
P
os
te
d
on

16
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
29
08
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

A reconstruction algorithm for temporally aliased seismic signals

recorded by the InSight Mars lander

Sollberger David1, Schmelzbach Cedric2, Andersson Fredrik2, Robertsson Johan O. A.1,
Brinkman Nienke3, Kedar Sharon4, Banerdt Bruce5, Clinton John6, van Driel Martin7,
Garcia Raphael F.8, Giardini Domenico7, Grott Matthias9, Haag Thomas3, Hudson Troy
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Abstract

The NASA InSight lander successfully placed a seismometer on the surface of Mars. Alongside, a hammering device was deployed

that penetrated into the ground to attempt the first measurements of the planetary heat flow of Mars. The hammering of the

heat probe generated repeated seismic signals that were registered by the seismometer and can potentially be used to image

the shallow subsurface just below the lander. However, the broad frequency content of the seismic signals generated by the

hammering extends beyond the Nyquist frequency governed by the seismometer’s sampling rate of 100 samples per second.

Here, we propose an algorithm to reconstruct the seismic signals beyond the classical sampling limits. We exploit the structure

in the data due to thousands of repeated, only gradually varying hammering signals as the heat probe slowly penetrates into

the ground. In addition, we make use of the fact that repeated hammering signals are sub-sampled differently due to the

unsynchronised timing between the hammer strikes and the seismometer recordings. This allows us to reconstruct signals

beyond the classical Nyquist frequency limit by enforcing a sparsity constraint on the signal in a modified Radon transform

domain. Using both synthetic data and actual data recorded on Mars, we show how the proposed algorithm can be used to

reconstruct the high-frequency hammering signal at very high resolution. In this way, we were able to constrain the seismic

velocity of the top first meter of the Martian regolith.
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Key Points:15

• Hammering of the InSight heat probe generates high-frequency seismic signals that16

exceed the Nyquist frequency of the seismometer.17

• We developed a new data acquisition and reconstruction workflow that allows for18

the recovery of the full-bandwidth hammering signals.19

• We thus deliberately turned off the anti-aliasing filters and reconstructed the aliased20

signal using a sparseneess-promoting algorithm.21
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Abstract22

The NASA InSight lander successfully placed a seismometer on the surface of Mars. Along-23

side, a hammering device was deployed that penetrated into the ground to attempt the24

first measurements of the planetary heat flow of Mars. The hammering of the heat probe25

generated repeated seismic signals that were registered by the seismometer and can po-26

tentially be used to image the shallow subsurface just below the lander. However, the27

broad frequency content of the seismic signals generated by the hammering extends be-28

yond the Nyquist frequency governed by the seismometer’s sampling rate of 100 sam-29

ples per second.30

Here, we propose an algorithm to reconstruct the seismic signals beyond the clas-31

sical sampling limits. We exploit the structure in the data due to thousands of repeated,32

only gradually varying hammering signals as the heat probe slowly penetrates into the33

ground. In addition, we make use of the fact that repeated hammering signals are sub-34

sampled differently due to the unsynchronised timing between the hammer strikes and35

the seismometer recordings. This allows us to reconstruct signals beyond the classical36

Nyquist frequency limit by enforcing a sparsity constraint on the signal in a modified Radon37

transform domain.38

Using both synthetic data and actual data recorded on Mars, we show how the pro-39

posed algorithm can be used to reconstruct the high-frequency hammering signal at very40

high resolution. In this way, we were able to constrain the seismic velocity of the top first41

meter of the Martian regolith.42

1 Introduction43

The NASA InSight mission successfully landed on Mars in November 2018 (Banerdt44

et al., 2020). Since then, the SEIS package, consisting of two three-component seismome-45

ters (Lognonné et al., 2019), and the heat flow and physical properties package (HP3)46

(Spohn et al., 2018) were deployed directly onto the surface of Mars. HP3 consists of a47

self-hammering probe, referred to as the ’mole’, that penetrates into the shallow subsur-48

face of the Martian regolith with the aim to take thermal conductivity and temperature49

measurements in order to better understand the Martian planetary heat flow. The ham-50

mering mechanism of the mole is designed to slowly dig into the regolith at a rate of about51

0.1-1 mm per hammer stroke (Kedar et al., 2017). This means that thousands of repeated52

hammer strokes are needed to reach the target depth of 5 m.53

HP3 hammering generates seismic signals that are recorded by SEIS. These signals54

can potentially be used to image the shallow subsurface just below the lander (Kedar55

et al., 2017; Golombek et al., 2018). However, the seismic analysis of the HP3 hammer-56

ing signals does not address one of the primary mission goals and the experiment was57

not conceived before finalizing the system design. Therefore, the data acquisition for this58

opportunistic experiment had to be implemented with the constraints given by the al-59

ready designed seismic data acquisition flow. Hence, the need to develop the reconstruc-60

tion workflow discussed in this paper.61

SEIS is deployed in close proximity to the HP3 mole at a distance of 1.18 m (Fig. 1).62

As a result, the travel times of seismic waves generated by the hammering of the mole63

are extremely short (just a few milliseconds). In order to extract subsurface information64

from the seismic data (such as seismic velocity and reflectivity), it is thus of crucial im-65

portance to have a high temporal resolution for both the recorded seismic signal and the66

origin time of each mole stroke (i.e., the time the hammer stroke occurs). The latter is67

known with an accuracy of 1.7 milliseconds from the measurements of an accelerome-68

ter that is mounted inside the mole (Spohn et al., 2018). In this paper, we develop a method69

to additionally increase the temporal resolution of the recorded seismograms beyond the70

nominal sampling rate of the seismometer. Increasing the temporal resolution is a crit-71

–2–
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Figure 1. Configuration of SEIS and HP3 on Mars. The orientation and location of the three
components of the short-period (SP) and very broadband (VBB) seismometers are marked in red
and blue, respectively.

ical step since the nominal sampling interval of SEIS is longer than the expected seis-72

mic travel time between HP3 and SEIS, effectively preventing the extraction of seismic73

velocities (Kedar et al., 2017).74

SEIS is operated with on-board digital anti-aliasing filters to prepare the seismic75

information to be returned to Earth with a maximum sampling rate of 100 samples per76

second (sps). This sampling rate provides sufficient temporal resolution for most of the77

anticipated Martian seismic signals such as marsquakes and meteorite impacts (Lognonné78

et al., 2019; Giardini et al., 2020). However, the impulsive seismic signals generated by79

HP3 hammering are very broad-band and may contain frequencies up to and beyond 250 Hz80

