method to 112 

generate semi-global DEM. The SRTM data product is available at one- and three-arcsec 113 

resolution (approximately 30 m or 90 m at the Equator). The three-arc second version was 114 

produced by the averaging process of the original one arc-second model. The vertical accuracy 115 

of SRTM DEM is approximately 2 m (one sigma - for horizontal surfaces), which is well over 116 

the mission’s requirement (Rabus et al., 2003; Becek 2008, 2014). Version 3 of the SRTM-1” is 117 

used as a reference data set in this contribution. The horizontal reference system used is WGS84, 118 

and the elevation is provided with reference to the Earth Gravity Model (EGM96). As the data 119 

for the SRTM product was captured during the winter season in the northern hemisphere,  the 120 

deciduous forests were in the leaves-off state, allowing for partial penetration of vegetation by 121 

the C-band microwaves of the SRTM mission SAR system (Becek, 2011). 122 

2.2.2 TanDEM-X Digital Elevation Data Product 123 

TanDEM-X 30m DEM (TDX) is an elevation data product developed from the data 124 

captured by the TerraSAR-X/TanDEM-X mission (Krieger et al., 2007). Similar to the SRTM, 125 

the TDX is a quasi-DSM representing the elevation of the terrain, including objects above the 126 

ground and elevation of the phase center between the canopy and the terrain in vegetated areas 127 

(Becek, 2011). The spatial resolution of the TDX models is one arcsec or approximately 30 m at 128 

the Equator. This model was developed by one of the authors of the paper using bilinear 129 

resampling of 0.4 arcsec resolution data provided by DLR as a part of a research project. 130 

However, the TanDEM-X DEM can be downloaded at the 3” arcsec resolution from 131 

https://geoservice.dlr.de/web/dataguide/tdm90/ free of charge. The 0.4 arcsec DEM is available 132 

as a commercial product known as WorldDEM
TM

 (Becek et al., 2016). The vertical accuracy of 133 

the TDX is approximately 2 m (one sigma), while the accuracy of the  WorldDEM
TM

 is 134 

approximately 0.8 m (one sigma) (Becek et al., 2016). Since the source of the data for the TDX 135 

and WorldDEM
TM

 are the same, one can expect that the conclusions from this study are valid for 136 

both models. The horizontal reference system for TDX is WGS84. The vertical datum is the 137 

WGS84 ellipsoid. According to the metadata file of the TDX, the SAR data were acquired 138 

during 27 passes of the satellites between 17/02/2011 and 27/08/2014 and then averaged. Fifteen 139 

images were taken during the leaves-off state of vegetation (autumn to early spring). This further 140 

means that a vegetation bias can be present in the TDX and be similar to that of SRTM. 141 

2.2.3 Synthetic Aperture Radar (SAR) Data 142 

To identify the deformations in AOI, we used the SAR data captured by the Copernicus 143 

Sentinel 1A/B satellite mission (ESA, 2020). A total of 103 images acquired in the 144 

Interferometric Wide-Swath (IW) mode from the descending orbit no. 65 were used in the study. 145 

The images were acquired between Jan. 2018 and Oct. 2019. 146 

https://geoservice.dlr.de/web/dataguide/tdm90/
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2.2.4 Reference DEM 147 

A high quality and recent DEM model (HQM) was used to calibrate the SRTM and TDX 148 

models. The HQM is a digital surface model (DSM) produced from stereo pairs of 2017 aerial 149 

photography. The original DSM was produced at the resolution of 0.45 m, but it was available to 150 

the authors at the resolution of 5 m. The vertical accuracy is 1.52 m (one sigma) (Yilmaz & 151 

Erdoğan, 2018). The HQM is referenced to the national heighting system of Turkey (orthometric 152 

system). The HQM was further downsampled using the bilinear method to one arcsec resolution 153 

as the investigated DEMs. The assessment of the vertical accuracy of the model was confirmed 154 

using the runway method [4], carried out at a few selected flat sites, including sports fields and a 155 

highway. 156 

2.3 Methods 157 

2.3.1 Small Baseline Subset (SBAS) method 158 

The SBAS method is a version of the Differential SAR interferometry (DInSAR) method, 159 

