Spatio-temporal variability of the carbonate system and air-sea CO2 fluxes in the South Yellow Sea and East China Sea during the warm seasons

Chun-Ying Liu¹, Xue Deng², Gui-Ling Zhang², Ming Xin³, and Wei-Jun Cai¹

¹University of Delaware ²Ocean University of China ³the First Institute of Oceanography

November 24, 2022

Abstract

Due to the complex physical and biogeochemical conditions, the adjacent South Yellow Sea (SYS) and East China Sea (ECS) are ideal sites for studying different carbonate characteristics in marginal seas. The distributions of carbonate system parameters were investigated in this region in early spring and summer. Overall, dissolved inorganic carbon (DIC) and alkalinity concentrations in the SYS were higher than those in the ECS due to the Yellow River runoff which was featured with intensive carbonate weathering and erosion. Low DIC, alkalinity and high pH values were observed in the Zhe-Min Coastal Current with intensive primary production in spring caused by the Changjiang River and Taiwan Warm Current. Temperature and biological activities were the primary drivers in controlling the partial pressure of CO2 (pCO2) variability in the SYS, whereas temperature was the only dominant factor in the outer shelf of the ECS, which was heavily impacted by the Kuroshio Current. The pCO2 dynamics was controlled by primary production and physical mixing in the Changjiang River plume and the inner and middle shelves of the ECS, due to the influence of the Changjiang River with high nutrient supply. Overall, strong CO2 sinks (-4.11 \pm 5.28 mmol m-2d-1) turned into weak sources (0.88 \pm 5.09 mmol m-2d-1) in the entire study area from spring to summer. Specifically, the SYS and ECS offshore waters changed from CO2 sinks in spring to sources in summer, while the Changjiang River plume always served as a CO2 sink.

1	Spatio-temporal variability of the carbonate system and air-sea CO ₂ fluxes in the
2	South Yellow Sea and East China Sea during the warm seasons
3	
4	Xue Deng ^{1,2} , Gui-Ling Zhang ^{1,2} , Ming Xin ^{2,3} , Chun-Ying Liu ^{1,2,*} , Wei-Jun Cai ⁴
5	
6	¹ Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education,
7	Qingdao 266100, PR China
8	² Laboratory for Marine Ecology and Environmental Science, Qingdao National
9	Laboratory for Marine Science and Technology, Qingdao 266071, PR China
10	³ Key Laboratory for Marine Bioactive Substances and Modern Analytical
11	Technology, the First Institute of Oceanography, Ministry of Natural Resources,
12	Qingdao 266061, PR China
13	⁴ School of Marine Science and Policy, University of Delaware, Newark, DE 19716,
14	United States
15	*Corresponding author: <u>roseliu@ouc.edu.cn</u>
16	
17	Key Points:
18	• Strong CO ₂ sinks turned into weak sources in the entire study area from spring
19	to summer

20	•	The study area was divided into three subregions to separately examine the
21		driver mechanisms of the pCO_2 variations
22	•	The p CO ₂ variability was controlled by the combined influences of
23		temperature, biological activity and physical mixing

25 Abstract

Due to the complex physical and biogeochemical conditions, the adjacent South 26 Yellow Sea (SYS) and East China Sea (ECS) are ideal sites for studying different 27 carbonate characteristics in marginal seas. The distributions of carbonate system 28 parameters were investigated in this region in early spring and summer. Overall, 29 dissolved inorganic carbon (DIC) and alkalinity concentrations in the SYS were 30 31 higher than those in the ECS due to the Yellow River runoff which was featured with intensive carbonate weathering and erosion. Low DIC, alkalinity and high pH values 32 were observed in the Zhe-Min Coastal Current with intensive primary production in 33 spring caused by the Changjiang River and Taiwan Warm Current. Temperature and 34 biological activities were the primary drivers in controlling the partial pressure of CO₂ 35 (pCO_2) variability in the SYS, whereas temperature was the only dominant factor in 36 37 the outer shelf of the ECS, which was heavily impacted by the Kuroshio Current. The pCO_2 dynamics was controlled by primary production and physical mixing in the 38 Changjiang River plume and the inner and middle shelves of the ECS, due to the 39 influence of the Changjiang River with high nutrient supply. Overall, strong CO₂ 40 sinks $(-4.11 \pm 5.28 \text{ mmol m}^{-2}\text{d}^{-1})$ turned into weak sources $(0.88 \pm 5.09 \text{ mmol m}^{-2}\text{d}^{-1})$ 41

42	in the entire study area from spring to summer. Specifically, the SYS and ECS
43	offshore waters changed from CO ₂ sinks in spring to sources in summer, while the
44	Changjiang River plume always served as a CO2 sink.
45	
46	Keywords: Carbon cycle, air-sea CO ₂ flux, the South Yellow Sea and East China Sea,
47	seasonal variations
48	
49	Plain Language Summary
50	Although the South Yellow Sea (SYS) and East China Sea (ECS) are adjacent to
51	each other, the biogeochemical characteristics of them are very different. Therefore, a
52	study of the SYS and ECS together will allow us a better understanding of the
53	processes determining the spatial and temporal variations of the carbonate system in
54	continental seas, which is an important step toward estimating global air-sea CO2
55	fluxes. In this study, two cruises were conducted in early spring and summer to
56	investigate the distributions of the carbonate system in the SYS and ECS. High
57	dissolved inorganic carbon (DIC) and alkalinity were observed in the SYS under the
58	influence of Yellow River with high DIC and alkalinity discharges. However, low
59	DIC, alkalinity and high pH values occurred in the Zhe-Min Coastal Current. The
60	distribution and variability of the partial pressure of CO2 were associated with
61	temperature, biological activity and physical mixing. Under the combined impacts of
62	the above factors, the SYS and ECS offshore waters changed from CO2 sinks in
63	spring to sources in summer, while the Changjiang River plume always served as a

64 CO₂ sink. Overall, Strong CO₂ sinks turned into weak sources in this region from 65 spring to summer.

66

67 **1 Introduction**

68 In the last two decades, continental shelves have drawn increasing attention in the global ocean carbon cycle research due to the fact that they provide 15–30% of the 69 oceanic primary production and represent 50% of ocean organic carbon burial in 70 71 sediments, although shelves just comprising approximately 7% of the world's ocean 72 surface area (Bauer et al., 2013; Borges et al., 2005; Cai, 2011; Chen, 2003). The continental shelves are distinguished by the intense physical, chemical and biological 73 74 processes, and considered to be significant contributors to the global carbon cycle 75 (Mackenzie et al., 1991). It is therefore necessary to understand and accurately account for the variability of air-sea CO₂ flux and carbonate chemistry of continental 76 shelves although it remains a tremendous challenge to make satisfactory progresses 77 78 (Bauer et al., 2013; Zhai et al., 2014).

There are large spatial and temporal variations in surface seawater biogeochemistry and air-sea CO₂ exchanges across heterogeneous continental shelves (Takahashi et al., 2009). An ocean margin province-based synthesis by Cai et al. (2006) suggested that continental marginal seas at low latitudes were the major CO₂ sources (Cai et al., 2003, 2004; Goyet et al., 1998), but those in mid-high latitudes were the sinks of atmospheric CO₂ (DeGrandpre et al., 2002; Thomas et al., 2005; Tsunogai et al., 1999). Recently, Dai et al. (2013) suggested that margins receiving

86	river inputs (RiOMar) were largely a CO2 sink while those receiving ocean inputs
87	(OceMar) were largely sources of CO2 to the atmosphere. However, these broad
88	classifications may oversimplify the field observations and the mechanisms leading to
89	these synthesis statements require further supports from many field studies in
90	dissimilar margins. For example, the North Sea, a European continental shelf sea, is a
91	CO ₂ sink in the northern part but a CO ₂ source in the southern part under the influence
92	of temperature, terrestrial inputs and biological activity from north to south (Bozec et
93	al., 2005; Kempe & Pegler, 1991; Omar et al., 2010; Thomas et al., 2005). Similarly,
94	the partial pressure of CO_2 (pCO_2) distribution also shows a different spatial trend in
95	the adjacent South Yellow Sea (SYS) and East China Sea (ECS), resulting from
96	different topography, ocean circulation and biogeochemical conditions. In the north,
97	the SYS, as a semi-enclosed marginal sea, is a net annual CO ₂ source because of its
98	long water residence time and limited water exchange with open ocean (Qu et al.,
99	2014; Xue et al., 2011; Zhang et al., 2010). In contrast, in the south, the ECS is an
100	eminent continental shelf pump for efficient transferring atmospheric CO2 to the deep
101	sea and serves as an annual net sink of atmospheric CO2 (Song et al., 2018; Tsunogai
102	et al., 1999; Wang et al., 2000; Zhai & Dai, 2009). Therefore, the carbonate
103	characteristics of these two seas are different. However, the previous studies tend to
104	study their air-sea flux separately, even if the SYS and ECS are adjacent to each other.
105	To our best knowledge, the carbonate system of the entire SYS and ECS (together
106	called the South Yellow-East China Sea region) has only been investigated in the
107	spring and summer of 2011 and the summer of 2013 (Qu et al., 2015, 2017) to date.

With those limited studies, the spatial resolution of pCO_2 distributions is still lacking 108 because the pCO_2 in Qu et al. (2015, 2017) was calculated by CO2SYS based on the 109 110 discrete pH and total alkalinity (TA) instead of continuous underway measurement, 111 and the air-sea CO₂ flux based on discrete estimations also had great uncertainties. 112 A better understanding of spatial and temporal variations of carbonate system in the South Yellow-East China Sea region is important to merge its CO₂ flux into the 113 global carbon cycle. Therefore, in this study, we investigated high spatial resolutions 114 of discrete pH, dissolved inorganic carbon (DIC) and TA samples as well as 115 116 underway pCO_2 in the South Yellow-East China Sea region with intensive biological activity based on two cruises from 27 March to 11 April, 2017 and 27 June to 17 July, 117 2018. We also calculated the air-sea CO₂ fluxes and examined the driver mechanisms 118 119 to impact the pCO_2 variations and air-sea CO_2 fluxes. This study fills in the knowledge gap by not only providing an updated dataset on the air-sea CO₂ fluxes in 120 the South Yellow-East China Sea region, but also improving our understanding of 121 122 carbon cycles in continental seas.