(Kedar et al., 2017). The application of the nominal anti-aliasing filter would thus re-81

sult in a severe loss of information during acquisition. Fig. 2 shows the signal of a sin-82

gle hammer stroke measured using a commercial seismometer in an analogue experiment83

conducted on Earth in the Nevada desert. The pass region of the nominal SEIS anti-aliasing84

filter is marked in red. Note how a significant portion of the information including the85

dominant signal energy between 100 and 150 Hz would be lost using the nominal anti-86

aliasing filter.87

Given the fact that the idea of using HP3 as a seismic source was conceived after88

the implementation of the seismic acquisition hardware, the InSight science team had89

to find ways to circumvent limitations of the existing acquisition hardware, such as the90

insufficient sampling rate. With the goal to enable the analysis of seismic information91

beyond the highest nominal Nyquist frequency of SEIS (i.e., 50 Hz), we designed a data92

acquisition and reconstruction workflow that consists of (1) recording aliased data by re-93

placing the nominal anti-aliasing FIR filters by all-pass filters and (2) reconstructing the94

data at a high sampling rate using a sparseness-promoting algorithm. We illustrate the95

success of our method in recovering the high frequency information from the hammer-96

ing signals using both synthetic data and actual data from Mars.97

The HP3–SEIS experiment marks, to the best of our knowledge, the first active seis-98

mic experiment ever conducted on Mars (Brinkman et al., 2019). A similar robotic ac-99

tive seismic experiment on an extraterrestrial object has only been attempted once be-100

fore on the comet 67P Churyumov–Gerasimenko during the Rosetta mission and allowed101

–3–
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Figure 2. Amplitude spectral density of an HP3 hammering seismic signal obtained in an
analogue experiment on Earth. The response of the nominal SEIS anti-aliasing filter is shown
in red. The proposed digital all-pass filter passes information throughout the complete band-
width (green). As a result, the recorded seismic signals will be aliased by several factors when
downsampled to 100 sps.

for the extraction of the comet’s elastic properties (Knapmeyer et al., 2018). On the lu-102

nar surface, the Apollo astronauts conducted active seismic profiling experiments using103

mortar and explosive sources (Brzostowski & Brzostowski, 2009), in order to characterise104

the shallow subsurface structure at the Apollo 14, 16, and 17 landing sites (Cooper et105

al., 1974). In recent years, the Apollo seismic data have been re-processed with modern106

analysis tools that allowed for the extraction of novel information on the near-surface107

structure of the Moon (Heffels et al., 2017; Sollberger et al., 2016).108

2 SEIS data acquisition flow109

The two seismometers in the SEIS package (VBB and SP) nominally cover a com-110

bined seismic bandwidth from 0.01 Hz to 50 Hz (Lognonné et al., 2019). Even though111

the instruments would be capable of measuring data at higher frequencies than 50 Hz,112

this upper limit is imposed by the maximum sampling rate of the acquisition hardware113

(100 sps). The two seismometers record continuously and the data are stored inside a114

buffer on-board the lander. From there, the data are first uplinked to the relay satellites115

orbiting Mars (usually about two uplink passes per day) and subsequently downlinked116

to Earth. Due to the limited storage space of the buffer (64 Gigabit of flash storage) and117

data transfer bandwidth limitations, the data volume that can be transferred to Earth118

is restricted. The continuous seismic data is therefore down-sampled directly on-board119

the lander to a lower sampling rate before it is sent to Earth. Based on the continuous120

low-rate data, event data at a higher sampling rate (up to 100 sps) can be requested for121

periods of time where seismic signals are observed. In this section, we describe how the122

data decimation process is implemented inside the space craft electronics and illustrate123

the changes that were implemented for the HP3 hammering experiment to recover the124

high-frequency information of the hammering signals.125

The SEIS signals pass through the data acquisition and decimation flow illustrated126

in Fig. 3. The analog voltage signal from the seismometers first passes through an ana-127

log anti-aliasing filter, before it is digitised by the sigma-delta analog to digital converter128
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Figure 3. Acquisition and digitization of seismic signals recorded by the two SEIS seismome-
ters. The filtering step in the red box can be changed from Earth by uploading different filter
coefficients to the lander. Different filters can be uploaded for VBB and SP (FIR1 and FIR2,
respectively)

(ADC) on-board the lander at a sampling rate of 32 kHz. Subsequently, the signal is passed129

through an additional digital (sin(x)/x)3 (also called sinc3) low-pass filter with a cut-130

off frequency of 500 Hz and decimated to a sampling rate of 500 sps. The 500 sps sig-131

nal is then passed through a digital finite-impulse response (FIR) filter (FIR1 and FIR2132

in Fig. 3). Nominally, this filter is set to be a low-pass with a cut-off of 39.8 Hz (-3 dB133

half-power point) in order to avoid aliasing in the final 100 sps data product. The FIR134

filters of each of the two seismometers can be individually changed by uploading new fil-135

ter coefficients to the lander. During HP3 hammering, we replaced the nominal FIR anti-136

alias filter on the SP sensor by an all-pass filter (FIR1 in Fig. 3) in order to avoid los-137

ing the information above 50 Hz. As a consequence, the decimated signal at 100 sps con-138

tains signal up to 500 Hz, which are aliased and thus overlapping the 0-50 Hz range cor-139

respondingly.140

The impulse time and frequency responses of both the nominal (39.8 Hz cut-off)141

and the proposed all-pass filters are shown in Fig. 4. Note that the proposed all-pass fil-142

ter has a flat frequency response over the full bandwidth. Consequently, its impulse re-143

sponse in time corresponds to a single spike. Because the FIR filter coefficients are im-144

plemented in the SEIS electronics as signed 32-bit integer numbers, the maximum pos-145

sible amplitude of the spike is (231 − 1)/(232) ≈ 0.5. As a consequence, the raw data146

need to be multiplied with a factor of 2 during the conversion from digital counts to volt,147

which results in the loss of 1 bit of resolution (the nominal resolution is 24 bits). Fur-148

thermore, the all-pass filter was implemented with a group delay of 0.244 s, whereas the149

nominal FIR filter has a group delay of 0.24 s (see delay between the black and the red150

curves in the top of Fig. 4).151

3 Theory152

The rules dictating the sampling of signals are governed by the Nyquist–Shannon153

sampling theorem (Shannon, 1948), stating that in order to reconstruct a signal from its154

samples, the signal must contain no information at and above the Nyquist frequency cor-155

responding to half the sampling frequency. However, the Nyquist–Shannon sampling the-156

orem assumes sampling of a single quantity of the underlying signal. If multiple data types,157

corresponding to data filtered before sampling with linearly independent filters in the158

domain of sampling are available, then the Nyquist–Shannon sampling criterion is re-159

laxed proportionally to the new degrees of freedom added to solve the problem. This so-160

called generalized sampling theorem (Papoulis, 1977) provides the mathematical frame-161

work for the reconstruction algorithm we propose in this paper.162

–5–
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Figure 4. Impulse responses and frequency responses of the digital FIR filters implemented in
the SEIS acquisition electronics.