(e.g., Lanari et al., 2007). The SBAS method was developed to monitor land deformation as a 160 

function of time (Berardino et al., 2002). This method allows for the estimation of the velocity of 161 

the deformation with an accuracy of approximately 5 mm yr-1 (Casu et al., 2005, 2006; Lanari et 162 

al., 2007). The SBAS data processing procedure has been described by others (e.g., Ferretti et al., 163 

2001; Hanssen, 2001; Rosen et al., 2000) and its applications include assessing land subsidence 164 

under big cities (Amelung et al., 1999; Lanari et al., 2004), monitoring land subsidence caused 165 

by groundwater level change (Normand & Heggy, 2015), monitoring volcano eruption (Lee et 166 

al., 2006), and assessing mining-induced land deformation (Goel & Adam, 2014). One of the 167 

initial SBAS processing steps is to form the interferograms based on pairs of images taken from 168 

different points on the orbit separated by the spatial baseline. The second condition for selecting 169 

the images for interferogram is to restrict the temporal baseline (time between two image 170 

acquisitions). A temporal baseline of shorter than 36 days and a spatial baseline shorter than 100 171 

m were adopted in our case. Given the conditions, a total of 326 interferograms were formed. 172 

The SRTM-1” DEM was used to subtract the topographic phase from interferograms - a step in 173 

the SBAS data processing. As a final result, the raster of the Line-of-Sight (LOS) deformation 174 

had been obtained. The LOS deformation is a composite vector of land subsidence and 175 

horizontal displacement. Since we processed the images from the descending orbit only, it is not 176 

possible to split the LOS vector into the north/east components. The resulting raster has a spatial 177 

resolution of approximately four arcsec. The interferometric calculation, as well as the SBAS 178 

processing, were performed in the GMTSAR software (Sandwell et al., 2011). The SNAPHU 179 

software was used to unwrap the interferograms (Chen & Zebker, 2001). 180 

2.3.2 Vertical Accuracy Model of the DEMs Difference 181 

The vertical accuracy statement of the DEMs provided in Sections 2.2.1 to 2.2.4 covers 182 

the instrument- and the environment-induced component of the elevation error only (Becek 183 

2008, 2014). These components do not include the contribution of the so-called target induced 184 

component, which depends on the size of the pixel and slope of the terrain. The contribution of 185 

these two variables can be calculated from Equation (1) (Becek 2008): 186 

𝜎2 =
1

12
𝑑2𝑡𝑎𝑛2(𝑠),     (1) 187 
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where 𝜎2 is the variance of the target-induced error, 188 

d is pixel size, and 189 

s is the slope at a given pixel. 190 

The target-induced error of a DEM for a given AOI is the arithmetic average of the errors 191 

of all pixels within the AOI. 192 

To calculate the total vertical error of a DEM within a given AOI, we assume that the 193 

components of the error, e.g., the instrument-, environment-, and target-induced errors are 194 

statistically independent. Hence, the total vertical error can be estimated using Equation (2) 195 

[ibid]: 196 

𝜎𝑡𝑜𝑡𝑎𝑙
2 = 𝜎𝐼

2 + 𝜎𝐸
2 + 𝜎𝑇

2,     (2) 197 

where  𝜎𝐼
2, 𝜎𝐸

2, 𝜎𝑇
2 are the variance of the instrument-, environment- and target-induced 198 

error. 199 

In further considerations, we omitted the environment-induced error. In this study, we 200 

used the difference between the DEMs. To estimate the vertical error of the difference of two 201 

uncorrelated random variables (DEM1 and DEM2), we used the error propagation law expressed 202 

in a simple form as per Equation (3): 203 

𝜎𝑑𝑖𝑓𝑓
2 = 𝜎𝐷𝐸𝑀1

2 + 𝜎𝐷𝐸𝑀2
2 ,      (3) 204 

where 𝜎𝑑𝑖𝑓𝑓
2 , 𝜎𝐷𝐸𝑀1

2 , 𝜎𝐷𝐸𝑀2
2  is the variance of the error of difference, DEM1, and DEM2, 205 

respectively. 206 

Note that we used here the term ‘variance’ as the second power of the ‘standard 207 