123

124 **2 Materials and Methods**

125 **2.1 Study area**

The South Yellow and East China Sea, which is located in the northwestern Pacific Ocean between 26–37°N and 119–125°E (Figure 1). The SYS is a semi-enclosed marginal sea, which is surrounded by the Shandong and Korean Peninsulas and bordered on the north by the North Yellow Sea and on the south by the ECS. It is distinguished and dominated by several major water masses in different

seasons, including the Yellow Sea Warm Current, Yellow Sea Cold Water Mass, 131 coastal water currents along both the Chinese and Korean coasts and Changjiang 132 133 River (Figure 1). Moreover, the Subei Shoal waters in the southwestern SYS, being one of the most turbid coasts in China, load numerous sediments into the SYS 134 135 annually (Wang et al., 2011a). Hence, the SYS is strongly influenced by nearshore biogeochemical processes, intense anthropogenic activities to a great extent and is 136 isolated from open sea (Choi et al., 2019). However, the ECS is located to the south of 137 the SYS and the western three quarters of the ECS is occupied by the continental shelf, 138 139 while the eastern part is deep and opens to the Pacific Ocean (Chen, 2009). The materials from the Pacific Ocean is easily exchanged with the ECS by the Kuroshio 140 Current (KC) and Taiwan Warm Current (TWC), while the Changjiang River brings 141 142 large amounts of terrigenous nutrients into the ECS (Qu et al., 2017). Thus, the carbonate system in the ECS is strongly subjected to the continental shelf pump 143 between the nearshore and open sea (Tsunagai et al., 1999). Given these points, the 144 145 South Yellow-East China Sea region becomes a biogeochemical hotspot all the time 146 due to the large differences in the physical and biogeochemical conditions between 147 the SYS and ECS.

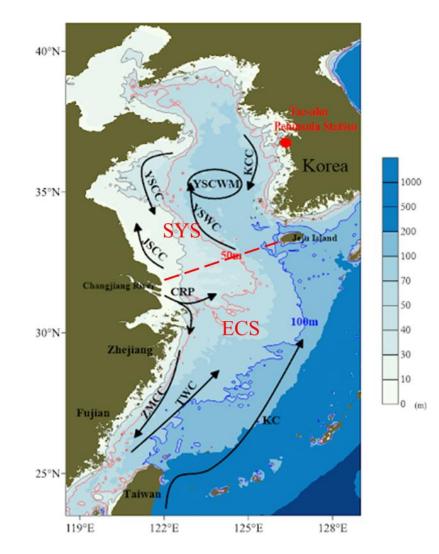
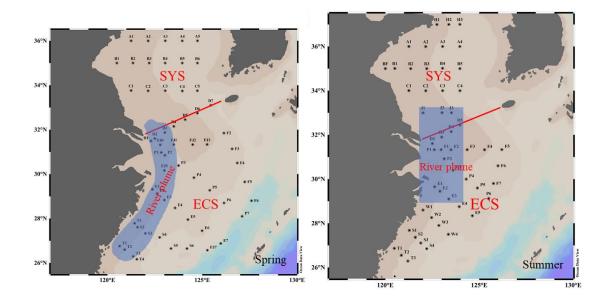



Figure 1. Topography and schematic map of the current system in the study area. The 149 boundary of the South Yellow Sea (SYS) and East China Sea (ECS) is indicated by 150 151 the red dashed-line. The currents described as arrows include the Yellow Sea Coastal Current (YSCC), Yellow Sea Warm Current (YSWC), Yellow Sea Cold Water Mass 152 (YSCWM), Korea Coastal Current (KCC), Jiangsu Coastal Current (JSCC), 153 Changjiang River plume (CRP), Zhe-Min Coastal Current (ZMCC), Taiwan Warm 154 Current (TWC) and Kuroshio Current (KC) (Chen, 2009). The red and blue solid lines 155 on the continental shelf are the depth contour of 50 and 100 m, respectively. The red 156 dot (126.133°E, 36.738°N) in the west part of South Korea is the Tae-ahn Peninsula 157 Station (<u>https://www.esrl.noaa.gov</u>). 158

160 **2.2 Sampling**

161 Two cruises were carried out aboard the R/V "*Dongfanghong II*" from 27 March 162 to 11 April, 2017 and 27 June to 17 July, 2018 to represent the early spring and 163 summer, respectively. The study area and sampling stations are shown in Figure 2. 164

165

166 **Figure 2.** Sampling stations of 2017 spring (left) and 2018 summer (right) cruises.

167 The blue shadows represent the Changjiang River plume; the South Yellow Sea (SYS)

and East China Sea (ECS) are divided by the red solid line.

169

Water samples were collected using 12 L Niskin bottles mounted onto a Seabird
911-plus Conductivity-Temperature-Depth system (CTD, SeaBird Inc. Bellevue, WA,
USA), which was used to measure the temperature and salinity of water column. DO
samples were collected, fixed and analyzed on board as described by the classic
Winkler procedure (Dickson, 1994). pH was collected into a 100 mL narrow-mouth

glass bottle and kept in a thermal bath (25 \pm 0.1 °C) for 30-60 min before 175 determination. DIC and TA samples were stored in 250 mL borosilicate glass bottles 176 177 and overflowed at least twice their volume to minimize contact with air, then poisoned with 100 µL of saturated HgCl₂ immediately, sealed and preserved at room 178 temperature until determination (Huang et al., 2012). 300 mL water samples were 179 filtered through a 0.7 µm-pore Whatman glass fiber filter (GF/F, pre-combusted at 180 400 °C for 4 h), and materials collected on the membrane were preserved at -20 °C 181 and used for analyzing Chlorophyll *a* (Chl *a*). 182

To monitor levels of pCO_2 , surface water was continuously pumped from 1–2 m 183 below the sea level through an underway pCO₂ analyzer (AS-P2, Apollo SciTech Inc., 184 USA) with a Picarro detector (G2301, Picarro Inc., USA) installed in the shipboard 185 186 laboratory. Briefly, surface water was pumped to the main shower-head equilibrator at a rate of 2.5 L min⁻¹ to get rapid gas exchange. After the sample was equilibrated, the 187 well-mixed gas first passed through the water condenser and desiccant, which 188 189 removed most of the water vapor, and then the equilibrated gas was delivered to the detector (Picarro G2301). The detector was calibrated every 9 h against three CO₂ gas 190 standards (0, 198 and 403 ppm), which were provided by Beijing Certified Reference 191 Material Center. Some values of xCO_2 outside of the concentration range of the 192 standard gases were also used in this study because the biases caused by the 193 194 out-of-range values are generally subtle (Pierrot et al., 2009). The uncertainty of xCO₂ 195 measurements was less than 50 ppbv over 5 min internals (Li et al., 2017).

197 **2.3 Analytical methods**

pH was measured onboard at 25 ± 0.1 °C by Fisher pH meter (Star A211) 198 199 combining with a Ross Orion combination electrode (Ross-8102) on a National Bureau of Standards (NBS) scale with a precision of ± 0.01 units. pH values were 200 201 corrected to the in-situ temperature using CO2SYS. 1 mL of each DIC sample was acidified by 10% phosphoric acid, then the extracted CO₂ gas with carrier gas was 202 quantified via an infrared gas analyzer (AS-C3, Apollo SciTech Inc., USA) as 203 described in Cai et al. (2004). TA samples were determined by Gran titration on a 25 204 205 mL sample volume using the open-cell method with a semi-automatic potentiometric titration system (AS-ALK2, Apollo SciTech Inc., USA) (Cai et al., 2010). Both DIC 206 and TA measurements were calibrated against certified reference materials from A. G. 207 208 Dickson's lab at Scripps Institute of Oceanography (Batches #162 and #171) at a precision of $\pm 2 \mu mol kg^{-1}$ (Huang et al., 2012). 209

210 Chl *a* on the membrane was extracted in 90% acetone and then analyzed by a 211 fluorescence spectrophotometer (F-4500, Hitachi, Japan) based on the procedure 212 described by Parsons et al. (1984).

213

214 **2.4 Air-sea CO₂ flux estimation**

In this study, the *p*CO₂ at the temperature of equilibration (pCO₂(*eq*), unit: µatm) in equation (1) is calculated as following and then the *p*CO₂ at the in-situ temperature (pCO₂(*water*), unit: µatm) in equation (2) is calculated by the expression of Takahashi et al. (1993):

219
$$pCO_2(eq) = xCO_2 \times [P_b(eq) - P_w(eq)]$$
(1)

220
$$pCO_2(water) = pCO_2(eq) \times \exp\left[0.0423 \times (SST - T_{eq})\right]$$
(2)

where xCO_2 is the CO₂ mole fraction concentration of the seawater CO₂ in the dried

- sample gas flow (ppm), $P_b(eq)$ is the barometric pressure of equilibration and $P_w(eq)$
- is the water vapor pressure at 100% humidity calculated by the equilibrated
- temperature (T_{eq} , °C) and in-situ salinity (Weiss & Price, 1980). SST (°C) is the in-situ
- temperature of surface water, the temperature difference between the in-situ water and
- the equilibration was less than 0.5 $^{\circ}$ C.

227 The air-sea CO₂ fluxes (
$$FCO_2$$
, mmol m⁻² d⁻¹) were estimated as follows:

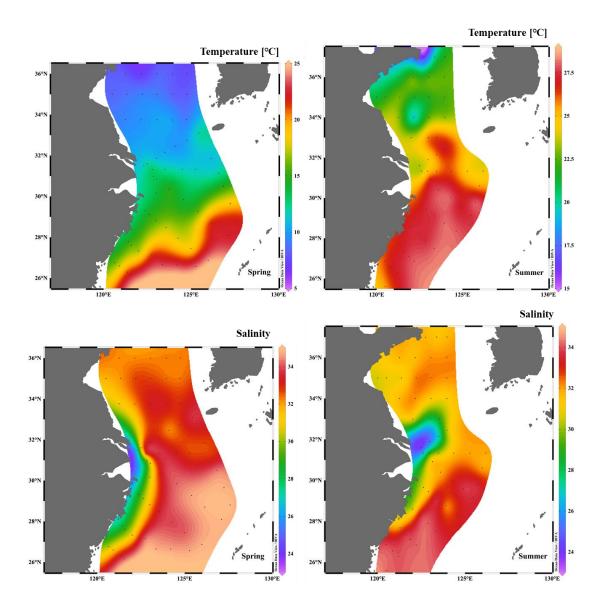
228
$$FCO_2 = 0.24 \times k \times K_H \times [pCO_2(water) - pCO_2(air)]$$
(3)

where k (cm h⁻¹) is the gas transfer velocity of CO₂, K_H (mol L⁻¹ atm⁻¹) is the 229 230 solubility constant of CO₂, calculated from in-situ temperature and salinity (Weiss, 1974), and $pCO_2(water)$ and $pCO_2(air)$ are the pCO_2 in the surface seawater and the 231 atmosphere, respectively. The atmospheric pCO_2 values (417 µatm in April 2017 and 232 233 398 μ atm in July 2018) were estimated from the monthly atmospheric xCO₂ (418.49 ppm in April 2017 and 410.14 ppm in July 2018) at Tae-ahn Peninsula (126.133°E, 234 36.738°N, Figure1) (https://www.esrl.noaa.gov), after correction for water vapor 235 pressure at 100% humidity with in-situ temperature and salinity data (Weiss and 236 237 Price, 1980). A positive flux value represents a release of CO₂ from the water body to the atmosphere, while a negative value indicates CO₂ transfer from the atmosphere to 238 the water body. The gas transfer coefficient was calculated from wind speed based on 239 the Wanninkhof (2014) empirical function: 240

241
$$k (\operatorname{cm} h^{-1}) = 0.251 \times U^2 \times (Sc/660)^{-0.5}$$
 (4)

where U (m s⁻¹) is the wind speed at 10 m above the water surface, the reanalyzed monthly averaged wind speed (5.95 and 6.00 m s⁻¹ in spring and summer, respectively) provided by the European Center for Medium-Range Weather Forecasts (ECMWF) was employed to calculate the air-sea CO₂ fluxes; *Sc* is the Schmidt number of CO₂ in seawater; 660 is the *Sc* value in seawater at 20 °C.