In case of the HP3 hammering signals, we have access to multiple realizations of163

approximately the same signal from subsequent mole strokes. Because the source trig-164

gering and sampling process are unsynchronized, the different realizations will appear165

as if they have been filtered in time with different Fourier shift filters (i.e., the 100 sps166

sampling comb is randomly shifted in time for each hammering signal). While the use167

of the generalized sampling theorem as described above relies on multiple realizations168

of the same signal, we allow for the reconstruction of smoothly varying signals by exploit-169

ing the inherent linear data structure when the hammer recordings are rearranged into170

a 2D signal (with time relative to the hammer stroke on one axis and space on the other),171

causing the signal to have a sparse representation in the Radon transform domain.172

Reconstruction problems are inherently underdetermined (i.e., the number of sam-173

ples that are sought to be recovered is always greater than the number of data points174

that are available to constrain the problem). Such problems thus need to be regularized175

in some way, which means that a priori information about the signal must be included176

to achieve a successful reconstruction. Recent advances in signal processing make use177

of signal sparsity as a priori knowledge to regularize the underdetermined reconstruc-178

tion problem (Candès et al., 2006a,b; Donoho, 2006). Sparsity is thereby usually described179

either by the `0- or the `1-norm of the signal and penalties are given to reconstructions180

with high `0- or `1-norm. A prerequisite is that the signal has a sparse representation181

in some transform domain and the success highly depends on the compressibility of the182

signal and thus the selection of the sparsifying transform (i.e., an operator mapping the183

signal data vector to a sparse vector). The concept of sparsity-constrained reconstruc-184

tion has been successfully applied, for example, to accelerate magnetic resonance imag-185

ing (Lustig et al., 2007) or to interpolate seismic data (Herrmann & Hennenfent, 2008).186

–6–
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Here, we devise a signal reconstruction algorithm using sparsity constraints. The187

key characteristics of the HP3 seismic signals that are exploited for reconstruction are:188

1. The hammering signal is highly repeatable and only slowly varying in space (depth)189

due to the slow penetration rate of the mole.190

2. The signal sample times of repeated hammering signals are different since the trig-191

ger time of the hammer mechanism is unsynchronised with the sampling process192

of SEIS.193

As we will demonstrate in the following, these characteristics have the effect that the ham-194

mering signals are highly compressible using a modified Radon transform. This prop-195

erty, in addition with the quasi-random sub-sampling of the signal due to the unsynchro-196

nised timing between the hammer strokes and the recording system provides the foun-197

dation for successful sparse reconstruction.198

3.1 Signal compressibility199

Let d(t, x) be a 2D signal (e.g., seismic data) of time variable t and space variable
x. The linear Radon transform allows for representing the signal as a superposition of
integrals over straight lines (Radon, 1917). Each point in the transform domain (in the
following referred to as τ -p-plane) then corresponds to the line integral of d(t, x) over the
straight line with intercept time τ and slope (or slowness) p. Here, we begin with the
inverse Radon transform (i.e., the operation corresponding to the summation of all points
passing through a line). It can be formulated in the following way

d(t, x) = R∗mδ(τ, p) =

∞∫
−∞

∞∫
−∞

mδ(τ, p)δ(t− τ − px)dτdp, (1)

where mδ(τ, p) is the representation of the signal in the τ -p-plane, R∗ is the inverse Radon200

transform operator, and δ(t−τ−px) is the basis function of the transform describing201

lines of slope p and intercept time τ .202

If the signal d(t, x) shows an underlying 2D linear structure, it will focus at sparse203

locations in the Radon transform domain, since the transform compresses each line to204

a point (i.e., the Radon transform is a sparsifying transform for such a signal).205

In the following, we assume that d(t, x) is a seismic signal. Seismic data are always206

band-limited due to the blurring effect caused by the band-limited source wavelet. This207

reduces the temporal focusing capabilities and thus the sparsifying potential of the con-208

ventional Radon transform for seismic data. A sparser τ -p-representation of the data can209

be found when information on the seismic wavelet (i.e., the source-time function of the210

seismic source) is included into the basis function of the transform (Gholami, 2017).211

Let w(t) be a suitably defined, known wavelet that is a reasonable approximation212

to the actual source time function of the seismic source. We now modify the basis func-213

tion of the Radon transform to find a sparser τ -p-plane representation of the signal by214

including information on the wavelet (Gholami, 2017). The modified basis function now215

reads:216

w(t− τ − px) = w(t) ∗ δ(t− τ − px). (2)

This new basis function is still constant along all lines of slope p but at a fixed point217

in space x, it is a wavelet shifted in time. This allows for a particularly good represen-218

tation of seismic signals as a super-position of band-limited transient plane waves. It can219

be shown that this modified Radon transform can simply be expressed by the conven-220

–7–
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tional Radon transform and an additional deconvolution with the wavelet w(t). For the221

inverse of this modified Radon transform, it follows that (Gholami, 2017):222

d(t, x) =

∞∫
−∞

∞∫
−∞

mw(τ, p)w(t− τ − px)dτdp

=

∞∫
−∞

∞∫
−∞

mw(τ, p)[w(t) ∗ δ(t− τ − px)]dτdp

= w(t) ∗
∞∫
−∞

∞∫
−∞

mw(τ, p)δ(t− τ − px)dτdp = w(t) ∗ R∗mw(τ, p),

(3)

where mw(τ, p) are the τ -p-coefficients of the signal in the modified Radon transform do-223

main. Eq. 3 makes the implementation straightforward as it allows one to use existing224

Radon transform routines. In the following, we make use of a recently published, fast225

implementation of the Radon transform (Andersson & Robertsson, 2019).226

3.1.1 Discrete implementation227

For the discrete implementation of this modified Radon transform, let d ∈ RM ,228

and m ∈ RN be vectors containing discrete samples of the signal coefficients in the t-229

x- and τ -p-planes, respectively. The number of discrete samples are given by M = ntnx,230

and N = nτnp, with nt being the number of time samples, nx the number of samples231

in space, nτ the number intercept times, and np the number of slowness values. In the232

following ‖.‖p is the `p-norm of a vector and (using the example of m) is defined as ‖m‖p :=233 (∑M
i=1 |mi|

p
) 1

p

. The discrete forward Radon transform can now be formulated in the234

form of an optimization problem based on Eq. (3) to find the best-fitting (in a least-squares235

sense) τ -p-representation m̂ of the signal as:236

m̂ = argmin
m

‖d−WR∗m‖2 . (4)

Here, W ∈ RM×M is a block-diagonal matrix with nx blocks, each block corre-237

sponding to a Toeplitz matrix T ∈ Rnt×nt that is constructed from the wavelet by cyclic238

permutation. Left multiplication with W corresponds to a convolution with the wavelet.239

The matrix R ∈ RM×N is the Radon transform matrix, which is readily implemented240

in the frequency domain with the elements given by Rjk = eiωpjxk , where ω is the an-241

gular frequency. The asterisk marks the Hermitian conjugate operator. The solution of242

the optimization problem typically requires some form of stabilization, such as Tikhonov243

regularization.244

The improvements in signal compressibility that can be achieved using the mod-245

ified, sparse Radon transform compared to the conventional Radon transform are illus-246

trated in Fig. 5. A synthetic signal is shown that comprises two band-limited plane waves,247

the first with slowness p1 = 0 s/m and intercept time τ1 = 0.15 s and the second with248

slowness p2 = 0.25 s/m and intercept time τ2 = 0.16 s (Fig. 5a). The conventional, lin-249

ear Radon transform focusses the two waves at the expected locations in the τ -p-plane250

(Fig. 5b). Note that the temporal resolution is limited due to the sub-optimal choice of251

the basis function. Additionally, the energy of the two events smears out due to the lim-252

ited aperture of the data in the space direction. The modified Radon transform accounts253

for the band-limited nature of the data and allows to effectively compress each plane wave254

to a single point in τ -p-space (Fig. 5c).255

–8–
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Figure 5. (a) Two linear band-limited events in the space-time domain. (b) Conventional
linear Radon transform of the data in (a). (c) Sparse, modified Radon transform.

