Seasonal and hemispheric asymmetries in the cold ion outflow source region: Swarm and CHAMP observations of F-region polar cap plasma density

Spencer Mark Hatch¹, Stein Haaland¹, Karl M. Laundal², Therese Moretto Jorgensen³, Andrew Yau⁴, Lindis Merete Bjoland⁵, Jone Peter Reistad⁶, Anders Ohma⁶, and Kjellmar Oksavik²

¹Birkeland Centre for Space Science
²University of Bergen
³UNIVERSITY OF BERGEN
⁴University of Calgary
⁵The University Centre in Svalbard
⁶Birkeland Centre for Space Science, University of Bergen

November 30, 2022

Abstract

One of the primary mechanisms of loss of Earth's atmosphere is the persistent "cold" ([?] 20 eV) ion outflow that has been observed in the magnetospheric lobes over large volumes with dimensions of order several Earth radii (R). As the main source of this cold ion outflow, the polar cap -region ionosphere and conditions within it have a disproportionate influence on these magnetospheric regions. Using 15 years of measurements of plasma density N made by the Swarm spacecraft constellation and the CHAMP spacecraft within the region of the polar cap above 80{degree sign} Apex magnetic latitude, we report evidence of several types of seasonal asymmetries in polar cap N. Among these, we find that the transition between "winter-like" and "summer-like" polar cap N occurs one week prior to local spring equinox in the Northern Hemisphere (NH), and one week after local spring equinox in the Southern Hemisphere (SH). Thus SH polar cap N lags NH polar cap N by approximately two weeks with respect to local spring and fall equinox in each hemisphere. We show that this lag cannot be explained by differences in solar illumination alone. We also find that overall variation of N in the SH polar cap, except for an approximately two-month period centered on June solstice, and that the greater degree of variability of N in the SH polar cap is partly attributable to differences in illumination of the SH polar cap.

Seasonal and hemispheric asymmetries in the cold ion outflow source region: Swarm and CHAMP observations of *F*-region polar cap plasma density

1

2

3

4

5

10

Key Points:

S. M. Hatch^{1*}, S. Haaland^{1,2}, K. M. Laundal¹, T. Moretto¹, A. W. Yau³, L. Bjoland⁴, J. P. Reistad¹, A. Ohma¹, K. Oksavik^{1,4}

6	¹ Birkeland Centre for Space Science, University of Bergen, Norway
7	$^2\mathrm{Max}\text{-}\mathrm{Planck}$ Institute for Solar Systems Research, Göttingen, Germany
8	³ Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
9	⁴ Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Norway

 Statistics of *F*-region polar cap plasma density derived from 15 years of measurements exhibit several types of seasonal asymmetries
 Southern Hemisphere polar cap plasma densities lag those in Northern Hemisphere by at least two weeks around local spring and fall equinox
 Hemispheric differences in polar cap plasma density at equinoxes cannot be explained solely on the basis of differences in illumination

 $^{^* \}mathrm{Department}$ of Physics and Technology, Allégaten 55, N-5007 Bergen, Norway

Corresponding author: S. M. Hatch, Spencer.Hatch@uib.no

17 Abstract

One of the primary mechanisms of loss of Earth's atmosphere is the persistent "cold" 18 $(T \lesssim 20 \text{ eV})$ ion outflow that has been observed in the magnetospheric lobes over large 19 volumes with dimensions of order several Earth radii (R_E) . As the main source of this 20 cold ion outflow, the polar cap F-region ionosphere and conditions within it have a dis-21 proportionate influence on these magnetospheric regions. Using 15 years of measurements 22 of plasma density N_e made by the Swarm spacecraft constellation and the CHAMP space-23 craft within the F region of the polar cap above 80° Apex magnetic latitude, we report 24 evidence of several types of seasonal asymmetries in polar cap N_e . Among these, we find 25 that the transition between "winter-like" and "summer-like" polar cap N_e occurs one 26 week prior to local spring equinox in the Northern Hemisphere (NH), and one week af-27 ter local spring equinox in the Southern Hemisphere (SH). Thus SH polar cap N_e lags 28 NH polar cap N_e by approximately two weeks with respect to local spring and fall equinox 29 in each hemisphere. We show that this lag cannot be explained by differences in solar 30 illumination alone. We also find that overall variation of N_e in the SH polar cap is greater 31 than overall variation of N_e in the NH polar cap, except for an approximately two-month 32 period centered on June solstice, and that the greater degree of variability of N_e in the 33 SH polar cap is partly attributable to differences in illumination of the SH polar cap. 34

35

Plain Language Summary

The Earth's magnetic poles are not perfectly aligned with the Earth's geographic 36 poles, and the degree of misalignment is greater in the Southern Hemisphere. Further-37 more, as a result of the Earth's elliptical orbit around the Sun, summer and fall in the 38 Northern Hemisphere together are approximately one week longer than summer and fall 39 in the Southern Hemisphere, and the Earth is very slightly closer to the Sun around De-40 cember solstice (summer in the Southern Hemisphere). These seasonal asymmetries, to-41 gether with the asymmetric displacement of the Earth's magnetic poles relative to the 42 geographic poles, suggest that the plasma density in the topside ionosphere's geomag-43 netic polar regions may also be subject to seasonal and hemispheric asymmetries. The 44 polar regions are the primary site of loss of the Earth's atmosphere via so-called ion out-45 flow processes that over geological time scales are believed to lead to a non-negligible loss 46 of the Earth's atmosphere. Using 15 years of plasma density measurements made by four 47 different satellites to statistically study the plasma density of each hemisphere's geomag-48

 $_{49}$ netic polar cap ionosphere in the altitude range 350–520 km, we find that the polar cap

⁵⁰ ionosphere at these altitudes exhibits a variety of seasonal and hemispheric asymmetries.

51 1 Introduction

A substantial fraction of the plasma in the Earth's magnetosphere is supplied by 52 the ionosphere (e.g., Chappell et al., 1987, 2000) through ion outflow from the high-latitude 53 polar cap regions, where terrestrial magnetic field lines are open and connected to so-54 lar wind magnetic field lines. By the same token, ion outflow is also considered to be a 55 primary means of loss of the Earth's atmosphere (e.g., André, 2015). Ion outflow is the 56 result of ionization of atmospheric gases and outward transport due to vertical forces. 57 Recent results suggest that low-energy ions from the open polar cap area usually dom-58 inate the ion density and the outward flux in populating large volumes of the magne-59 tosphere. Furthermore, ionization (i.e., availability of free charges) rather than trans-60 port is reported to be the limiting factor for ion outflow (Haaland et al., 2012; André 61 et al., 2015). 62

Ionization is primarily driven by solar illumination, although other processes such 63 as cosmic rays (e.g., Adams & Masley, 1965; Velinov, 1970) and particle precipitation 64 also contribute (e.g., Rees, 1963, 1982). Solar radiation at ultraviolet (UV) and extreme 65 ultraviolet (EUV) wavelengths is the most efficient in terms of ionizing atmospheric atoms 66 and molecules and producing ion-electron pairs (e.g., S. E. Appleton, 1956; Ivanov-Kholodnyy, 67 1962; Rees, 1989; Brekke, 1997; Schunk & Nagy, 2009). Since the ionosphere as a whole 68 is quasi-neutral, both the electron number density and ion number density are often sim-69 ply referred to as the plasma density. 70

The resulting plasma density in the atmosphere is a balance between production (ionization) processes on one hand, and losses by recombination and transport processes on the other hand (e.g., Quinn & Nisbet, 1965; Khocholava, 1977; Rees, 1989; Rishbeth, 1997). Production and loss processes do not necessarily work on the same time scale, so at a given location in space, there can be significant variation in the plasma density over time.

⁷⁷ In the terrestrial atmosphere, the peak plasma density is typically located in the ⁷⁸ ionospheric *F*-layers, around 200–400-km geodetic altitude (e.g., Rishbeth, 1962; Feld-⁷⁹ stein et al., 1975). Since ionization is strongly driven by solar illumination, plasma den-

-3-

sity exhibits solar cycle variations as well as strong seasonal and diurnal variations (e.g.,
 E. V. Appleton, 1939). Typical plasma densities are of order 10⁵-10⁶ cm⁻³ in the sun lit ionosphere, but can be less by an order of magnitude or two in darkness.