247

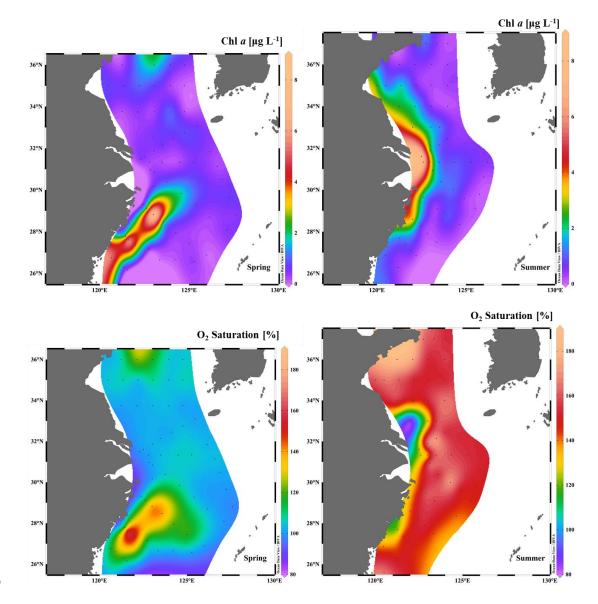

```
248 3 Results
```

249 **3.1 Hydrographic conditions**

Surface seawater temperature (SST) presented significant temporal and spatial 250 variations (Figure 3). SST was in the range of 6.91–24.47 and 15.82–28.17 °C, with 251 252 average (\pm SD) values of 14.00 \pm 5.00 and 24.94 \pm 2.80 °C, respectively, in the spring and summer throughout the South Yellow-East China Sea region. clearly SST 253 increased homogeneously with the decreasing latitudes in spring and summer. On 254 average, SST in the SYS was 7.31 and 4.94 °C colder than that in the ECS in early 255 April and July, respectively. The temperature difference between the SYS and ECS in 256 April was due to the increase of atmospheric temperature from north to south in the 257 northern hemisphere, while in July, it could be mainly attributed to the intrusion of the 258 TWC or KC with the influence of the summer monsoon (Chen, 2009). The ranges of 259 salinity in spring (range: 25.81-34.94, average: 32.59 ± 1.89) and summer 260 $(23.63-34.14, \text{ average: } 31.58 \pm 2.26)$ were not greatly different. The main feature was 261 that a water tongue with relatively low salinity rushed out of Changjiang estuary and 262

formed a plume, indicating the influence of the Changjiang River on the junction of
the SYS and ECS. This plume feature was stronger in summer than spring.

265


267 **Figure 3.** Horizontal distributions of temperature (°C) and salinity in the surface

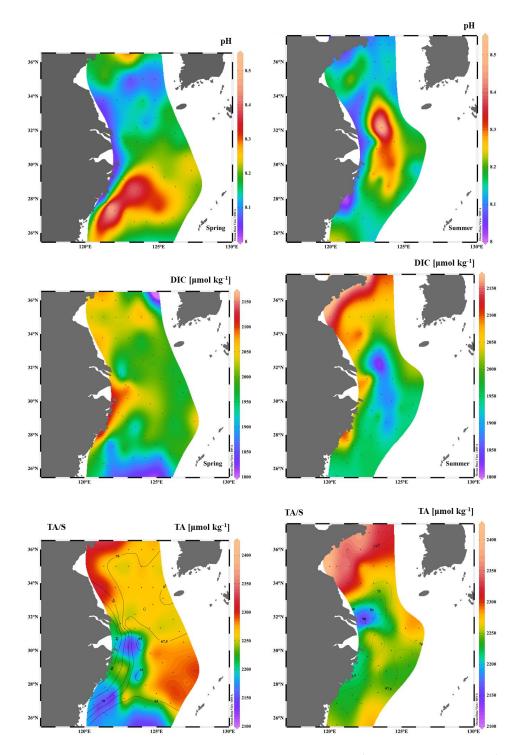
From early spring to summer, the surface Chl *a* exhibited considerable variation (Figure 4). Overall, Chl *a* concentration of the SYS in early spring $(0.59 \pm 0.51 \ \mu g \ L^{-1})$

water of spring and summer.

was lower than that $(1.00 \pm 0.98 \ \mu g \ L^{-1})$ in summer because of the weak biological 272 activity at lower temperature. In summer, high Chl a value appeared in the 273 southwestern part of the SYS, which was enhanced by the abundant nutrient inputs 274 from the Changiang River. In the ECS, high concentrations of surface Chl a 275 $(3.46-8.80 \ \mu g \ L^{-1})$ in spring were found in the southwest part of the shelf near the 276 coast. Also noted was high Chl a concentration in the northwest part of the ECS in 277 summer, which was also due to the large amount of nutrients loading from the 278 Changjiang River. In contrast, low surface Chl a (< 0.50 μ g L⁻¹) was observed in the 279 middle and outer shelves of the ECS in both spring and summer. 280

O₂ saturation in surface water were oversaturated conditions albeit with a few exceptions (Figure 4). The average O₂ saturations were 109 ± 13 and $152 \pm 17\%$ in the surface layer of the South Yellow-East China Sea region during spring and summer cruises, respectively. Thus, O₂ saturation in the surface layer of summer was higher than that in spring, due to the growth of phytoplankton and water stratification, which limited the exchanges between high DO in the surface layer and low DO in the bottom layer.

289


Figure 4. Horizontal distributions of Chl a (µg L⁻¹) and O₂ saturation (%) in the

291 surface water of spring and summer.

293 **3.2 Distributions of carbonate system parameters**

Surface pH of the South Yellow-East China Sea region from 8.06 to 8.50, and 8.02 to 8.54 in spring and summer, with the averages of 8.20 ± 0.09 and 8.19 ± 0.09 , respectively. Overall, pH increased from north to south, and the highest pH values (8.31–8.50) were mainly located in the southwestern part of the ECS. In summer, the isoline of pH was basically perpendicular to the shoreline and the low pH appeared in
the coastal waters, whereas the high values of pH (8.27–8.54) were mainly observed
in the river plume region (Figure 5).

301	Surface DIC values were in the range of 1868 to 2089 and 1826 to 2159 μmol
302	kg ⁻¹ , averaging 1997 \pm 54 and 1982 \pm 82 $\mu mol~kg^{\text{-1}}$ in spring and summer, respectively.
303	The surface DIC concentration exhibited both spatial variations and clear seasonal
304	patterns in different subregions: a slight decreasing in the whole ECS region and an
305	increasing trend in the SYS region from spring to summer. surface TA values were
306	observed in the range of 2113–2318 and 2146–2410 μ mol kg ⁻¹ in spring and summer,
307	respectively, averaging 2244 \pm 47 and 2264 \pm 50 $\mu mol~kg^{\text{1}}.$ In early spring, TA was
308	homogenous in the central SYS, the middle and outer shelves of the ECS. A few
309	higher values (2306 \pm 9 μ mol kg ⁻¹) existed in the coastal waters of the SYS while
310	lower values (2154 \pm 29 $\mu mol~kg^{\text{-1}}$) appeared in the southwestern ECS. On the other
311	hand, TA in summer decreased from north to south in the SYS and fluctuated with a
312	narrow range in the ECS (2247 \pm 17 $\mu mol~kg^{\text{-1}}$). However, the distribution of
313	normalized TA (TA/S) decreased with the increasing salinity, which was greatly
314	different from TA distribution (Figure 5).

316

Figure 5. Horizontal distributions of pH, DIC (μmol kg⁻¹) and TA (μmol kg⁻¹) in the
surface water during spring and summer. The coutour in the lower pannel represent
the distribution of TA/S.

321 The underway pCO_2 data during the two cruises allow us to examine the

322	high-resolution distribution of pCO_2 in the South Yellow-East China Sea region
323	(Figure 6). During our sampling period, even though pCO_2 values showed similar
324	ranges between early spring (151-689 µatm) and summer (149-709 µatm), the
325	averaged pCO ₂ values were significantly higher in summer (409 \pm 71 µatm) than
326	those in spring (360 \pm 75 µatm). In spring, supersaturated <i>p</i> CO ₂ values were observed
327	near the Subei shoal waters (447–611 μ atm), whereas <i>p</i> CO ₂ values in the rest of SYS
328	were generally low (258–407 μ atm), except that <i>p</i> CO ₂ in the central SYS (420–444
329	μ atm), which was a little higher than the atmospheric <i>p</i> CO ₂ . However, in summer,
330	pCO_2 in the SYS was generally high (>420 µatm) except that in the southern SYS,
331	resulting from Changjiang diluted water input. In addition, few sporadic low pCO_2
332	values were found near the south of the Shandong Peninsula. In the river plume, pCO_2
333	in spring kept in a low range (<355 μ atm) except in the area near the Changjiang
334	mouth and the northwestern corner (513–689 μatm), as well as in Hangzhou Bay
335	(421–455 μatm). To the contrary, Changjiang estuary mouth and the northwestern
336	corner showed relatively low pCO_2 (149–386 µatm) in summer, however, high pCO_2
337	in the range of 420–470 µatm occurred in the coastal water near the Hangzhou Bay.
338	The seasonal patterns in the northern and southern of ECS offshore water were
339	different: pCO_2 in the northern ECS always showed relatively low pCO_2 in spring and
340	summer; while southern ECS had low pCO_2 (<380 µatm) in spring and high pCO_2 in
341	summer (>430 µatm).