3.2 Signal reconstruction256

The reconstruction problem can be understood as a modified version of the forward257

Radon transform with an additional sparsity constraint. Instead of having access to the258

fully sampled data d, we only have access to the sub-sampled data b ∈ RP , where P259

is the number of sub-samples (P �M). For the specific problem of reconstructing the260

HP3 seismic signals, b is under-sampled in time and thus shows pronounced aliasing. In261

order to reconstruct d, we need to solve an underdetermined optimization problem. Here,262

we formulate the signal reconstruction problem in the form of the following basis pur-263

suit denoise problem (BPDN), seeking for the sparsest set of τ -p-coefficients that explains264

the data with a misfit smaller than σ (an estimate of the noise level in the data) by `1-265

norm minimization:266

m̂ = argmin
m

‖m‖1 s.t. ‖b−GWR∗m‖2 ≤ σ. (5)

Here, the matrix G ∈ RP×M is the sampling operator selecting those samples from267

the model that are contained in the observed data b. G can be easily constructed from268

the identity matrix by deleting rows corresponding to samples that are not included in269

b. We use the solver SPG`1 (van den Berg & Friedlander, 2009, 2011), which allows for270

an efficient solution of the BDPN problem by breaking it down into a series of so-called271

LASSO problems, each of the form272

m̂ = argmin
m

‖b−GWR∗m‖2 s.t. ‖m‖1 ≤ ρk, (6)

where ρk is the `1-norm constraint for the solution of the kth LASSO problem (k being273

the iteration counter). For a well-defined series of constraints ρ0 < ρ1 < . . . < ρk, the274

solution converges to the solution of the BDPN problem (Eq. 5), as soon as the least-275

squares misfit reaches the pre-defined error level σ. It turns out that the series of `1-norm276

constraints ρk can be readily defined using a Newton root-finding method on the Pareto277

curve (van den Berg & Friedlander, 2009). The Pareto curve traces the optimal trade-278

off between the least-squares misfit and the `1-norm of the solution. It is convex, decreas-279

ing and continuously differentiable. Each solution of the k LASSO problems lies on the280

Pareto curve and the slope of the curve at that point can be expressed in closed form281

(van den Berg & Friedlander, 2009). This property is used to find the optimal `1-constraint282

for the next LASSO problem using Newton’s method. At each iteration, the new LASSO283

problem can be ’warm-started’ using the solution of the previous iteration. For details284
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on this procedure, we refer the reader to (van den Berg & Friedlander, 2009, 2011) and285

Appendix B in (Lin & Herrmann, 2013). After convergence, the reconstructed signal d̂286

can be found by d̂ = WR∗m̂.287

Algorithm 1: Reconstruction of HP3 hammering seismic signals.
Result: Sparse τ -p representation of the reconstructed signal m̂
Input: Aliased seismic data b, target data misfit σ, minimum medium velocity

c0.
1 Initialize iteration counter k ← 0;
2 Initialize l1-norm constraint ρ0 ← 0;
3 Initialize m0 as zero vector;
4 while ‖b−GWR∗mk‖22 ≥ σ do
5 ρk+1 ← determine from σ and ρk using Newton’s method on the Pareto

curve;
6 mk+1 ← ‖b−GWR∗m‖22 s. t. ‖m‖1 < ρk+1;
7 k ← k + 1;
8 end while
9 Reconstruct signal as d̂ = WR∗m̂

There are three user-specified input parameters for the reconstruction algorithm:288

(1) the target data misfit σ (i.e., the noise level in the data), which can be estimated di-289

rectly from the data during periods where the hammer is not active, (2) the source wavelet,290

and (3) the slowness range that is used to parameterize the Radon transform. This slow-291

ness range is naturally bounded by the lowest seismic velocities in the medium, which292

are typically shallow S-wave velocities. In the τ -p plane, all signal must thus be contained293

in the cone-shaped, convex set C =
{
(τ, p) : |p| ≤ 1

c0

}
, where c0 is the lowest seismic294

velocity in the medium. This puts an additional constraint on the reconstructed signal295

(i.e., it must only have support within C). Everything outside the set C corresponds to296

noise. On Mars, the shallow near-surface seismic shear wave velocities are expected to297

be very low, on the order of c0 = 40-50 m/s (Morgan et al., 2018). The proposed re-298

construction algorithm is summarized in Algorithm 1.299

4 Numerical example300

In order to illustrate the reconstruction algorithm, we generated synthetic data us-301

ing a time-domain finite-difference method for heterogeneous elastic media (Virieux, 1986).302

We used a near-surface velocity model that is based on mechanical tests conducted on303

regolith simulants in the laboratory (Delage et al., 2017; Morgan et al., 2018). Addition-304

ally, we added 2D stochastic velocity fluctuations based on a Von Kármán model (Korn,305

1993; Goff & Holliger, 2003) in order to simulate a heterogeneous subsurface. For illus-306

tration, the P-wave velocity distribution of the final model is given in Fig. 6.307

Making use of source-receiver reciprocity, we then generated synthetic seismic data308

for a total of 1000 mole positions in a single computation by placing a vertically directed309

force source at the location of SEIS (marked by a red asterisk in Fig. 6a) and 1000 re-310

ceivers spaced vertically at 5 mm from the surface down to a depth of 5 m at a lateral311

offset from SEIS of 1.5 m at the surface (receivers marked by the black line in Fig. 6a).312

We used an experimentally-determined source-time function from an analogue experi-313

ment on Earth with a dominant frequency of about 150 Hz. We then interpolated the314

computed data to a receiver spacing of 1 mm in order to emulate the actual penetration315

rate of the mole. Finally, we concatenated all of the resulting 5000 hammering signals316

to a single, continuous record. The time differences between individual hammer strokes317
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Figure 6. (a) Input velocity model for synthetic data computation. (b) Synthetic dataset
emulating 60 seconds of HP3 hammering recorded by SEIS. (c) Zoom-in into the first hammer
stroke.