In the polar regions the variation of plasma density with season is strongest, fol-83 lowed by diurnal variation and variation with solar cycle (e.g., Feldstein et al., 1975). The 84 seasonal variation can largely be understood on the basis of solar illumination; during 85 summer conditions, the polar cap is fully illuminated. Conversely, during winter condi-86 tions major portions of the polar cap are in complete darkness. The Sun-Earth distance 87 plays a lesser, though non-negligible, role for variations in solar illumination (e.g., Dang 88 et al., 2017). From the standpoint of plasma density variation, one would expect solar 89 illumination, ionization and plasma production to be very similar in the Northern and 90 Southern Hemisphere around equinox. 91

In contrast to ionization and production of ionospheric plasma, which are primar-92 ily due to solar EUV radiation, transport of ionospheric plasma is primarily driven by 93 electromagnetic forces and organized with respect to the geomagnetic rather than the 94 geographic poles. Horizontal transport is mainly driven by large scale magnetospheric 95 convection set up by reconnection at the dayside magnetopause (e.g., Dungey, 1963), and 96 thermospheric neutral winds (e.g., Förster et al., 2008). Vertical transport—upflow and 97 outflow—is due to a combination of various forces. Theoretical descriptions of ion out-98 flow at the polar caps were developed in the 1960s (e.g. Dessler & Michel, 1966; Nishida, qq 1966; Axford, 1968; Banks & Holzer, 1968) and collectively comprise the classical po-100 lar wind paradigm. In this view, light ion species in the ionosphere gain upward mobil-101 ity via plasma and neutral pressure gradients as well as ambipolar electric fields formed 102 and sustained by requiring charge balance between electrons and ions in the ionosphere. 103 Due to the mirror force, any additional transverse acceleration near and above the exobase 104 (500–1000 km) effectively acts as upward acceleration (e.g., Klumpar, 1979). At altitudes 105 of a few R_E , centrifugal forces (Cladis, 1986; Horwitz et al., 1994; C. Liu et al., 1994; 106 Nilsson et al., 2008, 2010) become dominant. 107

- 108
- ern Hemisphere polar regions (e.g., Cnossen & Förster, 2016; K. Laundal et al., 2017)
 is a likely factor in reported hemispheric asymmetries in ionospheric outflow around equinox

Thus, the significant difference in magnetic topology of the Northern and South-

(e.g., Maes et al., 2016; Haaland et al., 2017; Li et al., 2020). These differences do play

-4-

¹¹² a role, for example, in the seasonal variation of thermospheric and ionospheric winds (Aruliah,

Farmer, Fuller-Rowell, et al., 1996; Aruliah, Farmer, Rees, & Brändström, 1996; Mikhailov
& Schlegel, 2001).

Estimation of the total loss of geogenic plasma due to ion outflow is subject to additional complications that arise because the source regions (primarily the open polar cap, but also cusp and auroral zone) vary greatly in size and shape in response to solar wind driving (Sotirelis et al., 1998; Milan et al., 2008; Milan, 2009; Li et al., 2012).

In this study, we follow up on previous studies (Haaland et al., 2012; André et al., 2015; Haaland et al., 2017) indicating or otherwise suggesting that available ionospheric plasma rather than transport is the limiting factor for ion outflow. Using a large database of ionospheric plasma density measurements made by the Swarm and CHAMP satellites in both hemispheres, we seek to determine under which seasons hemispheric asymmetries in cold plasma outflow might be expected on the basis of available ionospheric plasma.

This study is organized as follows. In section 2 we describe the Swarm and CHAMP 125 polar cap plasma density database. In section 3 we identify and describe a number of 126 seasonal and hemispheric asymmetries in polar cap plasma density. In section 4 we con-127 sider differences in illumination and plasma production of the two polar caps using a sim-128 ple model. In section 5 we discuss results from the preceding section and describe some 129 implications for cold ion outflow. In section 6 we summarize the results of this study and 130 conclude. We additionally describe in Appendix A–B various methodological details of 131 this study. 132

133

2 Swarm and CHAMP Plasma Density Measurements

We use plasma density measurements made by two separate missions, the original three-satellite Swarm constellation (Friis-Christensen et al., 2008) and the Challenging Mini-Satellite Payload (CHAMP) satellite (Reigber et al., 2006).

The original three Swarm satellites complete approximately 15 orbits per day in a near-polar orbit, over the six-year period extending from launch on 22 November 2013 to the present. The two lower satellites, Swarm Alpha (Swarm A) and Swarm Charlie (Swarm C), cover the range of geodetic altitudes between 445 km and 500 km (up to 527 km during commissioning phase); Swarm Bravo (Swarm B) covers the range of geodetic altitudes between 510–545 km (down to 500 km during commissioning phase). The

-5-

Electric Field Instrument (EFI) (Knudsen et al., 2017) aboard the three original Swarm satellites includes two dedicated low-gain and high-gain Langmuir Probes (LPs). The two LPs measure plasma density and electron temperature at 2 Hz. The most complete in-flight calibrations and validations of the Swarm LP plasma density and electron temperature measurements, based on comparisons with plasma density measurements measured by other satellites and ground-based instruments, have been performed by Lomidze et al. (2018).

The CHAMP satellite also completed approximately 15 orbits per day in a nearpolar orbit over a ~10-year period extending from 15 July 2000 to 19 September 2010. The nominal range of geodetic altitudes covered by CHAMP extended over ~300–455 km. The Planar Langmuir Probe (PLP) instrument (Rother et al., 2005) aboard CHAMP made measurements of plasma density at a 15-s cadence. In-flight calibration of the PLP instrument has been performed by McNamara et al. (2007).

In this study we use all Swarm Level 1B LP plasma density measurements down-156 sampled to 15-s cadence, from the period between 10 Dec 2013 to 5 Feb 2020 (https:// 157 swarm-diss.eo.esa.int/). Downsampling is achieved by selecting every 30th measure-158 ment. We also use all CHAMP Level 2 PLP plasma density measurements from the pe-159 riod between 19 Feb 2002 and 21 Dec 2009 (ftp://isdcftp.gfz-potsdam.de) made at 160 \geq 350-km geodetic altitude. We impose this altitude restriction on CHAMP density mea-161 surements to ensure that all plasma density measurements are made above the altitude 162 at which the F2-layer plasma density peak hmF2 is located (e.g., Shim et al., 2011; Burns 163 et al., 2012; Bjoland et al., 2016). To Swarm plasma density measurements we also ap-164 ply the Lomidze et al. (2018) in-flight calibrations (see Appendix A). Since ion outflow 165 and ionosphere-magnetosphere coupling are organized by the geomagnetic field we are 166 here concerned with the geomagnetic polar cap, which we define (Table 1) as the region 167 at and above 80° magnetic latitude (MLat) in the Modified Apex coordinate system at 168 a reference geodetic altitude of 110 km (i.e., MA_{110} coordinates) (Richmond, 1995; K. M. Laun-169 dal & Richmond, 2016). We perform the conversion of geocentric coordinates of each satel-170 lite to MA_{110} coordinates via the apexpy Python package (Emmert et al., 2010; van der 171 Meeren et al., 2018). Table 1 summarizes some properties of the polar caps in each co-172 ordinate system. 173

-6-

Hemisphere	Polar cap	$Area^a (km^2)$	Circumference ^{a} (km)
	Geomagnetic	(MA_{110}) coordi	inates
North	$\geq 80^\circ~{\rm MLat}^b$	$3.98{ imes}10^6$	7.11×10^3
South	$\leq -80^\circ$ MLat	$3.65{ imes}10^6$	$6.76{ imes}10^3$
Geocentric coordinates			
North	$\geq 80^\circ~{\rm Lat}^c$	$3.91{\times}10^6$	6.98×10^{3}
South	$\leq -80^\circ$ Lat	$3.91{ imes}10^6$	$6.98{\times}10^3$

 Table 1. Definitions and properties of the geomagnetic and geocentric polar caps.

 a Area and perimeter at 0-km altitude.

^bMLat \equiv Magnetic latitude in MA_{110} coordinates (see text).

^cLat \equiv Latitude in geocentric coordinates.

The total number of plasma density (N_e) measurements in the Northern Hemisphere 174 (NH) and Southern Hemisphere (SH) geomagnetic polar caps are respectively 2,410,423 175 and 1,045,654. The primary reasons for the greater statistical coverage of the NH geo-176 magnetic polar cap are that the SH geomagnetic polar cap area is approximately 9% smaller 177 than the NH geomagnetic polar cap area (Table 1 and Figure S1 in Supporting Infor-178 mation), and that the relative displacement between the SH geomagnetic and geographic 179 poles is greater compared with the NH poles. The difference in geomagnetic polar cap 180 area arises because the Earth's magnetic field is stronger in the vicinity of the SH mag-181 netic pole than in the vicinity of the NH magnetic pole (K. Laundal et al., 2017). The 182 measurement coverage is approximately the same in both hemispheres (2.64 and 2.68 mil-183 lion measurements in the NH and SH geocentric polar caps, respectively) if one instead 184 considers the polar caps defined in a geocentric coordinate system. 185

In the remainder of the manuscript all references to N_e and statistics refer only to measurements made in the geomagnetic polar caps, unless specified otherwise.