deviation.’ However, in a more general case, when there is a bias or systematic error in the 208 

difference between random variables (avg(DEM1 - DEM2) <> 0), the correct term is the ‘mean 209 

squared error’ or MSE. 210 

3 Results 211 

3.1. Line-of-Sight (LOS) Deformation 212 

Figure 1 shows a map of the LOS deformations in the AOI calculated for the period 213 

between January 2018 and October 2019. The locations of some of the mines (red solid line) are 214 

also shown on the map. The deformations appear to be closely associated with underground 215 

mining operations. In the northeastern and southern sections of the map, some uplift areas are 216 

visible. Avsar et al. (2017) suggest a tectonic uplift of up to 6 mm yr
-1

 around the Black Sea 217 

region as a possible reason. In addition, the artifacts related to the low coherence may be due to 218 

vegetation. 219 

 220 
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 221 

Figure 1 The Line of Sight (LOS) raster of deformation as a result of SBAS processing of the 222 

Copernicus Sentinel 1A/B SAR data. The deformations occurred between January 2018 and 223 

October 2019. The approximate location of the mining infrastructure is also shown. 224 

The deformation areas were manually, and arbitrary outlined (solid black line). Figure 2 shows 225 

histograms of deformations for the deformation (a), and no-deformation areas (b), respectively. 226 

The histograms are bimodal (negative skew), suggesting that two random processes are 227 

contributing to the deformations. The histograms were modeled using the generalized Gaussian 228 

pdf. The analysis of the histograms helps to identify the origin of the underlying processes 229 

contributing to the deformation. Hence, the Gauss 1 and Gauss 3 curves in Figure 2  represent 230 

the measurement noise of the SBAS technique. Since the Gauss 1 curve also contains some 231 

residuals of the deformation signal, its standard deviation (10.8 mm) is higher than that of the 232 

Gauss 3 curve. This conclusion is consistent with the results found in, e.g., (Casu et al., 2005, 233 

2006; Lanari et al., 2007). 234 
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 235 

Figure 2 Histograms of the LOS deformation in a) the deformation area, and b) the no-236 

deformation area Histograms are modeled using a two-term generalized Gaussian pdf. The mean 237 

and standard deviation are also shown. The negative skewness of the histogram indicates the 238 

presence of land subsidence in the AOI. 239 

The curve Gauss 2 in Figure 2a represent the deformation in the deformation area. It 240 

reveals that the average deformation is -68.6 mm with the standard deviation of 29.1 mm, which 241 

translates to –3.4 mm yr
-1

. 242 

3.2. DEMs difference 243 

The TDX and SRTM models exhibit elevation bias with respect to the local orthometric 244 

vertical reference systems. The source of this bias may be related to the calibration of SAR 245 

instruments, the precision of the EGM96 geoid model, and the characteristics of the local 246 

heighting system. Depending on the region of the world, the bias may be negative or positive and 247 

is of the order of one meter (Becek, 2014). To remove the bias from TDX and SRTM, we used a 248 

reference HQM. We corrected the DEMs by subtracting the average difference between both 249 

models and HQM with the opposite sign. We found that the bias for the TDX (including the 250 

geoid undulation ) was 32.38 m (TDX was too high); the SRTM bias was -1.524 m (SRTM was 251 

too low).  Figure 3 shows a map of differences between the (corrected) TDX and SRTM. 252 
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 253 

Figure 3. Map of the difference TDX minus SRTM. The SBAS-estimated location of 254 

deformation areas is also shown. 255 

The histograms of the difference between the corrected TDX minus SRTM models are 256 

shown in Figure 4. We performed the one-sample Kolmogorov-Smirnov test to verify the 257 

hypothesis that the differences follow a normal distribution. The result suggests that the 258 

differences do not follow a normal distribution at the 5% significance level. Instead, we use the 259 

Laplace probability density function (pdf) to model the histogram. The Laplace pdf is controled 260 

by µ - the location parameter and b - the scale parameter. The maximum likelihood estimator of  261 

µ is the sample median, and the estimator of b is the mean absolute deviation from the location 262 

parameter (Robert & Norton,1984). The variance of difference is 𝜎2 = 2𝑏2. 263 

 264 
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 265 

Figure 4. Histograms of differences between TDX minus SRTM for the deformation and no-266 

deformation areas. The Laplace pdf curves, including the location parameter (µ), scale parameter 267 