were chosen from a normal distribution with a mean value of 3.7 s and a standard de-318

viation of 0.1 seconds to mimic the real duration and variations of the mole’s hammer-319

ing cycle (Spohn et al., 2018).320

The first 60 seconds of the resulting record are shown in Fig. 6b. A zoom-in show-321

ing the first hammer stroke is provided in Fig. 6c. The red line marks the unaliased data322

sampled at 32 kHz before it would pass through the down-sampling flow on-board the323

lander (see Fig. 3). The black line marks the same signal after passing through the on-324

board acquisition flow using the proposed all-pass FIR filter in the final step (see Fig. 4)325

before decimating the signal to 100 sps. Note that the signal is now severely undersam-326

pled (aliased). We then additionally added noise to the signal giving the signal marked327

by the blue line in Figs 6b-c, which now corresponds the final input that we used to test328

the proposed reconstruction algorithm. The added noise corresponds to actual noise that329

was measured on Mars during an early phase of the InSight mission with the proposed330

all-pass FIR filter on the SP sensor.331

For reconstruction, we then sorted the data into a 2D matrix, where each column332

corresponds to a single hammer stroke signal (Fig. 7). Note that the zero-time corresponds333

to the time when the hammer strike occurs. This zero-time time can be retrieved with334

an accuracy of 1.7e-3 s from the measurements of an accelerometer that is mounted in-335

side the mole (Spohn et al., 2018). The left panel in Fig. 7 shows the assembled data ma-336

trix of the unaliased reference signal at a sampling rate of 2000 sps. For the test, we only337

use 10 minutes of data (160 hammer strokes). Note that the signal is only slowly vary-338

ing with depth (due to the slow penetration rate of the mole and the repeatability of the339

hammering signal), resulting in the linear structure that is exploited by the proposed re-340

construction algorithm.341
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Figure 7. Application of the proposed reconstruction algorithm to a synthetic test dataset
(see text for details).

The second panel from the left shows the reference data with added real noise as342

measured on Mars with the all-pass FIR filter. The samples contained in the 100 sps,343

aliased data (input to the reconstruction algorithm) are given in the third panel. Note344

that even though the signal is regularly sampled in time (at 100 sps), the sampling in345

2D appears to be close to random. This is due to the fact that the timing of the ham-346

mer strokes is not synchronised with the SEIS recording system. The respective sub-sampling347

of each hammer signal depends on the duration of the hammer cycle (subject the small348

variations caused by ambient conditions) and the relative positions of the mole and SEIS.349

As a result, each repeated signal is sub-sampled differently, resulting in the random 2D350

sampling pattern, which provides an optimal basis for the proposed reconstruction al-351

gorithm using the generalized sampling theorem (Papoulis, 1977).352

We then estimated an average source-time function from the aliased data, by com-353

bining the samples of 20 neighbouring hammer stroke signals to a single trace at 2000 sps,354

from which we extracted a wavelet by time-windowing the first-arrival.355

The output of the proposed reconstruction algorithm (reconstructed to a sampling356

rate of 2000 sps) is shown in the fourth panel in Fig. 7. For the parametrisation of the357

Radon transform, we used slowness values ranging from −0.04 s/m to +0.04 s/m (re-358

construction is limited to events with a minimum absolute apparent velocity greater than359

25 m/s). The high-frequency signal is accurately retrieved by the reconstruction algo-360

rithm. Note that random noise appears to be suppressed in the output compared to the361

noise-contaminated input data. This is a positive side-effect of the proposed reconstruc-362

tion approach owing to the properties of the Radon transform. The integration along363

straight lines will cause coherent energy (signal) to add constructively and focus in the364

Radon domain, while random noise tends to spread out over the whole domain and can-365

cel out. By promoting sparsity of the signal in the Radon domain, the signal is effectively366

denoised since only the largest coefficients (corresponding to signal) are kept in the re-367

construction. The rightmost panel in Fig. 7 shows the reconstruction residual (i.e., the368

difference between the reference and the reconstructed signal). Note that the residual369

is mainly dominated by noise, indicating that the underlying signal was successfully re-370

constructed. Some minor reconstruction errors seem to be present at the edges for the371

events with the lowest apparent velocity. These errors are likely Radon transform arti-372

facts (linear flares) caused by the truncation of the dataset (Andersson & Robertsson,373

2019).374
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Figure 8. Reconstruction result illustrated on a single hammering signal (hammer stroke no.
60 in Fig. 7). Top: Time domain result. Bottom: Frequency domain result.

In order to further illustrate the performance of the reconstruction algorithm, we375

provide the result for a single hammering signal in Fig. 8. The top panel shows the re-376

sult in the time domain. The black line corresponds to the fully sampled reference sig-377

nal. The noise-contaminated samples at 100 sps that are used for the reconstruction are378

marked by asterisks. The reconstructed signal is plotted in red. Note that the reconstruc-379

tion result is close to the noise-free reference signal (black). An inspection of the ampli-380

tude spectrum (bottom panel) confirms that the reconstruction appears to recover the381

underlying signal throughout the entire signal bandwidth.382

4.1 Sensitivity on the source wavelet383

The task of directly estimating the source wavelet from the data can be challeng-384

ing in cases where the signal is dominated by strong resonances that lead to a quasi-monochromatic385

appearance of the data. Additionally, in certain cases the waveform of first-arriving wave386

does not accurately represent the source-time function (e.g. due to interference of dif-387

ferent arrivals). It is thus critical to evaluate how much the reconstruction results suf-388

fer from a poorly estimated wavelet. To address this issue, we performed a sensitivity389

analysis using the synthetic data set described above (noise-free version).390

Reconstruction results are shown in Fig. 9 in comparison to the reference for dif-391

ferent strategies of choosing the wavelet basis: (a) the wavelet is directly estimated from392

the aliased data by combining samples from neighbouring traces as described above, (b)393

the wavelet is pre-described by a Ricker wavelet with a center-frequency corresponding394

to the actual dominant frequency in the data (150 Hz), (c) the wavelet is pre-described395

by a Ricker wavelet with an overestimated center-frequency (200 Hz), and (d) the wavelet396

is simply set to a Dirac delta function. The first three approaches (a)-(c) all yield almost397

identical results with a residual reconstruction error smaller than 1 percent compared398

to the ground truth. Thus, a slight error in the estimation of the wavelet only has a mi-399

nor impact on the reconstruction results. Choosing a Dirac delta function as wavelet ba-400

sis clearly leads to poorer results (reconstruction error of about 10 percent). Neverthe-401

less, a more suitable wavelet can easily be found from such an initial result by Wiener402
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deconvolution, as proposed by Gholami (2017). The wavelet can be iteratively adapted403

until no change in the reconstruction result is observed.404

The relatively minor impact of the wavelet on the reconstruction quality can be405

explained by the way the data is compressed by the Radon transform. The major con-406

tribution to the compression comes from the mapping of near-horizontal (slowly-varying)407

features in the horizontal (spatial) direction to points in the Radon transform domain.408

In comparison, the compression of features in the temporal direction due to the choice409

of the wavelet basis only amounts to a minor contribution of the overall compression rate.410