188

189

190

We seek to investigate seasonal and hemispheric asymmetries via statistical comparison of plasma density measurements in the geomagnetic polar cap made by different satellites. Such an investigation is complicated by a number of factors, including:

191 192 1. Differences in the altitudes of each satellite, which vary on time scales of days and years due to satellite drag and operational maneuvers, and which are systemat-

-7-

ically different in the two hemispheres due to both the shape of each satellite's orbit and the oblateness of the Earth (section A1). These differences correspond to
sampling of different heights in the ionosphere.

2. Variations in solar and geomagnetic activity, which lead to differences in ionospheric
 conditions.

We partially account for these factors via (i) application of an empirically derived scale 198 height to N_e measurements that "maps" N_e to a common geodetic altitude of 500 km, 199 and (ii) application of an empirically derived correction factor that accounts for the vari-200 ation of N_e measurements with 10.7-cm wavelength solar radio flux (otherwise known 201 as the F10.7 index). The latter correction scales N_e to a nominal solar activity of $\langle F10.7 \rangle_{27} =$ 202 80, where $\langle F10.7 \rangle_{27}$ is a rolling average of the preceding 27 days of the F10.7 index. Through-203 out this manuscript we use the notation N_e^* to refer to these final adjusted densities. De-204 tailed descriptions of the derivation of the relevant scaling factors are located in Appendix 205 А. 206

207

3 Hemispheric and Seasonal N_e^* Variations

Figure 1a shows height- and solar-flux adjusted plasma density N_e^* in the NH (blue) and SH (red) geomagnetic polar caps as a function of day of year. The transparent "x" and "+" markers respectively indicate 50,000 randomly selected individual measurements made in the NH and SH geomagnetic polar cap for each hemisphere. The solid blue and dashed red lines respectively indicate the median NH and SH N_e^* values within 10-day bins. The error bars indicate the 95% confidence interval of the median, calculated as described in Appendix B.

One of the apparent differences between the median N_e^* values in the NH and SH 215 geomagnetic polar cap is that N_e^* takes on more extreme values in the SH than in the 216 NH. This difference may be related to the "ionospheric annual asymmetry," which has 217 to do with global ionospheric plasma densities around December solutions that are larger 218 than global ionospheric plasma densities around June solution by $\sim 30\%$. This effect is 219 well documented but not yet fully understood (e.g. Mendillo et al., 2005; Torr et al., 1980; 220 Rishbeth & Müller-Wodarg, 2006; Lei et al., 2016; Dang et al., 2017; Xiong et al., 2018; 221 Chartier et al., 2019); it may result from a combination of solar irradiance and photo-222 chemistry effects (Dang et al., 2017). Variation of Sun-Earth distance alone can only ac-223

-8-

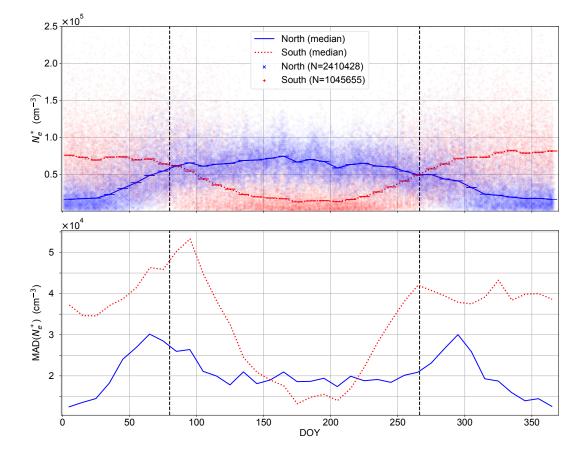


Figure 1. Swarm and CHAMP height- and solar flux-adjusted geomagnetic polar cap plasma density N_e^* statistics versus day of year in the Northern Hemisphere (solid blue line) and Southern Hemisphere (dashed red line). Here N_e^* denotes plasma density measurements that are scaled to a common geodetic altitude of 500 km and to a nominal solar activity of $\langle F10.7\rangle_{27}$ 80, as described in Appendix A. (a) N_e^* measurements and binned medians. The transparent "x" and "+" markers respectively indicate 50,000 randomly selected individual measurements made in the NH and SH geomagnetic polar cap for each hemisphere. (Most readers will need to view the plot at full resolution or zoom in to see the distinction between these symbols.) Median N_e^* values within each 10-day bin are respectively indicated by the solid blue (North) and dashed red (South) line. Error bars indicate the 95% confidence interval of the bin median, calculated as described in Appendix B. (b) MAD (N_e^*) in the NH (solid blue line) and SH (dashed red line) geomagnetic polar caps, in 10-day bins. In both panels the dotted black lines at $DOY \approx 79.9$ and $DOY \approx 266.3$ respectively indicate the average DOY on which March and September equinoxes occur during the years 2000–2020; the time and date of each equinox is calculated as described in section 3. MAD≡median absolute deviation.

count for global differences of 7%, and therefore is alone insufficient to account for the
observed asymmetry (Rishbeth & Müller-Wodarg, 2006).

Central tendency and variation of a statistical quantity are often indicated by the mean and standard deviation, respectively. However, N_e^* distributions in each bin in Figure 1a are heavy-tailed, and the mean is not a robust indicator of central tendency. In Figure 1a we therefore show median N_e^* statistics in each bin. Likewise, in Figure 1b we show the median absolute deviation

²³¹
$$MAD(N_e^*) \equiv median |N_e^* - median (N_e^*)|$$

instead of standard deviation to indicate the variation of N_e^* in each 10-day bin. Figure 1b shows MAD (N_e^*) in the Northern and Southern Hemisphere as solid blue and dashed red lines, respectively.

Two salient aspects of $MAD(N_e^*)$ curves in Figure 1b are (i) the SH $MAD(N_e^*)$ is typically greater than NH $MAD(N_e^*)$; (ii) $MAD(N_e^*)$ in the NH geomagnetic polar cap evinces two distinct peaks, before March equinox and after September equinox, while $MAD(N_e^*)$ in the SH geomagnetic polar cap evinces one primary peak after March equinox, a $MAD(N_e^*)$ "plateau" that extends from September to the end of December, and a global minimum near June solstice.

241

3.1 Asymmetries in seasonal variation

We now compare variations in N_e^* as a function of season. We wish to (i) avoid the 242 systematic bias that would be introduced by performing a comparison based on day of 243 year in the Gregorian calendar, which is inherently asymmetric from year to year with 244 respect to the day of year on which equinoxes and solstices occur; (ii) consistently ac-245 count for variation in the length of the seasons themselves, which differ on the order of 246 days. To accomplish this, we scale the precise time period between each equinox and sol-247 stice for each year such that the period between each equinox and solstice has a dura-248 tion of 1, and the total duration of all four seasons (i.e., one year) is 4. We thus define 249 the "season parameter" $\phi_s \in [0, 4)$, with March and September equinoxes respectively 250 corresponding to $\phi_s = 0$ and $\phi_s = 2$. June and December solutions respectively corre-251 spond to $\phi_s = 1$ and $\phi_s = 3$. The timestamps of all N_e^* measurements are then scaled 252 to values between 0 and 4. The date and time of occurrence of each equinox and solstice 253

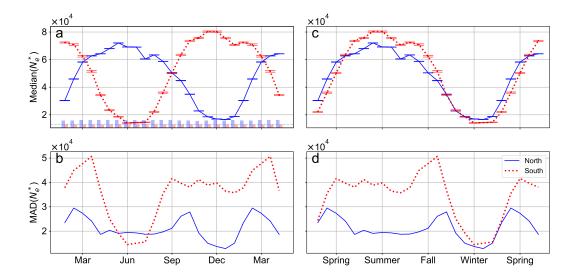


Figure 2. Median and median absolute deviation (MAD) of Swarm and CHAMP height- and solar flux-adjusted geomagnetic polar cap plasma density N_e^* statistics versus season parameter ϕ_s (see section 3.1) in the Northern Hemisphere (solid blue line) and Southern Hemisphere (dotted red line). Tick marks in each panel precisely indicate the relevant equinox or solstice. (a) Median N_e^* in each hemisphere as a function of season. (b) MAD (N_e^*) in each hemisphere as a function of season. (c) Median N_e^* in each hemisphere as a function of local season. (d) MAD (N_e^*) in each hemisphere as a function of local season. Error bars in Figures 2a and 2c indicate the 95% confidence interval of the median, calculated as described in Appendix B. The transparent histograms at the bottom of Figure 2a indicate the number of N_e^* values used to calculate the median statistic in each bin. The average number of measurements in each bin is 120,000 in the NH and 52,500 in the SH; the dashed gray line indicates N = 54,000. The total number of SH measurements is about 60% less than the total number of NH measurements (see section 2).

for all relevant years between 2002 and 2020 is calculated to second precision via the skyfield Python package (Rhodes, 2019).