342 Similar to the seasonality of pCO_2 in the South Yellow-East China Sea region, 343 the air-sea CO_2 fluxes also had strong seasonal variations in the range of -18.63–19.46

344	and -18.03–22.61 mmol m ⁻² d ⁻¹ , with the average values of -4.11 \pm 5.28 and 0.88 \pm
345	5.09 mmol $m^{-2} d^{-1}$ in spring and summer, respectively (Figure 6). The SYS and ECS
346	were significant atmospheric CO ₂ sinks in spring, with average values of -2.11 \pm 4.57
347	and -5.56 \pm 3.12 mmol m $^{-2}$ d $^{-1},$ but shifted into CO2 sources (2.35 \pm 4.30 and 1.73 \pm
348	3.05 mmol $m^{-2} d^{-1}$) in summer. However, the river plume always acted as a strong
349	CO ₂ sink in both spring and summer (-3.78 \pm 7.44 and -5.17 \pm 6.65 mmol m $^{-2}$ d $^{-1}$). In
350	addition, the Subei shoal waters was always a CO ₂ source during these two surveys.

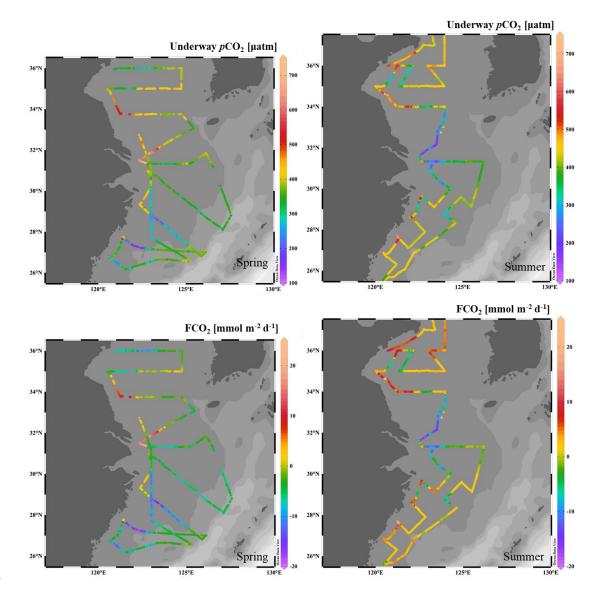
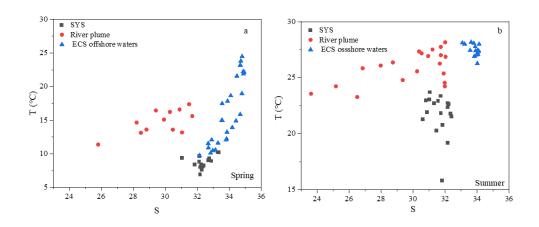


Figure 6. The trajectory of underway pCO_2 (µatm) and air-sea CO₂ flux (mmol m⁻² d⁻¹) in the surface water during spring and summer.

355


356 **4 Discussion**

4.1 Classification of the water mass types

In order to understand the biogeochemistry of the South Yellow-East China Sea 358 region and explore the influencing mechanism of carbonate system, it is necessary to 359 describe typical water mass distributions in this study. On the basis of the 360 361 temperature-salinity characteristics (Figure 7), surface waters were divided into three subregions: (1) SYS, (2) River plume and (3) ECS offshore waters. The ranges of the 362 hydrological and carbonate system parameters in these three subregions are 363 364 summarized in Table 1, and the areal distributions of these water masses are presented in Figure 2. The SYS has low temperature and moderate salinity; the ECS offshore 365 waters are mainly impacted by the KC and TWC (Chen, 2009). The KC flows 366 northeast along the shelf break and TWC enters the ECS through Taiwan Strait and 367 traverses in the middle shelf (Lee & Chao, 2003). Both KC and TWC are 368 characterized by high salinity and temperature (Chou et al., 2009). It is worth noting 369 that the location of river plume varied from April to July under the influence of 370 seasonal monsoons (Qi et al., 2014), which was further illustrated by the distribution 371 of salinity (Figure 3). For example, the low salinity in the river plume was roughly 372 confined to the nearshore from 26 to 32 °N in spring because the influence of the 373 prevailing northeast wind (Wu et al., 2014). When it comes to summer, the 374

Changjiang River, carrying the nutrients, rushed out towards its northeast and formed 375 river plume, triggering the high primary productivity there (Isobe & Matsuno, 2008). 376

377

379 Figure 7. Temperature (T) vs. salinity (S) in surface water of the South Yellow-East China Sea region during spring (a) and summer (b) for three water masses: SYS, river 380 plume and ECS offshore waters. 381 382

Table 1. Hydrological and carbonate parameters of the different water masses in the
 383 surface layer defined in this study. 384

Subregion	Longitude (°E)	Latitude (°N)	T (°C)	S	Chl <i>a</i> (µg L ⁻¹)	DO Saturation (%)
Spring SYS	120.0–125.5	33.0–36.0	6.91–10.25	31.05–33.36	0.07–1.93	101–125
River	122.0–123.5	28.0-32.0	(8.71 ± 0.91) 11.37–17.38	(32.39 ± 0.55) 25.81–32.26	(0.59 ± 0.51) 0.23-8.80	(106 ± 6) 100–167
plume	120.0–122.0	26.0–28.0	(14.55 ± 1.85)	(29.92 ± 1.76)	(2.66 ± 2.97)	(117 ± 22)

ECS offshore	123.5–127.6	28.0–33.0	9.75–24.47	32.15-34.94	0.03-1.88	98–141
	122.0–126.2	25.5-28.8	(16.47 ± 5.01)	(33.90 ± 0.82)	(0.49 ± 0.41)	(106 ± 9)
Summer						
SYS	120.0–125.5	33.0–37.5	15.82-23.70	30.61-32.40	0.16-3.03	82–188
			(21.71 ± 1.87)	(31.64 ± 0.57)	(1.00 ± 0.98)	(156 ± 21)
River plume	122.0–124.3	29.0-33.0	23.28-27.76	23.63-31.74	0.57-8.22	122–173
Ĩ			(25.98 ± 1.43)	(29.12 ± 2.56)	$(2.74\pm2.41$	(150 ± 18)
ECS offshore	124.3–126.2	29.0–33.0	24.23-28.17	31.93–34.14	0.13–1.21	120–174
	120.0–125.5	25.5–29.0	(27.08 ± 1.15)	(33.37 ± 0.86)	(0.52 ± 0.36)	(149 ± 10)

(Table 1 continued)

Subregion	pH	DIC (µmol kg ⁻¹)	TA (μmol kg ⁻¹)	Underway <i>p</i> CO ₂ (µatm)	$FCO_2 $ (mmol m ⁻² d ⁻¹)
Spring SYS	8.06-8.24	1965–2071	2251-2318	258-611	-12.44-14.08
	(8.14 ± 0.05)	(2028 ± 30)	(2275 ± 20)	(393 ± 61)	(-2.11 ± 4.57)
River plume	8.11-8.50	1868–2089	2113-2259	170–689	-17.48–19.46
	(8.24 ± 0.13)	(2001 ± 78)	(2195 ± 47)	(365 ± 104)	(-3.78 ± 7.44)
ECS offshore	8.11-8.39	1877–2046	2160-2297	151-411	-18.620.68
onshore	(8.22 ± 0.06)	(1976 ± 41)	(2250 ± 39)	(336 ± 44)	(-5.56 ± 3.12)
Summer SYS	8.08-8.36	1997–2159	2245-2410	261–709	-9.79–22.61
	(8.16 ± 0.07)	(2078 ± 47)	(2316 ±43)	(432 ± 60)	(2.35 ± 4.30)
River plume	8.10-8.54	1826–1967	2146-2259	149–564	-18.03-11.99
	(8.26 ± 0.12)	(1905 ± 34)	(2224 ± 28)	(326 ± 92)	(-5.17 ± 6.65)
ECS offshore	8.02-8.31	1879–2004	2223–2280	296–664	-7.11–19.02
	(8.18 ± 0.06)	(1954 ± 26)	(2247 ± 17)	(420 ± 44)	(1.73 ±3.05)

4.2 The carbonate parameters variability in subregions

Two opposite trends can be obtained from the TA-S and DIC-S scatter plots 390 (Figure 8): one with a negative relationship encompassing the data from the SYS and 391 392 the other with a positive relationship including the river plume samples. Both regressions converge towards the ECS offshore waters and represent the mixing of 393 394 these three water masses. The corresponding water mass with high TA and DIC originated from the SYS which could be attributed to the very high TA and DIC 395 discharges of the Yellow River, which has intensive carbonate weathering and erosion 396 in the drainage basin (Liu et al., 2014; Zhang et al., 1990). The positive relationship 397 398 was characterized by the mixing between the Changjiang River and ECS offshore waters. However, DIC near the Hangzhou Bay was little high in spring ((>2000 µmol 399 kg⁻¹, shaded grey in Figure 8a), because the DIC-enrich TWC bottom water flowed 400 401 northward and extended to around 30°N (Li et al., 2012), then mixed well with the surface water in the water column, leading to the high DIC in spring. 402 DIC and TA concentrations in spring were low near the Zhe-Min Coastal Current 403

404 (Yellow shaded circles in Figures 8a and 8c). It could be related to the river inputs with low DIC and TA values, such as Minjiang River with low DIC concentration of 405 about 500 µmol L⁻¹ in April (Qian et al., 2019). Moreover, the high TA/S values 406 (Figure 5) with the low salinity (Figure 3) in the coastal waters also indicated the 407 influences of terrestrial inputs on DIC and TA values (Jiang et al., 2014). On the other 408 hand, the nutrient enrichment phenomenon was observed in the Zhe-Min Coastal 409 Current, which was caused by river runoff and coastal upwelling, enhancing the 410 primary production and lowering DIC values in this area (Wang & Wang, 2007). 411