5 Mars data example411

We applied the proposed reconstruction algorithm to actual signals recorded on Mars.412

The HP3 mole began its hammering operations on Mars on February 28, 2019. After about413

the first five minutes of hammering (≈80 strokes), the mole got stuck at a depth of about414

30 centimeters and did not make any significant progress in depth anymore. The cause415

of this is currently still under investigation. In an attempt to recover the mole and to416

extract diagnostics on the cause of the encountered anomaly, the mole has in the mean-417

time conducted close to 10’000 hammer strokes. All strokes were recorded by both SEIS418

seismometers with a high signal-to-noise ratio.419

We apply our reconstruction algorithm to data from a short hammering session,420

consisting of 200 hammer strokes (about 12 minutes of hammering) carried out on Mars421

on March 26, 2019. During this hammering session, the SP sensor was operated using422

the proposed all-pass FIR filter (Fig. 4) while the VBB sensor was operated with the nom-423

inal anti-aliasing filter (no signal above 50 Hz recorded). Due to the encountered prob-424

lems, the mole did not make any noticeable progress in depth during the 200 hammer425

strokes.426

The data are characterised by a high signal-to-noise ratio on both the SP and VBB427

sensor. The VBB data confirmed that the hammering signal is highly repeatable. The428

aliased, 100 sps signals (recorded on the SP sensor) of all 200 strokes arranged in a 2D429

matrix are shown in the left panel in Fig. 10. Since the accelerometers mounted inside430

the mole need to be calibrated and did not provide sufficiently precise information on431

the trigger time of the hammer strokes for the first few hammer sessions, we had to rely432

on a different approach to align the data: We first upsampled the 0-50 Hz data from the433

VBB sensor to 2000 sps and then used a cross-correlation procedure to align the indi-434

vidual hammer stroke signals. This procedure allowed us to find the relative shifts of the435

100 sps subsampling comb function from stroke to stroke, which we used to determine436

the subsampling operator (matrix G in Eq. 5). Note that, as a result of this procedure,437

the zero-time in Fig. 10 does not correspond to the actual hammering time. For later438

sessions, we could directly use the calibrated trigger time from the mole.439

The reconstruction result for the 200 hammer strokes is given in the second panel440

in Fig. 10. As expected, the signal characteristics do not significantly change between441

different hammer strokes. Differences in the signal at later times (later than 0.15 s) are442

likely caused by variations in the timing of the second and third sub-stroke of the ham-443

mering mechanism (Spohn et al., 2018). The frequency spectra displayed in the right-444

most panel of Fig. 10 illustrate that the signal contains a significant amount of informa-445

tion above the original Nyquist frequency of 50 Hz. Note that this information would446

have been lost using the nominal anti-aliasing filters. The low-frequency portion of the447

signal is dominated by long-lasting reverberations following the first arrival. These re-448

verberations have a dominant frequency of about 25 Hz, as can be seen from the frequency449

spectra in the right panel of Fig. 10 (distinct peak at 25 Hz for each stroke). The suc-450

cessful reconstruction of these reverberation illustrate that also quasi-monofrequent sig-451
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Figure 10. Application of the proposed signal reconstruction algorithm to actual data
recorded on Mars. Left two panels: Time domain result. Right: Frequency domain result.

nals can be recovered well by our algorithm. The cause of the reverberations is currently452

under investigation.453

5.1 Preliminary results on Martian near-surface properties454

The high-sampling rate data that we obtained by applying the proposed reconstruc-455

tion algorithm allowed us to successfully estimate the P-wave velocity in the top first me-456

ter of the Martian regolith. The travel time of the first-arriving wave was determined457

to be 9.40±2.68 milliseconds over a distance of 1.11 m (with the mole tip at a depth of458

33 cm pointing towards SEIS) resulting in a P-wave velocity of 118±34 ms−1 (Lognonné459

et al., 2020). Note that the extracted travel time is shorter than the nominal SEIS sam-460

pling interval of 10 milliseconds, which illustrates the importance of the proposed recon-461

struction algorithm for the seismic analysis of the mole hammering data.462

6 Conclusion463

The high-frequency information of the HP3 hammering signal (frequencies above464

the nominal Nyquist frequency of 50 Hz) can be accurately recovered by the proposed465

reconstruction algorithm. Since the hammering time of the mole is uncorrelated with the466

sampling time of the seismometer, multiple realizations of approximately the same sig-467

nal are recorded, where each realization appears to be filtered with a Fourier-shift fil-468

ter. This allows for the recovery of the full-bandwidth signal by the application of the469

generalized sampling theorem. Since the signal is smoothly varying with depth as the470

mole slowly penetrates into the subsurface, we additionally make use of the Radon trans-471

form, which allows us to account for the resulting slope in the 2D signal. The maximum472

rate of change of the signal with depth is prescribed by the lowest propagation veloci-473

ties in the Martian ground, defining a limited area in the Radon transform domain where474

the signal has support. Reconstruction is then achieved by finding the sparsest set of Radon475

coefficients in this area that fit the data within the noise, allowing us to unwrap several476

orders of aliasing. We have demonstrated that this approach is robust also in the pres-477

ence of high levels of random noise due to the inherent properties of the Radon trans-478

form.479
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The proposed reconstruction algorithm could be adapted to similar problems of re-480

peated and only smoothly varying aliased and (quasi-)randomly sampled signals in sit-481

uations where sufficiently dense sampling along one dimension is not possible.482

Acknowledgments483

The authors of this paper acknowledge the scientific discussion and inputs from all SEIS484

and InSight team members who have focused their activity on scientific preparation of485

the SEIS data analysis phase and preparation of interdisciplinary investigations. We ac-486

knowledge NASA, CNES, partner agencies and Institutions (UKSA, SSO, DLR ; JPL,487

IPGP-CNRS, ETHZ, IC, MPS-MPG) and the operators of JPL, SISMOC, MSDS, IRIS-488

DMC and PDS for providing SEED SEIS data (http://dx.doi.org/10.18715/SEIS.INSIGHT.XB_2016).489

The design, building of and research into the HP3 has been supported by the German490

Aerospace Center (DLR), by NASA, the ÖAW, and the Polish Academy of Science. The491

Swiss co-authors were partially supported by the ETH research grant ETH-06 17-2. This492

article is InSight Contribution Number 87.493

References494

Andersson, F., & Robertsson, J. O. A. (2019, oct). Fast τ - p transforms by chirp495

modulation. Geophysics, 84 (1), A13–A17. Retrieved from https://library.seg496

.org/doi/10.1190/geo2018-0380.1 doi: 10.1190/geo2018-0380.1497

Banerdt, W. B., Smrekar, S. E., Banfield, D., Giardini, D., Golombek, M., Johnson,498

C. L., . . . Wieczorek, M. (2020). Initial results from the InSight mission on Mars.499

Nature Geoscience, 13 (3), 183–189. doi: 10.1038/s41561-020-0544-y500

Brinkman, N., Schmelzbach, C., Sollberger, D., van Driel, M., ten Pierick, J.,501