Figure 2a displays median N_e^* values in the NH (solid blue line) and SH (dotted red line) geomagnetic polar caps as a function of the season parameter ϕ_s for bins of 0.2. The error bars indicate the 95% confidence interval of the median in each bin, calculated via the methodology described in Appendix B. At March equinox the median value of SH N_e^* is 7 ± 1% greater than the value of NH N_e^* , while there is apparently no such asymmetry (0.4 ± 1%) around September equinox. Figure 2b displays $MAD(N_e^*)$ in each hemisphere. In addition to the general trends in $MAD(N_e^*)$ described at the beginning of this section, here it is also apparent that the combined hemispheric $MAD(N_e^*)$ at December solstice are greater than the combined hemispheric $MAD(N_e^*)$ around June solstice. The globally greater variability of *F*-region N_e^* around December solstice has been shown (Chartier et al., 2019) to result from a combination of the ionospheric annual asymmetry and O⁺ plasma lifetimes that are longer during December solstice than during June solstice.

Figure 2c displays median N_e^* values in the NH (solid blue line) and SH (dotted 269 red line) geomagnetic polar caps as a function of local season ϕ_s , where the phase of the 270 SH ϕ_s season parameter values is shifted backward by 2 to facilitate comparison of lo-271 cal seasonal variations in median N_e^* for each hemisphere. From this figure it is imme-272 diately apparent that (i) the range of median SH N_e^* values in the SH is overall larger 273 than the range of median NH N_e^* values, which is also visible in Figure 1a, and (ii) vari-274 ation in median SH N_e^* lags behind median NH N_e^* around local spring and fall equinoxes 275 by several days. We quantify this lag in the following subsection. These statistics also 276 suggest that the annual maximum in median NH N_e^* occurs before local summer solstice, 277 while the annual maximum in median SH N_e^* occurs at or perhaps slightly before local 278 summer solstice. A secondary peak in median N_e^* between local summer solstice and lo-279 cal fall equinox is also apparent in both hemispheres. 280

Figure 2d displays $MAD(N_e^*)$ in each hemisphere as a function of local season. The most immediate observation is that SH $MAD(N_e^*)$ (dotted red line) are almost always greater than NH $MAD(N_e^*)$ (solid blue line), except for the period between local winter and local spring where the $MAD(N_e^*)$ values in each hemisphere are similar. Beyond this basic difference, in both hemispheres $MAD(N_e^*)$ peaks after local fall, reaches a global minimum near local winter, and either peaks (in the NH) or plateaus (in the SH) near local spring.

288

3.2 Equinoctial Asymmetries

We now consider the evolution of N_e^* around equinox in each hemisphere. Figure 3a shows median NH N_e^* values relative to March equinox (thin blue line) and September equinox (thick blue line) in 15-day bins. Crossover occurs at -7.2 days relative to equinox. Figure 3b shows median SH N_e^* values relative to March equinox (thin red dotted line)

-12-

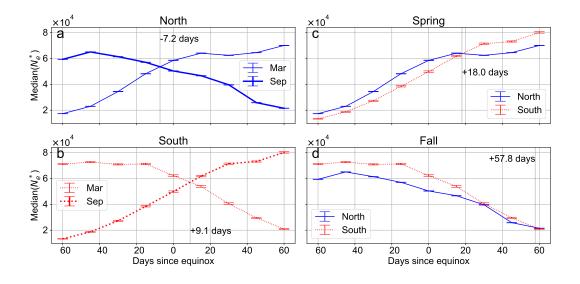


Figure 3. Median N_e^* statistics in 15-day bins relative to the number of days since equinox (Figures 3a–d). (a) Median NH N_e^* relative to March equinox (thin blue line) and September equinox (thick blue line). (b) Median SH N_e^* relative to March equinox (thin dotted red line) and September equinox (thick dotted red line). (c) Median NH N_e^* (solid blue line) and SH N_e^* (dotted red line) relative to local spring equinox. (d) Median NH N_e^* (solid blue line) and SH N_e^* (dotted red line) relative to local fall equinox. The 95% confidence intervals of the medians in 3a–d are calculated as described in Appendix B.

and September equinox (thick dotted red line). Crossover occurs at +9.1 days relative 293 to equinox. Figure 3c shows NH and SH median N_e^* values relative to March and Septem-294 ber equinox, respectively, and Figure 3d shows NH and SH median N_e^* values relative 295 to September and March equinox, respectively. That is, Figure 3c and 3d show median 296 N_e^\ast values in each hemisphere relative to local spring and fall, respectively. 297

Figure 3c shows that the local spring crossover between median NH N_e^* (solid blue 298 line) and median SH N_e^\ast (dotted red line) occurs at +18 days relative to equinox. Fig-299 ure 3d shows that the local fall crossover between median NH N_e^* (solid blue line) and 300 median SH N_e^* (dotted red line) occurs at +58 days relative to equinox, but it is also 301 apparent that these lines are very near one another over approximately +30 to +60 days 302 after equinox. To calculate the crossover point in each panel, we interpolate between each 303 15-day median with a resolution of 0.1 days and determine the relative day of year for 304 which the two lines shown in each panel are nearest each other. 305

4 Hemispheric and Seasonal Variations in Solar Illumination 306

Of the factors that influence the production of ionospheric plasma (see Introduc-307 tion), solar illumination is perhaps the most important. To determine which, if any, of 308 the asymmetries identified in the previous section can be explained purely on the basis 309 of solar illumination, we have conducted the analysis of geomagnetic and geocentric po-310 lar cap illumination shown in Figure 4, with x axes indicating the season or local sea-311 son as in Figure 2. The top row (Figures 4a–b) shows solar zenith angle χ ranges for the 312 NH (dotted blue line and cross hatching) and SH (dotted red line and circle hatching) 313 geomagnetic polar caps. The fourth row (Figures 4g-h) shows χ ranges for the geocen-314 tric polar caps. Gray shading in the upper half of Figures 4a–b and g–h indicates the 315 range $\chi > \chi_m$, where, from basic trigonometry, 316

$$\chi_m(h_0) = \frac{\pi}{2} + \arccos\left(\frac{R}{R+h_0}\right) \tag{1}$$

is the maximum solar zenith angle at which the Sun is visible as a function of reference 318 altitude h_0 and Earth radius R = 6371 km, neglecting refraction of sunlight and the oblate-319 ness of Earth. At reference altitude $h_0 = 350$ km, $\chi_m \approx 108.6^{\circ}$. 320

321

317

The range of χ values for each day is produced by identifying all points on an equalarea grid in geocentric coordinates that lie within the geomagnetic polar caps (Figures 4a-322 b) or geocentric polar caps (Figures 4g–h). We then calculate χ at all of these points at 323

-14-

Figure 4. Daily average, minimum, and maximum of solar zenith angle χ (Figures 4a–b and g-h) and the plasma production model given by Equation (4) (Figures 4c-f and i-l) versus season parameter ϕ_s (season in the left panels and local season in the right panels; see section 3.1) in the Northern (blue) and Southern Hemisphere (red) geomagnetic polar caps (three upper rows, Figures 4a-f) and geocentric polar caps (three lower rows, Figures 4g-l). Tick marks in each panel precisely indicate the relevant equinox or solstice. The average (panels a-d and g-j) or standard deviation (panels e-f and k-l) of each quantity is indicated by a thick dotted line (NH) and thin dotted line (SH). The average plus or minus one standard deviation in panels a-d and g-j is indicated by cross and circle hatching for the Northern and Southern Hemisphere, respectively. The gray shading in the upper half of panels a-b and e-f indicates the range of χ values 108.6°) at which the Sun is visible at 350-km above the maximum solar zenith angle χ_m (χ_m altitude according to Equation (1). The solid blue (NH) and red (SH) lines in Figures 4c-f are median geomagnetic polar cap N_e^* (Figures 4c-d) and MAD (N_e^*) (Figures 4e-f), taken and scaled from Figures 2a–d. The corresponding lines in Figures 4i–l are median geocentric polar cap N_e^\ast $^{-15-}$ (Figures 4i–j) and MAD (N_e^*) (Figures 4k–l).

459 5 Discussion

Results in the preceding sections indicate the existence of several seasonal and hemispheric asymmetries in the plasma density of the geomagnetic polar caps. Table 2 summarizes the equinoctial asymmetries identi ed from Figures 1{3 on the basis of the combined database of Swarm and CHAMP measurements.