(b), and the standard deviation (SD, for the deformation (a) area, and no-deformation area (b) are 268 

also shown. 269 

The calculations yielded the location parameter (approximate average difference) = -270 

0.508 (σ = 7.61) m, and -0.036 ( σ = 8.54), for the deformation and no-deformation area, 271 

respectively.  272 

The average difference in the deformation area is smaller than in the no-deformation area 273 

by -0.472 m (= -0.508 + 0.036), suggesting that TDX contains the deformation signal or 274 

anomaly. To verify if this observation is statistically significant, we conducted a hypothesis test. 275 

The null hypothesis is (H0): The average difference TDX minus SRTM µ = 0 m. The alternative 276 

hypothesis is HA: The average difference µ < 0 m. To perform the test, we randomly selected 277 

1000 pixels in the no-deformation area. The mean difference for these random points was -0.495 278 

m (s = 7.78 m). We found the p-value = 0.025 < 0.05 or the confidence level of 95%. These 279 

results allows us to reject the null hypothesis at the 95% confidence level, which means that the 280 

difference TDX minus SRTM within deformation and no-deformation areas are statistically 281 

significant. 282 

3.3 Difference vs. Deformation 283 

Figure 5 shows a scattergram of the difference TDX minus SRTM vs. LOS deformation. 284 

A linear trend suggests a relationship between both variables. The Spearman’s correlation test for 285 

the deformation area produced correlation coefficient = 0.045 with p-value = 5.2231*10
-9

 < 0.01. 286 

   287 
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 288 

Figure 5. TDX  minus SRTM vs. LOS deformation, including a regression line. The correlation 289 

coefficient = 0.045, p-value = 5.2231*10
-9

 < 0.01 (Spearman’s test). 290 

The pink ellipses in Figure 5 delineate outliers (that were considered in the hypothesis 291 

tests). A detailed inspection of the outliers determined that they are not related to the land 292 

deformation, but to the open pit excavations and piling of a byproduct of the coal power plant at 293 

Çatalağzı. 294 

4 Conclusions 295 

To the authors’ knowledge, this is the first study to use the global digital elevation 296 

models to identify land deformations of the order of a few cm yr
-1

. It is a straightforward 297 

approach for which the basic requirement is that there be a sufficient period between when 298 

selected DEMs were captured. In our case, the lapse is approximately ten years. As a test field, 299 

we used a region exposed to long-term underground mining-induced land deformation. Still, this 300 

approach could be applied to identify any other type of deformations, either uplift or subsidence. 301 

The causes of land deformation may include tectonic-, seismic-, landslides-, and volcanic-302 

induced topography change over time. Since the LOS deformation occurred within a 20-month 303 

period, the average velocity = -68.6 mm over 20 months or -41.2 mm yr
-1

. Considering this value 304 

in the context of the average difference between TDX and SRTM, which is approximately -472 305 

mm and appeared over approximately 168 months or -33.7 mm yr
-1

, one can conclude that the 306 

results are consistent (the vertical component of the LOS deformation vector is smaller than the 307 

LOS vector). 308 
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The sensitivity of this method to identify land deformation depends on the accuracy of 309 

the DEMs used. A key and variable component of the accuracy of a DEM is the target-induced 310 

error (see Equation 1), which depends on the pixel size and local slope. This fact justifies the 311 

statement that for a given pair of DEMs (e.g., SRTM and TDX), the sensitivity of the method 312 

depends on the roughness of terrain: Higher slopes limit the sensitivity of the technique. The 313 

average slope in our case was 12.4°.  314 

We have also tested the AW3D30 m DEM (Tadono et al., 2016) against SRTM. The 315 

obtained results (not shown here) were similar, suggesting that other DEMs can be used for 316 

similar studies of land deformations anywhere in the world. 317 

To conclude, this paper has proven the effectiveness of this method to detect land 318 

deformation using readily available DEMs. By developing a dedicated software using artificial 319 

intelligence that implements this technique, it is possible to save time and costs to construct the 320 

DInSAR-based deformation raster.  321 
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