Robertsson, J. O. A., . . . Vretto, C. (2019, aug). The first active seismic ex-502

periment on Mars to characterize the shallow subsurface structure at the InSight503

landing site. SEG Technical Program Expanded Abstracts 2019 , 4756–4760. Re-504

trieved from https://library.seg.org/doi/10.1190/segam2019-3215661.1505

doi: 10.1190/segam2019-3215661.1506

Brzostowski, M., & Brzostowski, A. (2009). Archiving the Apollo active seismic507

data. The Leading Edge, 28 (4), 414. doi: 10.1190/1.3112756508

Candès, E. J., Romberg, J., & Tao, T. (2006a). Robust uncertainty principles:509

Exact signal reconstruction from highly incomplete frequency information. IEEE510

Transactions on Information Theory , 52 (2), 489–509. Retrieved from https://511

ieeexplore.ieee.org/document/1580791 doi: 10.1109/TIT.2005.862083512

Candès, E. J., Romberg, J. K., & Tao, T. (2006b, aug). Stable signal recovery513

from incomplete and inaccurate measurements. Communications on Pure and514

Applied Mathematics, 59 (8), 1207–1223. Retrieved from http://doi.wiley.com/515

10.1002/cpa.20124 doi: 10.1002/cpa.20124516

Cooper, M. R., Kovach, R. L., & Watkins, J. (1974). Lunar Near-Surface Struc-517

ture. Reviews of Geophysics and Space Physics, 12 (3), 291–308. Retrieved from518

http://onlinelibrary.wiley.com/doi/10.1029/RG012i003p00291/abstract519

doi: 10.1029/RG012i003p00291520

Delage, P., Karakostas, F., Dhemaied, A., Belmokhtar, M., Lognonné, P., Golombek,521

M., . . . Banerdt, B. (2017, oct). An Investigation of the Mechanical Properties522

of Some Martian Regolith Simulants with Respect to the Surface Properties at523

the InSight Mission Landing Site. Space Science Reviews, 211 (1-4), 191–213.524

Retrieved from http://link.springer.com/10.1007/s11214-017-0339-7 doi:525

10.1007/s11214-017-0339-7526

Donoho, D. L. (2006, apr). Compressed sensing. IEEE Transactions on Informa-527

tion Theory , 52 (4), 1289–1306. Retrieved from http://ieeexplore.ieee.org/528

document/1614066/ doi: 10.1109/TIT.2006.871582529

Gholami, A. (2017). Deconvolutive Radon transform. Geophysics, 82 (2), V117–530

–17–



manuscript submitted to Earth and Space Science

V125. Retrieved from http://library.seg.org/doi/10.1190/geo2016-0377.1531

doi: 10.1190/geo2016-0377.1532

Giardini, D., Lognonné, P., Banerdt, W. B., Pike, W. T., Christensen, U., Ceylan,533

S., . . . Yana, C. (2020). The seismicity of Mars. Nature Geoscience, 13 (3),534

205–212. doi: 10.1038/s41561-020-0539-8535

Goff, J. A., & Holliger, K. (2003). Heterogeneity in the Crust and Upper Mantle:536

Nature, Scaling, and Seismic Properties. Springer US.537

Golombek, M., Grott, M., Kargl, G., Andrade, J., Marshall, J., Warner, N.,538

. . . Banerdt, W. B. (2018, aug). Geology and Physical Properties Inves-539

tigations by the InSight Lander. Space Science Reviews, 214 (5), 84. Re-540

trieved from http://link.springer.com/10.1007/s11214-018-0512-7 doi:541

10.1007/s11214-018-0512-7542

Heffels, A., Knapmeyer, M., Oberst, J., & Haase, I. (2017, jan). Re-evaluation of543

Apollo 17 Lunar Seismic Profiling Experiment data. Planetary and Space Science,544

135 , 43–54. doi: 10.1016/j.pss.2016.11.007545

Herrmann, F. J., & Hennenfent, G. (2008, apr). Non-parametric seismic data re-546

covery with curvelet frames. Geophysical Journal International , 173 (1), 233–248.547

Retrieved from https://academic.oup.com/gji/article-lookup/doi/10.1111/548

j.1365-246X.2007.03698.x doi: 10.1111/j.1365-246X.2007.03698.x549

Kedar, S., Andrade, J., Banerdt, B., Delage, P., Golombek, M., Grott, M., . . .550

Wookey, J. (2017). Analysis of Regolith Properties Using Seismic Signals Gener-551

ated by InSight’s HP3Penetrator. Space Science Reviews, 211 , 315–337. Retrieved552

from https://link.springer.com/content/pdf/10.1007{%}2Fs11214-017553

-0391-3.pdf doi: 10.1007/s11214-017-0391-3554

Knapmeyer, M., Fischer, H.-H., Knollenberg, J., Seidensticker, K., Thiel, K., Arnold,555

W., . . . Möhlmann, D. (2018, aug). Structure and elastic parameters of the near556

surface of Abydos site on comet 67P/Churyumov–Gerasimenko, as obtained by557

SESAME/CASSE listening to the MUPUS insertion phase. Icarus, 310 , 165–558

193. Retrieved from https://www.sciencedirect.com/science/article/pii/559

S0019103517304165 doi: 10.1016/J.ICARUS.2017.12.002560

Korn, M. (1993). Seismic waves in random media. Journal of Applied Geophysics,561

29 , 247–269. doi: 10.1016/0926-9851(93)90007-L562

Lin, T. T. Y., & Herrmann, F. J. (2013). Robust estimation of primaries by563

sparse inversion via one-norm minimization. Geophysics, 78 (3), R133–R150.564

Retrieved from http://library.seg.org/doi/10.1190/geo2012-0097.1 doi:565

10.1190/geo2012-0097.1566

Lognonné, P., Banerdt, W., Pike, W., Giardini, D., Christensen, U., Garcia, R., . . .567

Zweifel., P. (2020, feb). Constraints on the shallow elastic and anelastic struc-568

ture of Mars from InSight seismic data. Nature Geoscience, in press, 1–8. doi:569

10.1038/s41561-020-0536-y570

Lognonné, P., Banerdt, W. B., Giardini, D., Pike, W. T., Christensen, U., Laudet,571

P., . . . Wookey, J. (2019, feb). SEIS: Insight’s Seismic Experiment for In-572

ternal Structure of Mars. Space Science Reviews, 215 (1), 12. Retrieved573

from http://link.springer.com/10.1007/s11214-018-0574-6 doi:574

10.1007/s11214-018-0574-6575

Lustig, M., Donoho, D., & Pauly, J. M. (2007, dec). Sparse MRI: The application576

of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine,577

58 (6), 1182–1195. Retrieved from http://doi.wiley.com/10.1002/mrm.21391578

doi: 10.1002/mrm.21391579

Morgan, P., Grott, M., Knapmeyer-Endrun, B., Golombek, M., Delage, P.,580

Lognonné, P., . . . Kedar, S. (2018, sep). A Pre-Landing Assessment of Re-581

golith Properties at the InSight Landing Site. Space Science Reviews, 214 (6), 104.582