The most signi cant results of analysis in section 3 are displayed in Figure 3. In 464 Figure 3a the crossover point of the two Northern Hemisphere (solid blue) lines occurs 465 approximately 7 days before equinox, whereas in Figure 3b the crossover point of the two 466 Southern Hemisphere (dotted red) lines occurs approximately 9.1 days after equinox. Thus 467 the days on which the local hemisphere geomagnetic polar cap density $_{\rm e}$ crossover near 468 local equinox occurs are hemispherically asymmetric. This asymmetry is also present when 469 the polar caps are de ned in geocentric coordinates (not shown), and so is not the re-470 sult of a particular choice of coordinate system. 471

Comparison of medianNe curves from each geomagnetic polar cap around local 472 spring (Figure 3c) and around local fall (Figure 3d) shows that the crossover points in 473 both hemispheres occur more than two weeks after equinox. This suggests the existence 474 of a seasonal \phase o set" between the two hemispheres in media ${f N}_{
m e}$ around local spring 475 and fall equinoxes, whereby N_e in the SH geomagnetic polar cap lag N_e in the NH ge-476 omagnetic polar cap by at least two weeks. MediarNe curves from each geocentric po-477 lar cap around local spring equinox (Figure 4j) exhibit a similar, even more pronounced 478 lag, whereby N_e in the SH geocentric polar cap $lagsN_e$ in the NH geocentric polar cap 479 by six weeks or more. 480

Thus the relative lag between SH and NH polar capNe around local spring equinox 481 is not the result of choosing a particular de nition of the polar caps (i.e., geomagnetic 482 or geocentric polar caps; see Table 2). On the other hand there is apparently no lag be-483 tween SH and NH geocentric polar capN_{e} around local fall equinox, which suggests that 484 the relative lag exhibited by N_e in the geomagnetic polar caps is related to the choice 485 of coordinate system (i.e., geomagnetic instead of geocentric polar caps). The di erent 486 lags imply that there are at least two contributing factors to the delay, which likely op-487 erate somewhat di erently in the two sets of polar caps during local spring and local fall. 488 Here it is worth noting that the existence of a relative lag in geomagnetic polar capN_e 489 around local fall equinox may be related to reported hemispheric asymmetry in ion out-490

{22{

⁴⁹¹ ow processes and ionosphere-magnetosphere coupling that is organized by the geomag-⁴⁹² netic eld (Haaland et al., 2012; Andle et al., 2015; Haaland et al., 2017).

To test the robustness of the asymmetries identi ed in Figures 1{3 and Table 1, 493 we have also performed the analysis separately for each of the four satellites used in this 494 study (not shown). The values obtained from each of these separate analyses are shown 495 in the rightmost column of Table 2. All of the asymmetries we have just discussed also 496 appear in the analyses based on measurements from individual satellites. More specif-497 ically with the exception of the weak evidence for a NH/SH crossover delay at Septem-498 ber equinox, the other delays are consistent between all four spacecraft albeit with slight 499 di erences in the estimated t values. 500

We believe these separate analyses are important indicators of the robustness of each asymmetry, since the Swarm and CHAMP satellites monitor polar cap plasma density at e ectively three di erent altitude ranges over two di erent portions of a solar cycle, with two di erent and independent types of Langmuir probe instruments and three di erent orbits.

To understand whether these observed asymmetries can be explained solely on the 506 basis of di erences in solar illumination, in section 4 we have used an illumination-dependent 507 plasma production model with representative values of parameters such as neutral tem-508 perature and absorption cross section. More signi cant than any of the chosen values 509 of these neutral atmosphere parameters, however, is our much more basic (and unreal-510 istic) assumption of a neutral atmosphere that consists of a single species, a single wavelength-511 independent absorption cross section, and a constant temperature pro le that does not 512 vary with season. 513

One purpose of this study is to determine whether the hemispheric asymmetry in 514 magnetospheric lobe cold plasma density reported by Haaland et al. (2017) could be ex-515 plained on the basis of plasma densities in the ionospheric polar caps. In speci c, they 516 found that the distribution of densities in the NH lobe were overall greater than the dis-517 tribution of densities in the SH lobe around September equinox, and speculated whether 518 this asymmetry was due to di erences in out ow and plasma densities between NH and 519 SH. No such corresponding asymmetry in median geomagnetic polar cap at Septem-520 ber equinox is apparent in Figures 1a and 2a. There is, however, evidence of a correspond-521 ing asymmetry in the median geographic polar capN_e (Figure 4i). 522

{23{

when all three satellites flew at approximately 500-km geodetic altitude in the NH (520km geodetic altitude in the SH). The orbit of Swarm B was later boosted to higher altitudes, while the orbits of Swarm A and Swarm C were lowered. (The altitude distribution covered by Swarm A is not shown since it and Swarm C have followed very similar orbital trajectories since launch.)

Comparison of the geodetic altitude distributions in each hemisphere indicates a systematic difference in each satellite's range of altitudes: in each case the NH geomagnetic polar cap distribution of altitudes is systematically offset by approximately 20 km relative to the SH geomagnetic polar cap distribution. This is due to the combined effects of the Earth's oblateness and the slightly elliptical orbit of each satellite.

From 380 conjunctions between Swarm B and either Swarm A or Swarm C for which Swarm LP data is currently available (Dec 2013 through Feb 2020) we derive an empirical scale height. These conjunctions were identified via the Query tool (https://sscweb .gsfc.nasa.gov/cgi-bin/Query.cgi) at NASA's Satellite Situation Center Web (https:// sscweb.gsfc.nasa.gov/) by requiring a horizontal separation of less than 100 km after radially tracing the footpoint of each satellite to a common altitude.

578 For each conjunction identified by the Query tool, we use a 10-minute window to 579 calculate the time at which the angular separation

580

$$\Delta \zeta = \arccos\left[\sin\lambda_1^m \sin\lambda_2^m + \cos\lambda_1^m \cos\lambda_2^m \cos\left(\left|\theta_1 - \theta_2\right|\right)\right],\tag{A2}$$

between the two satellites is a minimum. Here λ^m and θ respectively denote MLat and geomagnetic longitude in MA_{110} coordinates. We then use this more precise list of conjunction times to calculate the Vertical Scale Height VSH $\equiv dh/(d \ln N_e)$ (e.g., Hu et al., 2019).

Each conjunction corresponds to a single point in Figure A1c, which shows the log-585 arithm of the ratio of N_e measurements made by Swarm B and either Swarm A or Swarm 586 C on the x axis, and the altitude separation Δh in kilometers between the satellite pair 587 on the y axis. The circle and star markers respectively denote dayside (6–18 MLT) and 588 nightside (18–6 MLT) conjunctions. The spread in the logarithm of density ratios on the 589 x axis indicate overall significant variability in the plasma density at each altitude. This 590 spread is not surprising given the various contributions to density made by, for exam-591 ple, plasma convection, polar cap patches, and auroral precipitation. On the other hand, 592

-26-

individual points in Figure A1c also indicate the existence of a particular scale height, 593

or an approximately linear relationship between altitude difference and the logarithm 594 of the ratio of plasma density at each altitude.

595

We use so-called "robust regression" to estimate the VSH from measurements in Figure A1c. In specific we perform an iterative Huber-weighted least-squares linear regression (e.g., Huber (1973); Holland and Welsch (1977)) to data in Figure A1c with the function

$$\log\left(N_e^{\rm A,C}/N_e^{\rm B}\right) = \beta \Delta h,\tag{A3}$$

where $\beta \equiv 1/\text{VSH}$. We use the HuberRegressor module of the Scikit-learn Python 596 package (Pedregosa et al., 2011) with $\epsilon = 1.5$. The ϵ parameter in Huber-weighted it-597 erative regression controls the degree to which the regression is sensitive to outlier points. 598

From this regression we obtain the purple and brown lines, which respectively cor-599 respond to VSH=205 km on the "dayside" and VSH=167 km on the "nightside." We 600 use magnetic local time (MLT) in MA_{110} coordinates to define "dayside" as $6 \leq MLT <$ 601 18, and "night side" as MLT $\,<\,6$ and MLT $\,\geq\,$ 18. These VSH values are within the 602 range of typical estimates at geodetic altitudes of 350–500 km (see, e.g., Figure 2 in Hu 603 et al. (2019) and Figure 1B in Stankov and Jakowski (2006)). To each N_e measurement 604 we then apply a scaling factor 605

$$N_{e,h_0} = N_e \exp\left[\left(h - h_0\right) / \text{VSH}\right],\tag{A4}$$

where h is the altitude at which the measurement is made and VSH is the empirical scale 607 height. We arbitrarily select a reference geodetic altitude $h_0 = 500$ km. This scaling 608 decreases the value of N_e for measurements made below h_0 and increases the value of 609 N_e for measurements made above h_0 . 610

611

606

A2 Adjustment of N_e for F10.7 Variations

In addition to variation with altitude, polar cap N_e also varies with the intensity 612 of sunlight. We use an average of the F10.7 index during the preceding 27 days, denoted 613 by $\langle F10.7 \rangle_{27}$, as a proxy for solar EUV intensity. (The F10.7 index is publically avail-614 able via the NASA OMNI database at https://omniweb.gsfc.nasa.gov/form/dx1.html.) 615 Another common choice for averaging the F10.7 index is a centered 81-day window (e.g., 616 L. Liu & Chen, 2009; Schunk & Nagy, 2009). We have elected to use $\langle F10.7 \rangle_{27}$ instead, 617