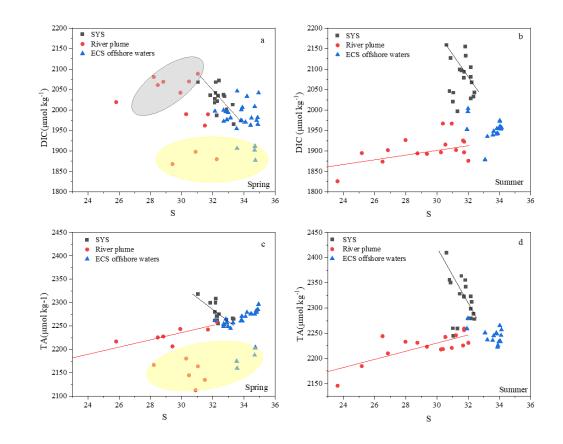
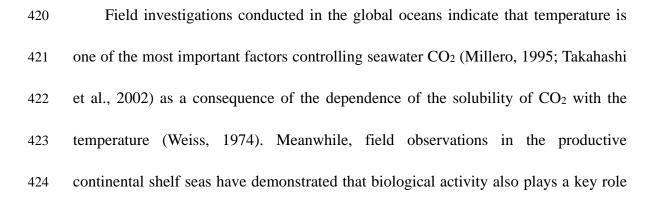
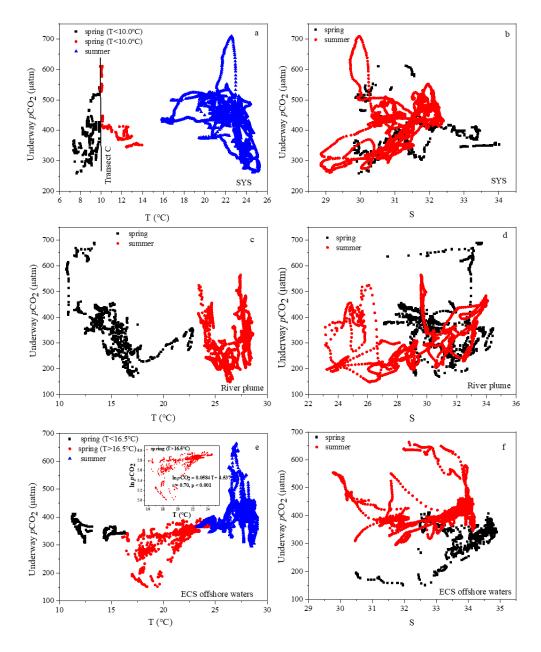



Figure 8. The relationships between surface DIC vs salinity (upper panel) and TA vs salinity (lower panel) in spring and summer in three water masses. The grey shaded circle represents the stations near the Hangzhou Bay and the yellow shaded circles represent the stations in the Zhe-Min Coastal Current.

4.3 Temperature and non-temperature effects on *p***CO**² **variability**

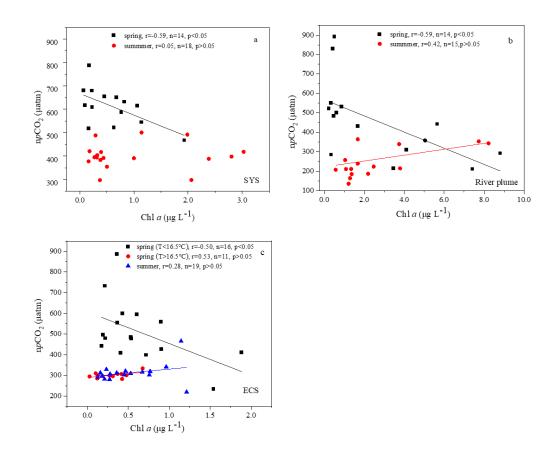

in carbonate characteristics of ocean systems (Takahashi et al., 2002; Thomas et al., 2005; Zhai et al., 2014). In order to quantify the relative importance of temperature and biological effects on the seasonal changes of pCO_2 from spring to summer, we calculated the temperature effect in all three subregions with the method proposed by Takahashi et al. (2002). Briefly, the temperature effect can be removed by normalizing pCO_2 data at each station to an average temperature (19.31°C) for spring and summer seasons:

432
$$pCO_2 \text{ at } T_{mean} = pCO_{2, obs} * \exp[0.0423 (T_{mean} - T_{obs})],$$
 (5)

where T is the temperature in °C, and the subscripts "mean" and "obs" indicate the average and observed values, respectively. Thus, the biological activity effect on pCO_2 in different subregions described above are discussed based on the relationship between normalized pCO_2 ($npCO_2$, normalized to average temperature in this study based on the equation (5)) and Chl *a* in each station.

In the SYS, the different trends between underway pCO_2 and SST in spring and 438 439 summer were found (Figure 9a): a positive correlation (r = 0.32, p < 0.001) in the middle and north parts (north of the transect C) in April, and negative correlations in 440 the southern part (south of the transect C) in April (r = -0.72, p < 0.001) and in 441 summer (r = -0.46, p < 0.001). The positive correlation in the north and middle parts 442 in spring indicated that temperature was the leading role in the pCO_2 distribution, 443 which was also found by Liu et al. (2008) in late March and May. Underway pCO_2 444 decreased from the west to east along the transect C (Figure 6), which was consistent 445 with the results of high pCO_2 in the southwestern SYS (Qu et al., 2017) and low pCO_2 446

447	in the southeastern part (Choi et al., 2019). It is due to the fact that the southwest SYS
448	was occupied by the Subei shoal waters with extremely high concentration of
449	suspended sediment (Wang et al., 2011a) while high biological activity in the
450	southeast SYS (Choi et al., 2019). The negative correlation in July suggested that
451	temperature was no longer the primary factor in controlling the pCO_2 variability, it
452	tended to be ascribed to the biological activity in this study area (Qu et al., 2014;
453	Zhang et al., 2010). The low pCO_2 in the southern part was mainly affected by the
454	Changjiang diluted water, which could be seen from the positive correlation between
455	pCO ₂ and salinity in summer (Figure 9b). Similar negative relationships of p CO ₂ and
456	temperature were also reported in the SYS in summer by Qu et al. (2014) and Zhang
457	et al. (2010) and the inner and middle shelves of the ECS in winter (Chou et al., 2011).
458	Therefore, the controlling mechanisms on pCO_2 variation in the SYS varied with
459	different seasons.


462 **Figure 9.** Relationships among underway pCO₂, temperature and salinity in three

subregions in spring and summer. The insert graph in panel (e) shows the relationship between $\ln p \text{CO}_2$ and temperature when temperature is higher than 16.5°C in the ECS offshore waters ($\partial p \text{CO}_2 / \partial T = 0.0584 \text{ °C}^{-1}$).

466

467 The negative relationship between $npCO_2$ and Chl *a* in spring (r = -0.59, n = 14, 468 p < 0.05) and no conspicuous relationship between them in the SYS during summer

(Figure 10a) demonstrated that the effect of biological production on CO₂ 469 sequestration processes varied with seasons, which was also found by the observation 470 of Qu et al. (2017) in spring and summer of the SYS, 2011. Noted that a weak CO₂ 471 source replaced a significant CO₂ sink in the central SYS in spring (Figure 6), which 472 was opposed to the results of Qu et al. (2014). The reason could be attributed to the 473 474 fact that a strong vertical mixing still existed in the late-March, and a little bit high pCO_2 in the central SYS thus was caused by the upwelling of CO₂-riched Yellow Sea 475 Warm Current, which was characterized by high-temperature saline water (Figure S1, 476 see the supplement). Moreover, the onset of the spring phytoplankton bloom in the 477 central SYS usually started from April (Jin et al., 2013; Liu et al., 2015). Therefore, 478 low biological uptake in the central SYS was not strong enough to offset the enhanced 479 480 pCO_2 from the upwelling of the CO₂-enriched bottom water. The net result was elevated pCO_2 value in the central SYS in early spring. 481

484 Figure 10. Relationship n*p*CO₂ and Chl *a* in spring and summer in three water masses:
485 SYS (a), River plume (b) and ECS offshore waters (c).

487 In the plume area, the relationship of underway pCO_2 and SST in spring is negative but random in summer, while the relationship of pCO_2 and salinity in spring 488 is random but positive in summer (Figures 9c and 9d). In summer, the positive 489 relationship between pCO_2 and salinity was similar to the result of the cruise in July 490 2007, which was found by Zhai and Dai (2009). Relatively high pCO₂ (Figure 9d) 491 near the Changjiang River mouth (S = 24-26) was mainly subjected to the physical 492 mixing effect. Moreover, photosynthesis was at a low level given the light limitation 493 and strong vertical mixing in the turbid area in spite of high concentration nutrients 494

supply, therefore resulting in high pCO_2 distribution (He et al., 2013; Zhai et al., 495 2007). Besides, this area was also more affected by the SYS through the Yellow Sea 496 497 Coastal Current in spring that carried higher CO₂ water southward, thereby resulting in high pCO_2 in the northwest corner of the Changjiang estuary with moderate salinity 498 499 (Su, 1998). In the outer estuary, low pCO_2 values were distributed in the northeast of the Changjiang estuary. It demonstrated in addition to the physical processes but 500 reinforcement of biological action also greatly affected pCO_2 dynamics. In the south 501 branch of the Changjiang estuary, on one hand, high primary production in this region 502 503 was fueled by abundant nutrients with the Changjiang River supply, thus leading to biological CO_2 uptake and low pCO_2 ; On the other hand, the upwelling carrying 504 CO₂-rich water, which from the flow-northward TWC bottom water, mixed with the 505 506 surface water and thereby elevated pCO_2 (Wang et al., 2011b). Therefore, the upwelling effect canceled out the intensive biological activity to some extent, then 507 resulting in pCO_2 of the south branch slightly higher than the northwest branch 508 (Figure 6). 509

In spring, the overall random relationship between pCO_2 and salinity as well as the relatively narrow salinity range revealed a strong mixing in water column. Moreover, the negative correlation between pCO_2 and SST in spring also suggested that the water mixing between high- pCO_2 /low-temperature river water and low- pCO_2 /high-temperature ECS water. As for Zhe-Min Coastal Current, intensive primary production occurred with the high nutrients loading from the Changjiang River leading to low pCO_2 values (He et al., 2013; Guo et al., 2015). The negative relationship between $npCO_2$ and Chl *a* in spring (r = -0.59, n = 14, p < 0.05, Figure 10b) demonstrated that biological activity was also the main driver on the pCO_2 distribution.