Retrieved from http://link.springer.com/10.1007/s11214-018-0537-y doi:583

10.1007/s11214-018-0537-y584

–18–



manuscript submitted to Earth and Space Science

Papoulis, A. (1977). Generalized Sampling Expansion. IEEE Transactions on Cir-585

cuits and Systems, 24 (11), 652–654. doi: 10.1109/TCS.1977.1084284586

Radon, J. (1917). Über die Bestimmung von Funktionen durch ihre Integralwerte587

längs gewisser Mannigfaltigkeiten. Berichte über die Verhandlungen der Königlich-588

Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische589

Klasse, 69 , 262–277. Retrieved from http://www.ams.org/psapm/027 doi:590

10.1090/psapm/027/692055591

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System592

Technical Journal , 27 (3), 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x593

Sollberger, D., Schmelzbach, C., Robertsson, J. O. A., Greenhalgh, S. A., Naka-594

mura, Y., & Khan, A. (2016). The shallow elastic structure of the lunar crust:595

New insights from seismic wavefield gradient analysis. Geophysical Research Let-596

ters, 43 (19), 10,078–10,087. Retrieved from http://doi.wiley.com/10.1002/597

2016GL070883 doi: 10.1002/2016GL070883598

Spohn, T., Grott, M., Smrekar, S. E., Knollenberg, J., Hudson, T. L., Krause, C.,599

. . . Banerdt, W. B. (2018, aug). The Heat Flow and Physical Properties Pack-600

age (HP3) for the InSight Mission. Space Science Reviews, 214 (5), 96. Re-601

trieved from http://link.springer.com/10.1007/s11214-018-0531-4 doi:602

10.1007/s11214-018-0531-4603

van den Berg, E., & Friedlander, M. P. (2009). Probing the Pareto Frontier for604

Basis Pursuit Solutions. SIAM Journal on Scientific Computing , 31 (2), 890–912.605

Retrieved from http://epubs.siam.org/doi/10.1137/080714488 doi: 10.1137/606

080714488607

van den Berg, E., & Friedlander, M. P. (2011). Sparse Optimization with608

Least-Squares Constraints. SIAM Journal on Optimization, 21 (4), 1201–609

1229. Retrieved from http://epubs.siam.org/doi/10.1137/100785028 doi:610

10.1137/100785028611

Virieux, J. (1986). P-SV wave propagation in heterogeneous media: velocity-stress612

finite-difference method. Geophysics, 51 (4), 889–901. Retrieved from http://613

library.seg.org/doi/abs/10.1190/1.1442147 doi: 10.1190/1.1441605614

–19–



Figure 1.



0 0.5 1.0 m

Wind and 
Thermal Shield

SEIS

SP-1

SP-2
VB

B-
2

VBB-1

VBB-3

SP-3

H
P3

Mole

1.18 m

N



Figure 2.



0 50 100 150 200 250 300
Frequency (Hz)

10-2

10-1

lo
g(

AS
D

)

Expected signal recorded by SEIS
Proposed all-pass filter
Nominal anti-aliasing filter passbandSE

IS
 N

yq
ui

st
 fr

eq
ue

nc
y



Expected signal recorded by SEIS
Proposed all-pass filter
Nominal anti-aliasing filter passband



Expected signal recorded by SEIS
Proposed all-pass filter
Nominal anti-aliasing filter passbandSE

IS
 N

yq
ui

st
 fr

eq
ue

nc
y



Figure 3.



VBB 
Signal

SP
Signal

Analog VBB 
filter

Analog SP 
filter

Analog 32’000 sps 500 sps 100 sps

Sigma-delta 
modulator

Sigma-delta 
modulator

Digital filter 
(sinc3)

Digital filter 
(sinc3)

FIR Filter 
1

FIR Filter 
2

Decimator

O
ut

pu
t s

ig
na

l

Decimator

ADC

ADC



Figure 4.



0 0.1 0.2 0.3 0.4
Time (s)

0

0.1

0.2

0.3

0.4

Am
pl

itu
de

0 50 100 150 200 250
Frequency (Hz)

-150

-100

-50

0

M
ag

ni
tu

de
 (d

B)

Frequency Response

Impulse Response

Nominal

Proposed all-pass



Figure 5.



-0.02 0 0.02
x (m)

0 0.1

0.05

0.1

0.15

0.2

0.25

t (
s)

-0.5 0 0.5
p (s/m)

0.115

0.13

0.145

0.16

0.175

0.19

 (s
)

-0.5 0 0.5
p (s/m)

(c)(b)(a)



Figure 6.



0 0.5 1 1.5
Distance (m)

0(a)

(c)

(b)

2

4

6

8

10

12

D
ep

th
 (m

)

SEIS location
Mole positions

0

50

100

150

200

250

300

350

400

450

500

P-
w

av
e 

ve
lo

ci
ty

 (m
/s

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

Am
pl

itu
de

 (V
)

Reference signal
Aliased signal at 100 sps
Aliased, noise-contaminated signal

0 10 20 30 40 50 60
Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

Am
pl

itu
de

 (V
)



Figure 7.





Figure 8.



0 0.1 0.2 0.3 0.4 0.5 0.6
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Reference with added noise
100 sps samples used for reconstruction
Reference without noise
Reconstruction

Am
pl

itu
de

 (V
)

Time (s)

0 50 100 150 200 250 300
Frequency (Hz)

10
-2

10
-1

M
ag

ni
tu

de

Reference with added noise
Reconstruction



Figure 9.



Reference
(a) (b) (c) (d)

50 100 150
Hammer stroke no.

0

0.1

0.2

0.3

0.4

0.5

Ti
m

e 
(s

)
Estimated wavelet 

50 100 150
Hammer stroke no.

50 100 150
Hammer stroke no.

Ricker wavelet (200 Hz)Ricker wavelet (150Hz)

50 100 150
Hammer stroke no.

Dirac delta

50 100 150
Hammer stroke no.

120 140
Hammer stroke no.

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Ti
m

e 
(s

)

120 140
Hammer stroke no.

120 140
Hammer stroke no.

120 140
Hammer stroke no.

120 140
Hammer stroke no.



Figure 10.



Reconstruction

50 100 150
Hammer stroke no.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ti
m

e 
(s

)
Aliased Data

50 100 150
Hammer stroke no.

Nominal 
bandwidth

180

160

140

120

100

80

60

40

20

0

200

Fr
eq

ue
nc

y 
(H

z)

Aliased Spectra

40 80 160120
Hammer stroke no.

Reconstructed Spectra

40 80 160120
Hammer stroke no.

-2

-1

0

1

2

3

4

5

6

lo
g(

M
ag

ni
tu

de
)


	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7
	Figure 8 legend
	Figure 8
	Figure 9 legend
	Figure 9
	Figure 10 legend
	Figure 10