-27-

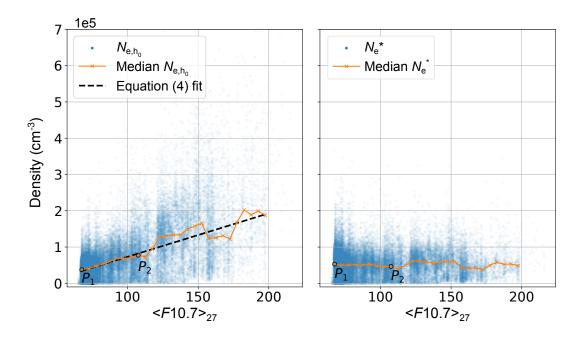


Figure A2. Height-scaled plasma densities before (left) and after (right) adjusting for variation in $\langle F10.7 \rangle_{27}$ using Equation (A6). In the left panel the black dashed line indicates the model given by Equation (A5) with best-fit parameters a = 0.02564 and N = 46,780 obtained by performing the iterative Huber-weighted least-squares nonlinear regression described in the text. The two points P_1 and P_2 indicate the two points used to obtain initial estimates for model parameters a and N, and are shown in the right panel to indicate the effect of applying Equation (A6) to N_{e,h_0} values. In both panels the orange line indicates the median value, N_{e,h_0} in the left panel and N_e^{adj} in the right panel, within $\langle F10.7 \rangle_{27}$ bins of 5.

since we find that the RMS error between $\langle F10.7 \rangle_{27}$ and N_{e,h_0} is slightly (~5%) lower 618 than the RMS error between an 81-day centered average of the F10.7 index and N_{e,h_0} . 619

Figure A2a shows height-scaled polar cap N_{e,h_0} plotted versus $\langle F10.7 \rangle_{27}$. The or-620 ange line indicates median N_{e,h_0} values within bins of 5 for $\langle F10.7 \rangle_{27}$ between 65 and 621 200. The variation of median N_{e,h_0} with $\langle F10.7 \rangle_{27}$ is approximately linear.

622

635

To scale N_{e,h_0} measurements for variation with F10.7, we perform an iterative Huberweighted least-squares linear regression to all 3,456,077 N_{e,h_0} values with a model of the form

$$N_{e,h_0} = A \langle F10.7 \rangle_{27} - B = N \left(a \langle F10.7 \rangle_{27} - 1 \right). \tag{A5}$$

In practice the actual best-fit parameters are not sensitive to our choice of initial param-623 eter estimates, but for illustrative purposes we use the two points indicated in Figure A2a, 624 $P_1 = (F_1, N_1) = (67.5, 37516)$ and $P_2 = (F_2, N_2) = (107.5, 77460)$ together with the 625 model in Equation (A5) to obtain the initial model estimates $\hat{A} = (N_2 - N_1)/(F_2 - N_2)/(F_2 - N$ 626 F_1 = 999 and $\hat{B} = \hat{N} = \hat{A}F_1 - N_1 = 29890$, such that $\hat{a} = \hat{A}/\hat{B} = 0.033$. 627

The resulting best-fit model parameters with weighting parameter $\epsilon = 1.5$ are a =628 0.02564 and N = 46,780; the resulting model of the form given by Equation (A5) is 629 indicated by the black dashed line in Figure A2a. These fit parameters are obtained by 630 requiring that the relative change in each model parameter be less than 10^{-8} after each 631 iteration, which is generally achieved after 35–60 iterations. We apply the portion of the 632 model in Equation (A5) that is dependent on $\langle F10.7 \rangle_{27}$, namely the parameter a, to each 633 N_{e,h_0} value to finally obtain the height- and solar flux-adjusted density 634

$$N_e^* = N_{e,h_0} \frac{80a - 1}{a\langle F10.7 \rangle_{27} - 1}.$$
(A6)

The numerator in Equation (A6) scales the final adjusted density N_e to a nominal so-636 lar flux level of $\langle F10.7 \rangle_{27} = 80$. These final adjusted densities are shown in Figure A2b. 637

Appendix B 95% Confidence Interval of the Median 638

The 95% confidence interval of each median displayed in Figure 1a is calculated 639 in each DOY bin by first sorting the N_e^* values in that DOY bin, and then identifying 640 the value of N_e^* corresponding to the *L*th and *U*th sorted sample in that DOY bin. These 641

(B1)

sorted sample numbers are given by (Conover, 1999)

643

 $L = \lfloor Q_b(0.025, N, 0.5) \rfloor;$

- $U = [Q_b(0.975, N, 0.5)];$
- where [] and [] are respectively floor and ceiling functions and $Q_b(p, N, q)$ is the quan-
- tile function, otherwise known as the "inverse cumulative distribution" or "percent-point
- ⁶⁴⁷ function," of the binomial distribution. The parameters of this quantile function are the
- probability p, the number of observations N, and the quantile of interest q. We use p =
- $_{649}$ 0.025, 0.975 corresponding to the 95% confidence interval, and q = 0.5 corresponding
- to the 50% quantile or median. We calculate $Q_b(p, N, q)$ via the stats.binom.ppf method
- of the scipy Python package (Virtanen et al., 2020).
- 652 Acknowledgments

Work at the Birkeland Center for Space Science and the University of Bergen was funded by the Research Council of Norway/CoE under contract 223252/F50 and by ESA contract 4000126731 in the framework of EO Science for Society.

The Level 2 CHAMP PLP dataset and Level 1B Swarm LP dataset are publically accessible via ftp://isdcftp.gfz-potsdam.de and https://swarm-diss.eo.esa.int/, respectively. The F10.7 index is available via the NASA OMNI database (https://omniweb .gsfc.nasa.gov/form/dx1.html)

660 References

- Adams, G. W., & Masley, A. J. (1965, Mar). Production rates and electron densities
 in the lower ionosphere due to solar cosmic rays. Journal of Atmospheric and
 Terrestrial Physics, 27(3), 289-298. doi: 10.1016/0021-9169(65)90029-2
- André, M. (2015, Dec). Previously hidden low-energy ions: a better map of near-Earth space and the terrestrial mass balance. *Physica Scripta*, 90(12), 128005. doi: 10.1088/0031-8949/90/12/128005
- André, M., Li, K., & Eriksson, A. I. (2015, Feb). Outflow of low-energy ions and
 the solar cycle. Journal of Geophysical Research (Space Physics), 120(2), 1072 1085. doi: 10.1002/2014JA020714
- Appleton, E. V. (1939, July). Characteristic variation of region f_2 ionization throughout the year. *Nature*, 144 (3638), 151-152. doi: 10.1038/144151a0

672	Appleton, S. E. (1956, Jan). Regularities and irregularities in the ionosphere. Vistas
673	in Astronomy, 2(1), 779-790. doi: 10.1016/0083-6656(56)90001-0
674	Aruliah, A. L., Farmer, A. D., Fuller-Rowell, T. J., Wild, M. N., Hapgood, M., &
675	Rees, D. (1996, July). An equinoctial asymmetry in the high-latitude thermo-
676	sphere and ionosphere. jgr , 101, 15713-15722. doi: 10.1029/95JA01102
677	Aruliah, A. L., Farmer, A. D., Rees, D., & Brändström, U. (1996, July). The sea-
678	sonal behavior of high-latitude thermospheric winds and ion velocities observed
679	over one solar cycle. Journal of Geophysical Research: Space Physics, 101,
680	15701-15712. doi: 10.1029/96JA00360
681	Axford, W. I. (1968, November). The polar wind and the terrestrial helium budget.
682	J. Geophys. Res., 73, 6855-6859. doi: 10.1029/JA073i021p06855
683	Banks, P. M., & Holzer, T. E. (1968). The polar wind. Journal of Geophysical Re-
684	search, $73(21)$, 6846–6854. doi: 10.1029/JA073i021p06846
685	Bjoland, L. M., Belyey, V., Løvhaug, U. P., & La Hoz, C. (2016, sep). An evalu-
686	ation of International Reference Ionosphere electron density in the polar cap
687	and cusp using EISCAT Svalbard radar measurements. Ann. Geophys., $34(9)$,
688	751–758. doi: 10.5194/angeo-34-751-2016
689	Brekke, A. (1997). Physics of the polar upper atmosphere. Springer Nature.
690	Burns, A. G., Solomon, S. C., Wang, W., Qian, L., Zhang, Y., & Paxton, L. J.
691	(2012, sep). Daytime climatology of ionospheric N m F 2 and h m F 2 from
692	COSMIC data. Journal of Geophysical Research: Space Physics, 117(A9). doi:
693	10.1029/2012JA017529
694	Chapman, S. (1931, jan). The absorption and dissociative or ionizing effect of
695	monochromatic radiation in an atmosphere on a rotating earth. Proceedings of
696	the Physical Society, $43(1)$, 26–45. doi: 10.1088/0959-5309/43/1/305
697	Chappell, C. R., Giles, B. L., Moore, T. E., Delcourt, D. C., Craven, P. D., & Chan-
698	dler, M. O. (2000, April). The adequacy of the ionospheric source in supplying $% \mathcal{A}(\mathcal{A})$
699	magnetospheric plasma. Journal of Atmospheric and Solar-Terrestrial Physics,
700	62, 421-436. doi: 10.1016/S1364-6826(00)00021-3
701	Chappell, C. R., Moore, T. E., & Waite, J. H., Jr. (1987, June). The ionosphere as
702	a fully adequate source of plasma for the earth's magnetosphere. $J.$ Geophys.
703	Res., 92 , 5896-5910. doi: 10.1029/JA092iA06p05896