All summer stations in the ECS were confined to the shelf break of the ECS, 520 while some spring stations were expanded to the outer shelf of the ECS, which was 521 influenced by the KC and open ocean to some extent. The southern and outer shelf of 522 ECS was characterized by warm and saline water with the influences of TWC and KC. 523 In spring, considering that the isotherm of 16.5 °C coincided with the depth contour 524 525 of 100m in the ECS, the relationship underway pCO_2 and SST in the ECS offshore waters was divided into two parts to discuss (Figure 9e): one is the negative 526 correlation in the inner and middle shelves with SST < 16.5 °C (r = -0.49, p < 0.001); 527 528 another is the significant positive correlation in the outer shelf with SST > 16.5 °C (r= 0.74, p < 0.001). This indicated that the pCO_2 variation in the outer shelf of the ECS 529 was mainly dominated by temperature and the apparent coefficient of temperature 530 effect on surface seawater pCO_2 was 0.0584 °C⁻¹, which was higher than that of the 531 0.0423 °C⁻¹ determined for North Atlantic surface water by Takahashi et al. (1993). 532 This suggested that the temperature effect on seawater pCO_2 was enhanced by other 533 important processes (i.e. mixing with Kuroshio subsurface CO₂-rich water). Moreover, 534 the apparent temperature coefficient was similar to that in South Atlantic Bight 535 (0.058 °C⁻¹; Jiang et al., 2008), and higher than that in northern South China Sea 536 (0.024, 0.049 and 0.03 °C⁻¹ in spring, autumn and winter, respectively; Tseng et al., 537 2007), and northern Yellow Sea (0.0205 °C⁻¹; Xu et al., 2016). In the inner and middle 538

shelves of the ECS, the combined influence of the physical mixing and the biological activity masked the effects of temperature on the pCO_2 distribution. The negative relationship between $npCO_2$ and Chl *a* (r = -0.50, n = 16, p < 0.05) also showed that the phytoplankton production mainly led to the pCO_2 variation in the inner and middle shelves. Moreover, the positive correlation of the pCO_2 and salinity in spring (Figure 9f) could be an evidence to affirm the intrusion of high salinity CO₂-rich KC water to the ECS.

546

547 **4.4 Air-sea CO₂ fluxes in subregions and implication**

With the three subregions categorized in the South Yellow-East China Sea region, 548 the seasonality variation of both pCO_2 and air-sea CO_2 fluxes were found in each 549 550 individual region. Theoretically, the variation of the CO₂ flux was mainly attributed to the variability in $\Delta p CO_2$ and wind speed (Jiang et al., 2008). In the present study, we 551 used the same reanalyzed monthly averaged wind speed from ECMWF to calculate 552 553 the CO₂ flux inside each cruise. Therefore, there was no spatial pattern in the intra-seasonal variation of the wind speed and the flux difference was solely ascribed 554 to the Δp CO₂. Therefore, all above factors that influencing pCO₂ variability also 555 affected the distributions of CO₂ flux. 556

In this study, the SYS served as a CO₂ sink in early spring and a CO₂ source in summer with the average air-sea CO₂ flux of -2.11 ± 4.57 and 2.35 ± 4.30 mmol m⁻² d⁻¹, respectively. This was in good agreement with the findings in the surveys of Xue et al. (2011) and Qu et al. (2017). To be more specific, it was unquestionable that the

561	SYS served as a CO ₂ sink in spring because of low temperature and spring bloom.
562	The trajectory of underway pCO_2 data clearly verified that spring pCO_2 in the SYS
563	was all undersaturated except for the Subei shoal in the southwest SYS (Figure 6).
564	However, in summer, a strong CO ₂ sink in the SYS from the June gradually reduced
565	to a weak sink or source in July and further converted to an obvious CO2 source in
566	August, according to the compilation of our data and the results from Qu et al. (2014,
567	2017). In the SYS, the outbreak of Ulva prolifera bloom between the April and June
568	every year absorbs a large amount of CO ₂ , which promotes the SYS to become a
569	temporary CO ₂ sink in early summer (Van Alstyne et al., 2015), then the degradation
570	of the U. prolifera in the mid-July to late August also accelerate it to act as a CO_2
571	source (Deng et al., 2018). Therefore, the temporal changes of pCO_2 and CO_2 flux are
572	combined results from biological activity, the Changjiang River plume and the
573	upwelling of the Yellow Sea Cold Water. An exception is that the southeastern SYS
574	along the Korean coast was a net strong CO2 sink during spring, summer and fall,
575	whereas it was a net weak source during winter (Choi et al., 2019). The sharp contrast
576	in CO ₂ fluxes could be attributed to regional variations in magnitude and the
577	terrestrial influences, especially the influences of Changjiang and Yellow Rivers on
578	the western SYS in summer. In short, the factors affecting the pCO_2 distribution and
579	CO ₂ flux, especially in summer, are complicated, and more detailed mechanisms for
580	these changes in summer need further intense investigation.

As a whole, the river plume region always acted as a CO₂ sink with the fluxes of -3.78 \pm 7.44 and -5.17 \pm 6.65 mmol m⁻² d⁻¹ from spring to summer. The estimated

583	CO2 flux in summer were close to those of Zhai and Dai (2009) (-8.8 \pm 5.8 and -4.9 \pm
584	4.0 mmol m ⁻² d ⁻¹ in spring and summer) and multiple observations by Guo et al. (2015)
585	(-10.7 \pm 8.2 and -6.5 \pm 10.7 mmol $m^{\text{-2}}$ d^{\text{-1}} in spring and summer), whereas the CO_2
586	flux we calculated in spring was lower than those. It could be ascribed to the fact that
587	spring is the transitional season from winter to summer and the plume area is also the
588	transitional zone from the inland to the ECS. Thus, the magnitude of CO_2 flux
589	changes associated with many factors, including wind speed, biological activity and
590	river discharge, etc. Therefore, the estimated CO ₂ fluxes in this study are reasonable
591	in comparison with the CO ₂ fluxes in spring from multiple observations, such as those
592	of Zhai and Dai (2009) and Guo et al. (2015). As for the ECS, the northern ECS
593	always was a sink in both spring and summer, due to the jointly impacts of primary
594	production and Changjiang River input (Kim et al., 2013), while the southern ECS
595	shifted the CO ₂ sink in spring to source in summer with the increasing intrusion of
596	KC and TWC in summer. Overall, the ECS offshore water was also a strong sink in
597	spring with an average CO ₂ flux of -5.56 \pm 3.12 mmol m $^{-2}$ d $^{-1}$. When it comes to
598	summer, it turned into a CO ₂ source with the seasonal average CO ₂ flux of 1.73 ± 3.05
599	mmol $m^{-2} d^{-1}$, which might be due to the fact that high temperature in the ECS
600	offshore waters, especially in the southern ECS, contributed to the high pCO_2 and a
601	CO ₂ source in summer. This is also in good consistency with the flux reported by Guo
602	et al. (2015) in summer.
603	

604 **5 Conclusion**

Based on the hydrological and carbonate parameters observations with high

spatial resolution in the South Yellow-East China Sea region from spring and summer 606 cruises, the results showed that DIC and TA values decreased generally from 607 608 nearshore to offshore, moreover, the low TA and DIC values as well as high pH, occurred in the river plume, especially in the Zhe-Min Coastal Current in spring. The 609 610 DIC and TA values in the SYS were higher than those in the ECS due to the Yellow 611 River with intensive carbonate weathering and erosion in the drainage basin. The South Yellow Sea and East China Sea, as a whole, turned from an important CO₂ sink 612 in spring to a weak CO₂ source in summer, Specifically, the air-sea CO₂ flux 613 614 displayed large spatial and temporal variations in three subregions: CO₂ sinks in the SYS and ECS offshore water converted into sources from spring to summer, while the 615 river plume always served as a CO₂ sink both in spring and summer. The controlling 616 617 factors of pCO_2 differ in different regions and seasons. In general, temperature and biological activity were the primary drivers in controlling the pCO_2 variability in the 618 SYS, and primary production was more important than temperature in summer. For 619 620 the river plume area, pCO_2 distribution was largely controlled by physical mixing and biological activity, which could be attributed to the Changjiang runoff with high 621 622 nutrients supply, while temperature was the dominant factor in the outer shelf of the ECS as the high-temperature KC saline water always occupied in the region. 623

This study improved the understand of sea surface carbonate chemistry dynamics in the two adjacent margin seas with different physical conditions and may also help to better understand the chemical dynamics in many other marine systems. To better understand the role of the continental shelf seas in the global carbon cycle, more

628	comprehensive surveys and researches of direct pCO_2 measurements in the entire
629	South Yellow Sea and East China Sea, especially the seasons (autumn and winter)
630	with weak primary production, are needed.
631	
632	Acknowledgements
633	This work was financially supported by the National Key Research and
634	Development Program of China (no. 2016YFA0601301) and the National Natural
635	Science Foundation of China (no. 41676065). All authors have no conflict of interest.
636	The dataset used in this study has been submitted to the Mendeley Data. However, data
637	archiving is underway and thus we upload a copy of data as Supporting Information
638	for review purpose. The authors thank the captain and crews of the R/V
639	"Dongfanghong II " for their help during the in-situ investigation. We are also thankful
640	to Hongjie Wang and Liang Xue for suggestions for this manuscript.
641	
642	References
643	Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., & Regnier, P.
644	A. (2013). The changing carbon cycle of the coastal ocean. Nature, 504(7478),
645	61-70. https://doi.org/10.1038/nature12857
646	Borges, A. V., Delille, B., & Frankignoulle, M. (2005). Budgeting sinks and sources
647	of CO ₂ in the coastal ocean: Diversity of ecosystems counts. Geophysical
648	research letters, 32(14), L14601. https://doi.org/10.1029/2005GL023053
649	Bozec, Y., Thomas, H., Elkalay, K., & de Baar, H. J. (2005). The continental shelf

650	pump for CO ₂ in the North Sea-evidence from summer observation. Marine
651	Chemistry, 93(2-4), 131–147. https://doi.org/10.1016/j.marchem.2004.07.006
652	Cai, W. J. (2011). Estuarine and coastal ocean carbon paradox: CO ₂ sinks or sites of
653	terrestrial carbon incineration? Annual Review of Marine Science, 3, 123-145.
654	https://doi.org/10.1146/annurev-marine-120709-142723
655	Cai, W. J., Dai, M. H., & Wang, Y. C. (2006). Air-sea exchange of carbon dioxide in
656	ocean margins: A province-based synthesis. Geophysical Research Letters,
657	33(12), L12603. https://doi.org/10.1029/2006GL026219
658	Cai, W. J., Dai, M. H., Wang, Y. C., Zhai, W. D., Huang, T., Chen, S. T., et al. (2004).
659	The biogeochemistry of inorganic carbon and nutrients in the Pearl River
660	estuary and the adjacent Northern South China Sea. Continental Shelf
661	Research, 24(12), 1301–1319. https://doi.org/10.1016/j.csr.2004.04.005
662	Cai, W. J., Hu, X. P., Huang, W. J., Jiang, L. Q., Wang, Y. C., Peng, T. H., & Zhang, X.
663	(2010). Alkalinity distribution in the western North Atlantic Ocean margins.
664	Journal of Geophysical Research: Oceans, 115(C8), C08014.
665	https://doi.org/10.1029/2009JC005482
666	Cai, W. J., Wang, Z. A., & Wang, Y. C. (2003). The role of marsh-dominated
667	heterotrophic continental margins in transport of CO ₂ between the atmosphere,
668	the land-sea interface and the ocean. Geophysical Research Letters, 30(16),
669	1849. https://doi.org/10.1029/2003GL017633
670	Chen, C. T. A. (2003). New vs. export production on the continental shelf. Deep Sea