Chartier, A. T., Huba, J. D., & Mitchell, C. N. (2019, nov). On the Annual Asym-

-31-

705	metry of High-Latitude Sporadic F. Space Weather, 17(11), 1618–1626. doi:
706	10.1029/2019SW002305
707	Cladis, J. B. (1986, September). Parallel acceleration and transport of ions from po-
708	lar ionosphere to plasma sheet. Geophys. Res. Letters, 13, 893-896. doi: 10
709	.1029/GL013i009p00893
710	Cnossen, I., & Förster, M. (2016, January). North-south asymmetries in the
711	polar thermosphere-ionosphere system: Solar cycle and seasonal influ-
712	ences. Journal of Geophysical Research (Space Physics), 121, 612-627. doi:
713	10.1002/2015JA021750
714	Conover, W. J. (1999). Practical Nonparametric Statistics (3rd ed.). John Wiley &
715	Sons.
716	Dang, T., Wang, W., Burns, A., Dou, X., Wan, W., & Lei, J. (2017, jun). Simu-
717	lations of the ionospheric annual asymmetry: Sun-Earth distance effect. $Jour$ -
718	nal of Geophysical Research: Space Physics, 122(6), 6727–6736. doi: 10.1002/
719	2017JA024188
720	Dessler, A. J., & Michel, F. C. (1966, Mar). Plasma in the geomagnetic tail. Jour-
721	nal of Geophysical Research: Space Physics, 71(5), 1421-1426. doi: 10.1029/
722	JZ071i005p01421
723	Dungey, J. W. $(1963, Jan)$. Interactions of solar plasma with the geomagnetic field.
724	Planetary and Space Science, 10, 233-237. doi: 10.1016/0032-0633(63)90020
725	-5
726	Emmert, J. T., Richmond, A. D., & Drob, D. P. (2010, aug). A computation-
727	ally compact representation of Magnetic-Apex and Quasi-Dipole coordinates
728	with smooth base vectors. Journal of Geophysical Research: Space Physics,
729	115(A8). doi: 10.1029/2010JA015326
730	Feldstein, I. I., Lyatskaya, A. M., Sumaruk, P. V., & Shevnina, N. F. (1975, Dec).
731	Ionization of the F-layer of the ionosphere and variations of the magnetic field
732	in the near-polar region. Geomagnetism and Aeronomy, 15, 1021-1027.
733	Fennelly, J., & Torr, D. (1992, jul). Photoionization and photoabsorption cross
734	sections of O, N2, O2, and N for aeronomic calculations. Atomic Data and Nu-
735	clear Data Tables, 51(2), 321–363. doi: 10.1016/0092-640X(92)90004-2
736	Förster, M., Rentz, S., Köhler, W., Liu, H., & Haaland, S. E. (2008). IMF de-
737	pendence of high-latitude thermospheric wind pattern derived from CHAMP

738	cross-track measurements. Annales Geophysicae, $26(6)$, 1581–1595. doi:
739	10.5194/angeo-26-1581-2008
740	Friis-Christensen, E., Lühr, H., Knudsen, D., & Haagmans, R. (2008, jan). Swarm –
741	An Earth Observation Mission investigating Geospace. Advances in Space Re-
742	search, $41(1)$, 210–216. doi: 10.1016/j.asr.2006.10.008
743	Haaland, S., Lybekk, B., Maes, L., Laundal, K., Pedersen, A., Tenfjord, P.,
744	Snekvik, K. (2017, January). North-south asymmetries in cold plasma den-
745	sity in the magnetotail lobes: Cluster observations. Journal of Geophysical
746	Research: Space Physics, 122, 136-149. doi: 10.1002/2016JA023404
747	Haaland, S., Svenes, K., Lybekk, B., & Pedersen, A. (2012, Jan). A survey of the
748	polar cap density based on Cluster EFW probe measurements: Solar wind and
749	solar irradiation dependence. Journal of Geophysical Research (Space Physics),
750	117(A1), A01216. doi: 10.1029/2011JA017250
751	Holland, P. W., & Welsch, R. E. (1977, jan). Robust regression using iteratively
752	reweighted least-squares. Communications in Statistics - Theory and Methods,
753	6(9), 813-827.doi: 10.1080/03610927708827533
754	Horwitz, J. L., Ho, C. W., Scarbro, H. D., Wilson, G. R., & Moore, T. E. (1994).
755	Centrifugal acceleration of the polar wind. Journal of Geophysical Research,
756	99(A8), 15051. doi: 10.1029/94JA00924
757	Hu, A., Carter, B., Currie, J., Norman, R., Wu, S., Wang, X., & Zhang, K. (2019,
758	jun). Modeling of Topside Ionospheric Vertical Scale Height Based on Iono-
759	spheric Radio Occultation Measurements. Journal of Geophysical Research:
760	Space Physics, 124(6), 4926–4942. doi: 10.1029/2018JA026280
761	Huber, P. J. (1973, sep). Robust Regression: Asymptotics, Conjectures and Monte
762	Carlo. The Annals of Statistics, $1(5)$, 799–821. doi: $10.1214/aos/1176342503$
763	Huestis, D. L. (2001). Accurate evaluation of the Chapman function for atmo-
764	spheric attenuation. Journal of Quantitative Spectroscopy and Radiative Trans-
765	fer, 69(6), 709–721. doi: 10.1016/S0022-4073(00)00107-2
766	Ieda, A., Oyama, S., Vanhamäki, H., Fujii, R., Nakamizo, A., Amm, O., Nishi-
767	tani, N. (2014, dec). Approximate forms of daytime ionospheric conductance.
768	Journal of Geophysical Research: Space Physics, 119(12), 10,310–397,415. doi:
769	10.1002/2014JA020665

⁷⁷⁰ Ivanov-Kholodnyy, G. S. (1962, Jan). Ionization of the Upper Atmosphere by Solar

771	Short-Wave Radiation. Geomagnetism and Aeronomy, 2, 561.
772	Khocholava, G. M. (1977, Mar). On diffusion-recombination parameters in the F-
773	region of the ionosphere. Journal of Atmospheric and Terrestrial Physics, 39,
774	389-391. doi: 10.1016/S0021-9169(77)90154-4
775	Klumpar, D. M. (1979, Aug). Transversely accelerated ions: An ionospheric source
776	of hot magnetospheric ions. Journal of Geophysical Research: Space Physics,
777	$84({\rm A8}),4229\text{-}4237.$ doi: 10.1029/JA084iA08p04229
778	Knudsen, D. J., Burchill, J. K., Buchert, S. C., Eriksson, A. I., Gill, R., Wahlund,
779	J., Moffat, B. (2017, feb). Thermal ion imagers and Langmuir probes in
780	the Swarm electric field instruments. Journal of Geophysical Research: Space
781	<i>Physics</i> , $122(2)$, 2655–2673. doi: 10.1002/2016JA022571
782	Laundal, K., Cnossen, I., Milan, S. E., Haaland, S. E., Coxon, J., Pedatella, N. M.,
783	Reistad, J. P. (2017). North-South asymmetries in Earth's magnetic field -
784	Effects on high-latitude geospace. Space Sci. Reviews., 193.
785	Laundal, K. M., & Richmond, A. D. (2016). Magnetic Coordinate Systems. Space
786	Science Reviews, 1–33. doi: 10.1007/s11214-016-0275-y
787	Lei, J., Wang, W., Burns, A. G., Luan, X., & Dou, X. (2016, jul). Can atomic
788	oxygen production explain the ionospheric annual asymmetry? Jour-
789	nal of Geophysical Research: Space Physics, 121(7), 7238–7244. doi:
790	10.1002/2016JA022648
791	Li, K., Förster, M., Rong, Z., Haaland, S., Kronberg, E., Cui, J., Wei, Y. (2020,
792	mar). The Polar Wind Modulated by the Spatial Inhomogeneity of the
793	Strength of the Earth's Magnetic Field. Journal of Geophysical Research:
794	Space Physics, e2020JA027802. doi: $10.1029/2020JA027802$
795	Li, K., Haaland, S., Eriksson, A., André, M., Engwall, E., Wei, Y., Ren, Q. Y.
796	(2012, Sep). On the ionospheric source region of cold ion outflow. Geophysical
797	Research Letters, $39(18)$, L18102. doi: 10.1029/2012GL053297
798	Liu, C., Perez, J. D., Moore, T. E., & Chappell, C. R. (1994, feb). Low energy par-
799	ticle signature of substorm dipolarization. Geophysical Research Letters, $21(3)$,
800	229–232. doi: 10.1029/93GL02839
801	Liu, L., & Chen, Y. (2009, oct). Statistical analysis of solar activity variations of
802	total electron content derived at Jet Propulsion Laboratory from GPS ob-
803	servations. Journal of Geophysical Research: Space Physics, 114 (A10). doi:

-34-

804	10.1029/2009JA014533
805	Lomidze, L., Knudsen, D. J., Burchill, J., Kouznetsov, A., & Buchert, S. C. (2018).
806	Calibration and validation of Swarm plasma densities and electron tempera-
807	tures using ground-based radars and satellite radio occultation measurements.
808	Radio Science, 53(1), 15–36. doi: 10.1002/2017RS006415
809	Maes, L., Maggiolo, R., & De Keyser, J. (2016). Seasonal variations and north-south
810	asymmetries in polar wind outflow due to solar illumination. Ann. Geophys.,
811	34, 961-974.doi: doi:10.5194/angeo-34-961-2016
812	McNamara, L. F., Cooke, D. L., Valladares, C. E., & Reinisch, B. W. (2007, apr).
813	Comparison of CHAMP and Digisonde plasma frequencies at Jicamarca, Peru.
814	Radio Science, $42(2)$. doi: 10.1029/2006RS003491
815	Mendillo, M., Huang, CL., Pi, X., Rishbeth, H., & Meier, R. (2005, oct).
816	The global ionospheric asymmetry in total electron content. Journal
817	of Atmospheric and Solar-Terrestrial Physics, 67(15), 1377–1387. doi:
818	10.1016/j.jastp.2005.06.021
819	Mikhailov, A. V., & Schlegel, K. (2001). Equinoctial transitions in the ionosphere
820	and thermosphere. Annales Geophysicæ, 19, 783-796. doi: 10.5194/angeo-19
821	-783-2001
822	Milan, S. E. (2009, Sep). Both solar wind-magnetosphere coupling and ring current
823	intensity control of the size of the auroral oval. Geophysical Research Letters,
824	36(18), L18101. doi: 10.1029/2009GL039997
825	Milan, S. E., Boakes, P. D., & Hubert, B. (2008, Sep). Response of the expand-
826	ing/contracting polar cap to weak and strong solar wind driving: Implications
827	for substorm onset. Journal of Geophysical Research (Space Physics), 113(A9),
828	A09215. doi: 10.1029/2008JA013340
829	Nilsson, H., Engwall, E., Eriksson, A., Puhl-Quinn, P. A., & Arvelius, S. (2010,
830	February). Centrifugal acceleration in the magnetotail lobes. Annales Geophys-
831	icae, 28, 569-576. doi: 10.5194/angeo-28-569-2010
832	Nilsson, H., Waara, M., Marghitu, O., Yamauchi, M., Lundin, R., Rème, H.,
833	Korth, A. (2008, February). An assessment of the role of the centrifugal ac-
834	celeration mechanism in high altitude polar cap oxygen ion outflow. Annales
835	Geophysicae, 26, 145-157.doi: 10.5194/angeo-26-145-2008
836	Nishida, A. (1966, dec). Formation of plasmapause, or magnetospheric plasma

manuscript submitted to JGR: Space Physics

837	knee, by the combined action of magnetospheric convection and plasma es-
838	cape from the tail. Journal of Geophysical Research, 71 (23), 5669–5679. doi:
839	10.1029/JZ071i023p05669
840	Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
841	Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of
842	Machine Learning Research, 12, 2825–2830.
843	Quinn, T. P., & Nisbet, J. S. (1965, Jan). Recombination and Transport in the
844	Nighttime F Layer of the Ionosphere. Journal of Geophysical Research: Space
845	<i>Physics</i> , $70(1)$, 113-130. doi: 10.1029/JZ070i001p00113
846	Rees, M. H. (1963, Oct). Auroral ionization and excitation by incident energetic
847	electrons. Planetary and Space Science, $11(10)$, 1209-1218. doi: 10.1016/0032
848	-0633(63)90252-6
849	Rees, M. H. $(1982, May)$. On the interaction of a uroral protons with the earth's at-
850	mosphere. Planetary and Space Science, $30(5)$, 463-472. doi: 10.1016/0032
851	-0633(82)90056-3
852	Rees, M. H. (1989). Physics and chemistry of the upper atmosphere. Cambridge,
853	United Kingdom: Cambridge University Press.
854	Reigber, C., Lühr, H., Grunwaldt, L., Förste, C., König, R., Massmann, H., & Falck,
855	C. (2006). CHAMP Mission 5 Years in Orbit. In Observation of the earth
856	system from space (pp. 3–15). Berlin/Heidelberg: Springer-Verlag. doi:
857	$10.1007/3-540-29522-4_1$
858	Rhodes, B. (2019, Jul). Skyfield: High precision research-grade positions for planets
859	and Earth satellites generator.
860	Richmond, A. D. (1995). Ionospheric Electrodynamics Using Magnetic Apex Coor-
861	dinates. Journal of geomagnetism and geoelectricity, $47(2)$, 191–212. doi: 10
862	.5636/jgg.47.191
863	Rishbeth, H. (1962, Apr). Atmospheric composition and the F layer of the
864	ionosphere. Planetary and Space Science, 9(4), 149-152. doi: 10.1016/
865	0032-0633(62)90002-8
866	Rishbeth, H. (1997, Oct). The ionospheric E-layer and F-layer dynamos - a tutorial
867	review. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 1873-1880.
868	doi: $10.1016/S1364-6826(97)00005-9$
869	Rishbeth, H., & Müller-Wodarg, I. C. F. (2006, dec). Why is there more ionosphere

-36-

870	in January than in July? The annual asymmetry in the F2-layer. Annales $Geo{}$
871	physicae, 24(12), 3293–3311. doi: 10.5194/angeo-24-3293-2006
872	Rother, M., Choi, S., Mai, W., Lühr, H., & Cooke, D. (2005, jan). Status of the
873	CHAMP ME data processing. In Earth observation with champ results from
874	three years in orbit (p. 413). doi: $10.1007/3-540-26800-6_66$
875	Schunk, R., & Nagy, A. (2009). <i>Ionospheres</i> (Second ed.). Cambridge: Cambridge
876	University Press. doi: 10.1017/CBO9780511635342
877	Shim, J. S., Kuznetsova, M., Rastätter, L., Hesse, M., Bilitza, D., Butala, M.,
878	Rideout, B. (2011, dec). CEDAR Electrodynamics Thermosphere Ionosphere
879	(ETI) Challenge for systematic assessment of ionosphere/thermosphere mod-
880	els: NmF2, hmF2, and vertical drift using ground-based observations. $Space$
881	Weather, $9(12)$. doi: 10.1029/2011SW000727
882	Sotirelis, T., Newell, P. T., & Meng, C. (1998, January). Shape of the open-closed
883	boundary of the polar cap as determined from observations of precipitating
884	particles by up to four DMSP satellites. Journal of Geophysical Research:
885	Space Physics, 103, 399-406. doi: 10.1029/97JA02437
886	Stankov, S., & Jakowski, N. (2006, jan). Topside ionospheric scale height anal-
887	ysis and modelling based on radio occultation measurements. Journal of At-
888	mospheric and Solar-Terrestrial Physics, 68(2), 134–162. doi: 10.1016/j.jastp
889	.2005.10.003
890	Torr, D. G., Torr, M. R., & Richards, P. G. (1980, may). Causes of the F region
891	winter anomaly. Geophysical Research Letters, 7(5), 301–304. doi: 10.1029/
892	GL007i005p00301
893	van der Meeren, C., Burrell, A. G., & Laundal, K. M. (2018). apexpy: Apexpy ver-
894	sion 1.0.3. http://doi.org/10.5281/zenodo.1214207.
895	Velinov, P. (1970, Feb). Solar cosmic ray ionization in the low ionosphere. Journal of
896	Atmospheric and Terrestrial Physics, 32, 139-147. doi: 10.1016/0021-9169(70)
897	90187-X
898	Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cour-
899	napeau, D., Contributors, S (2020). SciPy 1.0: Fundamental
900	Algorithms for Scientific Computing in Python. <i>Nature Methods</i> . doi:
901	https://doi.org/10.1038/s41592-019-0686-2
902	Xiong, C., Stolle, C., & Park, J. (2018, apr). Climatology of GPS signal loss ob-

-37-

served by Swarm satellites. Ann. Geophys., 36(2), 679–693. doi: 10.5194/angeo
 -36-679-2018

-38-