671 Research Part II: Topical Studies in Oceanography, 50(6–7), 1327–1333.

- 672 https://doi.org/10.1016/S0967-0645(03)00026-2
- 673 Chen, C. T. A. (2009). Chemical and physical fronts in the Bohai, Yellow and East
- 674 China seas. Journal of Marine Systems, 78(3), 394–410.
 675 https://doi.org/10.1016/j.jmarsys.2008.11.016
- 676 Choi, Y., Kim, D., Cho, S., & Kim, T. W. (2019). Southeastern Yellow Sea as a sink
- 677 for atmospheric carbon dioxide. *Marine pollution bulletin*, 149, 110550.
 678 https://doi.org/10.1016/j.marpolbul.2019.110550
- 679 Chou, W. C., Gong, G. C., Sheu, D. D., Hung, C. C., & Tseng, T. F. (2009). Surface
- distributions of carbon chemistry parameters in the East China Sea in summer
 2007. Journal of Geophysical Research: Oceans, 114, C07026.
 https://doi.org/10.1029/2008JC005128
- 683 Chou, W. C., Gong, G. C., Tseng, C. M., Sheu, D. D., Hung, C. C., Chang, L. P., &
- 684 Wang, L. W. (2011). The carbonate system in the East China Sea in winter.

123(1-4),

44-55.

686 https://doi.org/10.1016/j.marchem.2010.09.004

Chemistry,

- Dai, M. H., Cao, Z. M., Guo, X. H., Zhai, W. D., Liu, Z. Y., Yin, Z. Q., et al. (2013).
 Why are some marginal seas sources of atmospheric CO₂?. *Geophysical Research Letters*, 40(10), 2154–2158. https://doi.org/10.1002/grl.50390
- 690 DeGrandpre, M. D., Olbu, G. J., Beatty, C. M., & Hammar, T. R. (2002). Air-sea CO₂
- 691 fluxes on the US Middle Atlantic Bight. Deep sea research part II: Topical
- 692 studies in oceanography, 49(20), 4355–4367.
- 693 https://doi.org/10.1016/S0967-0645(02)00122-4

Marine

685

- 694 Deng, X., Liu, T., Liu, C. Y., Liang, S. K., Hu, Y. B., Jin, Y. M., & Wang, X. C. (2018).
- 695 Effects of *Ulva prolifera* blooms on the carbonate system in the coastal waters
- 696 of Qingdao. Marine Ecology Progress Series, 605, 73–86.
 697 https://doi.org/10.3354/meps12739
- Dickson, A. G. (1994). Determination of dissolved oxygen in sea water by Winkler
 titration. *WHP Operations and Methods*, 1–14.
- Goyet, C., Millero, F. J., O'Sullivan, D. W., Eischeid, G., McCue, S. J., & Bellerby, R.
- G. J. (1998). Temporal variations of pCO₂ in surface seawater of the Arabian
 Sea in 1995. Deep Sea Research Part I: Oceanographic Research Papers,

703 45(4–5), 609–623. https://doi.org/10.1016/S0967-0637(97)00085-X

- 704 Guo, X. H., Zhai, W. D., Dai, M. H., Zhang, C., Bai, Y., Xu, Y., et al. (2015). Air-sea
- CO₂ fluxes in the East China Sea based on multiple-year underway
 observations. *Biogeosciences*, 12(18), 5495–5514.
 https://doi.org/10.5194/bg-12-5495-2015
- He, X., Bai, Y., Pan, D., Chen, C. T., Cheng, Q., Wang, D., & Gong, F. (2013).
 Satellite views of the seasonal and interannual variability of phytoplankton
 blooms in the eastern China seas over the past 14 yr (1998–2011). *Biogeosciences*, 10(7), 4721–4739. https://doi.org/10.5194/bg-10-4721-2013
- Huang, W. J., Wang, Y., & Cai, W. J. (2012). Assessment of sample storage techniques
 for total alkalinity and dissolved inorganic carbon in seawater. *Limnology and oceanography: Methods*, 10(9), 711–717.
- 715 https://doi.org/10.4319/lom.2012.10.711

- Isobe, A., & Matsuno, T. (2008). Long-distance nutrient-transport process in the
 Changjiang river plume on the East China Sea shelf in summer. *Journal of Geophysical Research: Oceans*, 113, C04006.
 https://doi.org/10.1029/2007JC004248
- Jiang, L. Q., Cai, W. J., Wanninkhof, R., Wang, Y., & Lüger, H. (2008). Air-sea CO₂
- fluxes on the US South Atlantic Bight: Spatial and seasonal variability. *Journal of Geophysical Research: Oceans*, 113, C07019.
 https://doi.org/10.1029/2007JC004366
- Jiang, Z. P., Tyrrell, T., Hydes, D. J., Dai, M., & Hartman, S. E. (2014). Variability of
 alkalinity and the alkalinity-salinity relationship in the tropical and subtropical
 surface ocean. *Global Biogeochemical Cycles*, 28(7), 729 742.
 https://doi.org/10.1002/2013GB004678
- 728 Jin, J., Liu, S. M., Ren, J. L., Liu, C. G., Zhang, J., & Zhang, G. L. (2013). Nutrient
- dynamics and coupling with phytoplankton species composition during the
 spring blooms in the Yellow Sea. *Deep Sea Research Part II: Topical Studies*
- 731 *in Oceanography*, 97, 16–32. https://doi.org/10.1016/j.dsr2.2013.05.002
- 732Kempe, S., & Pegler, K. (1991). Sinks and sources of CO_2 in coastal seas: the North733Sea. *Tellus*B, 43(2),224-235.
- 734 https://doi.org/10.1034/j.1600-0889.1991.00015.x
- Kim, D., Choi, S. H., Shim, J., Kim, K. H., & Kim, C. H. (2013). Revisiting the
 Seasonal Variations of Sea-Air CO₂ Fluxes in the Northern East China Sea. *Terrestrial, Atmospheric & Oceanic Sciences*, 24(3), 409-419.

- https://doi.org/10.3319/TAO.2012.12.06.01(Oc) 738
- Lee, H. J., & Chao, S. Y. (2003). A climatological description of circulation in and 739
- around the East China Sea. Deep Sea Research Part II: Topical Studies in 740
- Oceanography, 50(6-7), 1065-1084. 741
- https://doi.org/10.1016/S0967-0645(03)00010-9 742
- Li, W., Wang, Y. H., Wang, J. N., & Wei, H. (2012). Distributions of water masses and 743 hydrographic structures in the Yellow Sea and East China Sea in spring and 744 summer 2011. Oceanologia et Limnologia Sinica, 3, 615-623. (In Chinese 745 746 with English abstract)
- Li, Y., Yang, X., Han, P., Xue, L., & Zhang, L. (2017). Controlling mechanisms of 747 surface partial pressure of CO₂ in Jiaozhou Bay during summer and the 748 749 influence of heavy rain. Journal of Marine Systems, 173, 49-59. https://doi.org/10.1016/j.jmarsys.2017.04.006 750
- Liu, C., Zhang, C., Yang, X., Gong, H., & Zhang, Z. (2008). A multilayer study of 751 752 pCO_2 in the surface waters of the Yellow and South China Seas in spring and the sea-air carbon dioxide flux. Journal of Ocean University of China, 7(3), 753 263–268. https://doi.org/10.1007/s11802-007-0263-2 754
- Liu, X., Huang, B., Huang, Q., Wang, L., Ni, X., Tang, Q., et al. (2015). Seasonal 755 phytoplankton response to physical processes in the southern Yellow Sea. 756 95, Journal of Sea Research, 45-55. 757 https://doi.org/10.1016/j.seares.2014.10.017 758
- Liu, Z., Zhang, L., Cai, W. J., Wang, L., Xue, M., & Zhang, X. (2014). Removal of 759

760	dissolved inorganic carbon in the Yellow River Estuary. Limnology and					
761	oceanography, 59(2), 413-426. https://doi.org/10.4319/lo.2014.59.2.0413					
762	Mackenzie, F. T., Bewers, J. M., Charlson, R. J., Hofmann, E. E., Knauer, G. A., Kraf					
763	J. C., et al. (1991). What is the importance of ocean margin processes in globa					
764	change?. in Ocean Margin Processes in Global Change, editedby R. F. C					
765	Mantoura, J. M. Martin, and R. Wollast, pp. 433–454, JohnWiley, New York					
766	1991. https://doi.org/10013/epic.12626					
767	Millero, F. J. (1995). Thermodynamics of the carbon dioxide system in the oceans.					
768	Geochimica et Cosmochimica Acta, 59(4), 661–677.					
769	https://doi.org/10.1016/0016-7037(94)00354-O					
770	Omar, A. M., Olsen, A., Johannessen, T., Hoppema, M., Thomas, H., & Borges, A. V.					
771	(2010). Spatiotemporal variations of fCO_2 in the North Sea. Ocean Science.					
772	6(1), 77–89. http://dx.doi.org/10.5194/os-6-77-2010					
773	Parsons, T. R., Maita, Y., & Lalli, C. M. (1984). Amanual of chemical and biological					
774	methods for seawater analysis. Oxford: Pergamon, 1, 173.					
775	Pierrot, D., Neill, C., Sullivan, K., Castle, R., Wanninkhof, R., Lüger, H., et al. (2009).					
776	Recommendations for autonomous underway pCO_2 measuring systems and					
777	data-reduction routines. Deep Sea Research Part II: Topical Studies in					
778	Oceanography, 56(8–10), 512–522. https://doi.org/10.1016/j.dsr2.2008.12.005					
779	Qi, J., Yin, B., Zhang, Q., Yang, D., & Xu, Z. (2014). Analysis of seasonal variation of					
780	water masses in East China Sea. Chinese Journal of Oceanology and					
781	Limnology, 32(4), 958-971. https://doi.org/10.1007/s00343-014-3269-1					

782	Qian, W., Chen, Y., Yang, L. M., Peng., Y. Z., Zhang, L., Li, T. Y., & Jiang, M. H.
783	(2019). Carbon Fraction and Fluxes in the Lower Reach of Minjiang River.
784	Research of Environmental Sciences, 32(4), 648-653. (In Chinese with
785	English abstract)
786	Qu, B., Song, J., Yuan, H., Li, X., & Li, N. (2014). Air-sea CO2 exchange process in
787	the southern Yellow Sea in April of 2011, and June, July, October of 2012.
788	Continental Shelf Research, 80, 8–19.
789	https://doi.org/10.1016/j.csr.2014.02.001
790	Qu, B., Song, J., Yuan, H., Li, X., Li, N., & Duan, L. (2017). Comparison of
791	carbonate parameters and air-sea CO2 flux in the southern Yellow Sea and East
792	China Sea during spring and summer of 2011. Journal of Oceanography,
793	73(3), 365–382. https://doi.org/10.1007/s10872-016-0409-6
794	Qu, B., Song, J., Yuan, H., Li, X., Li, N., Duan, L., et al. (2015). Summer carbonate
795	chemistry dynamics in the Southern Yellow Sea and the East China Sea:
796	Regional variations and controls. Continental Shelf Research, 111, 250-261.
797	https://doi.org/10.1016/j.csr.2015.08.017
798	Song, J., Qu, B., Li, X., Yuan, H., Li, N., & Duan, L. (2018). Carbon sinks/sources in
799	the Yellow and East China Seas-Air-sea interface exchange, dissolution in
800	seawater, and burial in sediments. Science China Earth Sciences, 61(11),
801	1583-1593. https://doi.org/10.1007/s11430-017-9213-6

Su, J., (1998). Circulation dynamics of the China Seas north of 18°N. The sea, 11,
483-505.

804	Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., & Sutherland, S. C.
805	(1993). Seasonal variation of CO ₂ and nutrients in the high-latitude surface
806	oceans: A comparative study. Global Biogeochemical Cycles, 7(4), 843-878.
807	https://doi.org/10.1029/93GB02263
808	Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., et
809	al. (2002). Global sea-air CO ₂ flux based on climatological surface ocean
810	pCO_2 , and seasonal biological and temperature effects. Deep Sea Research

- 811 Part II: Topical Studies in Oceanography, 49(9–10), 1601–1622.
 812 https://doi.org/10.1016/S0967-0645(02)00003-6
- Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman,
- D. W., et al. (2009). Climatological mean and decadal change in surface ocean pCO₂, and net sea-air CO₂ flux over the global oceans. *Deep Sea Research Part II: Topical Studies in Oceanography*, 56(8–10), 554–577.

817 https://doi.org/10.1016/j.dsr2.2008.12.009

Thomas, H., Bozec, Y., de Baar, H. J., Borges, A., & Schiettecatte, L. S. (2005).
Controls of the surface water partial pressure of CO₂ in the North Sea.

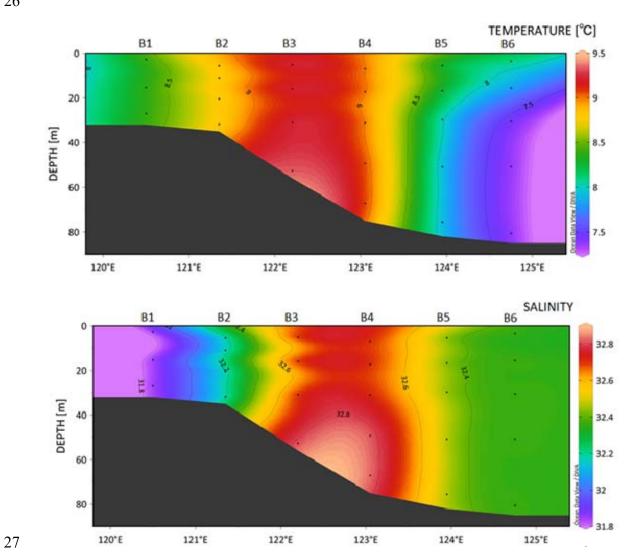
820 *Biogeosciences*, 2(4), 323–334. https://doi.org/10.5194/bg-2-323-2005

- 821 Tseng, C. M., Wong, G. T. F., Chou, W. C., Lee, B. S., Sheu, D. D., & Liu, K. K.
- 822 (2007). Temporal variations in the carbonate system in the upper layer at the
 823 SEATS station. *Deep Sea Research Part II: Topical Studies in Oceanography*,
- 54(14–15), 1448–1468. https://doi.org/10.1016/j.dsr2.2007.05.003
- Tsunogai, S., Watanabe, S., & Sato, T. (1999). Is there a "continental shelf pump" for

826	the absorption of atmospheric CO ₂ ?. Tellus B: Chemical and Physical
827	Meteorology, 51(3), 701-712. https://doi.org/10.3402/tellusb.v51i3.16468
828	Van Alstyne, K. L., Nelson, T. A., & Ridgway, R. L. (2015). Environmental chemistry
829	and chemical ecology of "green tide" seaweed blooms. Integrative and
830	comparative biology, 55(3), 518-532. https://doi.org/10.1093/icb/icv035
831	Wang, B., Chen, J. F., Jin, H. Y., Li, H. L., Liu, X. Z., Zhuang, Y. P., et al. (2011).
832	Preliminary study on the dissolved inorganic carbon system and its response
833	mechanism in Changjiang River Estuary and its adjacent sea areas in summer.
834	Journal of Marine Science, 29, 63–70. (In Chinese with English abstract)
835	Wang, S. L., Chen, C. T. A., Hong, G. H., & Chung, C. S. (2000). Carbon dioxide and
836	related parameters in the East China Sea. Continental Shelf Research, 20(4-5),
837	525-544. https://doi.org/10.1016/S0278-4343(99)00084-9
838	Wang, X. H., Qiao, F., Lu, J., & Gong, F. (2011). The turbidity maxima of the
839	northern Jiangsu shoal-water in the Yellow Sea, China. Estuarine, Coastal and
840	Shelf Science, 93(3), 202–211. https://doi.org/10.1016/j.ecss.2010.10.020
841	Wang, B., & Wang, X. (2007). Chemical hydrography of coastal upwelling in the East
842	China Sea. Chinese Journal of Oceanology and Limnology, 25(1), 16-26.
843	https://doi.org/10.1007/s00343-007-0016-x
844	Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the
845	ocean revisited. Limnology and Oceanography: Methods, 12(6), 351-362.
846	https://doi.org/10.4319/lom.2014.12.351
847	Weiss, R. F. (1974). Carbon dioxide in water and seawater: the solubility of a

848	non-ideal	gas.	Marine	chemistry,	2(3),	203–215.
849	https://doi.org	/10.1016/030	4-4203(74)	90015-2		
850	Weiss, R. F., & Price	, B. A. (198	0). Nitrous	oxide solubilit	y in water a	nd seawater.
851	Marine	cher	nistry,	8(4),	,	347–359.
852	https://doi.org	/10.1016/030	4-4203(80)	90024-9		
853	Wu, H., Shen, J., Zhu	, J., Zhang, J.	, & Li, L. (2014). Characte	eristics of the	Changjiang
854	plume and its	extension alo	ong the Jian	ngsu Coast. <i>Co</i>	ntinental She	elf Research,
855	76, 108–123.					
856	Xu, X., Zang, K., H	Iuo, C., Zhe	eng, N., Zł	nao, H., Wang	, J., & Sun,	B. (2016).
857	Aragonite satu	ration state a	nd dynamio	e mechanism in	the southern	Yellow Sea,
858	China. M	larine p	ollution	bulletin,	109(1),	142–150.
859	https://doi.org	/10.1016/j.ma	arpolbul.20	16.06.009		
860	Xue, L., Zhang, L.,	Cai, W. J., &	& Jiang, L	Q. (2011). A	ir-sea CO ₂ f	luxes in the
861	southern Yello	w Sea: An ex	amination	of the continen	tal shelf pum	p hypothesis.
862	Continental	Shelf	Resea	arch, 31	(18),	1904–1914.
863	https://doi.org	/10.1016/j.cs	r.2011.09.0	02		
864	Zhai, W. D., Chen, J.	F., Jin, H. Y.	, Li, H. L.,	Liu, J. W., He,	X. Q., & Ba	i, Y. (2014).
865	Spring carbon	ate chemistry	y dynamics	of surface wa	ters in the n	orthern East
866	China Sea: W	ater mixing,	biological	uptake of CO ₂	, and chemic	al buffering
867	capacity. Jour	rnal of Geo	physical R	esearch: Ocea	uns, 119(9),	5638–5653.
868	https://doi.org/	/10.1002/201	4JC009856			
869	Zhai, W. D., & Dai, M	M. H. (2009).	On the sea	asonal variation	n of air-sea C	O ₂ fluxes in

870	the outer Changjiang (Yangtze River) Estuary, East China Sea. Marine
871	Chemistry, 117(1-4), 2-10. https://doi.org/10.1016/j.marchem.2009.02.008
872	Zhai, W. D., Dai, M. H., & Guo, X. H. (2007). Carbonate system and CO ₂ degassing
873	fluxes in the inner estuary of Changjiang (Yangtze) River, China. Marine
874	chemistry, 107(3), 342-356. https://doi.org/10.1016/j.marchem.2007.02.011
875	Zhang, J., Huang, W. W., Liu, M. G., & Zhou, Q. (1990). Drainage basin weathering
876	and major element transport of two large Chinese rivers (Huanghe and
877	Changjiang). Journal of Geophysical Research: Oceans, 95(C8),
878	13277-13288. https://doi.org/10.1029/JC095iC08p13277
879	Zhang, L., Xue, L., Song, M., & Jiang, C. (2010). Distribution of the surface partial
880	pressure of CO ₂ in the southern Yellow Sea and its controls. Continental Shelf


Research, 30(3–4), 293–304. https://doi.org/10.1016/j.csr.2009.11.009

	@AGU PUBLICATIONS
1	
2	Journal of Geophysical Research: Oceans
3	Supporting Information for
4	Spatio-temporal variability of the carbonate system and air-sea CO ₂ fluxes in the South
5	Yellow Sea and East China Sea during the warm seasons
6	Xue Deng ^{1,2} , Gui-Ling Zhang ^{1,2} , Ming Xin ^{2,3} , Chun-Ying Liu ^{1,2,*} , Wei-Jun Cai ⁴
7	
8	¹ Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao
9	266100, PR China
10	² Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for
11	Marine Science and Technology, Qingdao 266071, PR China
12	³ Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, the First
13	Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, PR China
14	⁴ School of Marine Science and Policy, University of Delaware, Newark, DE 19716, United
15	States
16	*Corresponding author: <u>roseliu@ouc.edu.cn</u>
17	
18	Contents of this file
19	Figures S1
20	

21

22 Introduction

- 23 This file shows the vertical distributions of temperature and salinity in transect B in the SYS in
- 24 spring cruise.
- 25

Figure S1. Vertical distributions of temperature and salinity along transect B in spring.