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Abstract

Over the 20th and 21st centuries, both anthropogenic greenhouse gas increases and changes in anthropogenic aerosols have

affected rainfall in the Sahel. Using multiple characteristics of Sahel precipitation, we construct a multivariate fingerprint that

allows us to distinguish between the model-predicted responses to greenhouse gases and anthropogenic aerosols. Models project

the emergence of a detectable signal of aerosol forcing in the middle of the twentieth century and a detectable signal of greenhouse

gas forcing at the beginning of the twenty-first. However, the signals of both aerosol and greenhouse gas forcing in observations

emerge earlier and are stronger than in the models, far stronger in the case of aerosols. The similarity between the response

to aerosol forcing and the leading mode of internal variability makes it difficult to attribute this model-observation discrepancy

to errors in the forcing, errors in the forced response, model inability to capture the amplitude of internal variability, or some

combination of these. For greenhouse gases, however, the forced response is distinct from internal variability as estimated by

models, and the observations are largely commensurate with the model projections.
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Abstract. Over the 20th and 21st centuries, both anthropogenic greenhouse gas11

increases and changes in anthropogenic aerosols have affected rainfall in the Sahel.12

Using multiple characteristics of Sahel precipitation, we construct a multivariate13

fingerprint that allows us to distinguish between the model-predicted responses to14

greenhouse gases and anthropogenic aerosols. Models project the emergence of a15

detectable signal of aerosol forcing in the middle of the twentieth century and a16

detectable signal of greenhouse gas forcing at the beginning of the twenty-first.17

However, the signals of both aerosol and greenhouse gas forcing in observations emerge18

earlier and are stronger than in the models, far stronger in the case of aerosols. The19

similarity between the response to aerosol forcing and the leading mode of internal20

variability makes it difficult to attribute this model-observation discrepancy to errors21

in the forcing, errors in the forced response, model inability to capture the amplitude22

of internal variability, or some combination of these. For greenhouse gases, however,23

the forced response is distinct from internal variability as estimated by models, and24
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the observations are largely commensurate with the model projections.25
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1. Introduction27

Precipitation in the Sahel, the semi-arid region just south of the Sahara desert, affects28

a large and rapidly growing population. The region, which extends from Senegal in29

the west to Sudan and Ethiopia in the east, experiences rainfall concentrated in a30

wet season that runs June-October, with the bulk of precipitation falling in August31

and September. Spatially, the average rainfall varies sharply with latitude, with32

much smaller zonal gradients. It is strongly affected by internal climate variability33

at multiple spatial and temporal scales. Sahel rainfall is affected by the location of34

the Intertropical Convergence Zone (ITCZ), with increases in rainfall when the ITCZ35

is shifted anomalously north and drought when it moves south[?]. The region is also36

affected by variability in the global oceans[?, ?]: for example, the warming of the tropical37

troposphere during an El Niño event can suppress regional convection by enhancing38

atmospheric stability, while warming in the Atlantic or the Mediterranean can bring39

moisture to the region and strengthen the monsoon [?, ?, ?]. Despite these linkages to40

large-scale phenomena, however, aggregate rainfall in the Sahel results from short-lived41

weather systems on smaller time scales[?]. Understanding and simulating variability in42

Sahel rainfall therefore requires an integrated perspective of the drivers of this variability43

on multiple spatiotemporal scales[?, ?].44

However, even against this noisy backdrop of internal variability the Sahel has45

experienced significant multidecadal precipitation changes over the 20th and 21st46

centuries attributable to external forcing[?, ?]. Idealized experiments with a single47

model attributed the pronounced 1950-1980 drying to external forcing[?], specifically48

anthropogenic aerosols. A study using CMIP3 and CMIP5 models and observations49

found that aerosol-induced cooling over the North Atlantic forces the ITCZ south,50

displacing the Sahel rain band[?], although this shift is severely underestimated by51
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climate models. The severest recent drought in the region has been partially attributed52

to a combination of anthropogenic aerosol and volcanic forcing, notably the 198253

eruption of El Chichón[?].54

In the wake of clean-air legislation passed in North America and western55

Europe, anthropogenic sulphate aerosol emissions fell and anthropogenic aerosol forcing56

decreased[?, ?]. In the 1990s, Sahel precipitation began to recover[?, ?]. However, the57

decrease in aerosol emissions has not been accompanied by a concurrent decrease in58

greenhouse gas emissions, which have continued to rise. To interpret the most recent59

trends, and to provide reliable projections of future rainfall, it is therefore crucial to60

disentangle the role of internal variability and multiple external forcings. If, for example,61

recent positive trends in Sahel rainfall result from a decrease in North America and62

western European aerosol [?], then we should not expect them to continue throughout63

the 21st century. If, however, they are attributable to greenhouse gas emissions[?],64

then we might expect future GHG emissions to accelerate existing trends, and plan65

accordingly.66

Recent trends in mean Sahel precipitation suggest a recovery from the exceptionally67

dry conditions of the 1980s. But, while overall Sahel rainfall has increased, the68

spatiotemporal characteristics of the rainy season are also changing[?]. By 2007,69

precipitation in eastern regions of the Sahel had largely recovered, while the west was70

still considered in drought[?, ?]. Moreover, an increase in mean precipitation has also71

been accompanied by an intensification of individual rainfall events[?].72

While it is difficult to formally attribute these observed changes to external forcing,73

they do appear to capture several aspects of the expected regional precipitation response74

to greenhouse gas forcing. An increase in mean and extreme rainfall intensity is a robust75

consequence of a warmer world, where increased latent heat flux from the surface is76
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balanced by an increase in average precipitation[?] and the saturation water vapor77

pressure increases with temperature[?, ?]. Moreover, an east-west gradient in forced78

change is apparent in many climate models, possibly related to the zonal asymmetry79

in the Sahara Heat Low, an area of low pressure concentrated over the western Sahara.80

The low-level geostrophic flow into this local minimum advects dry subtropical air to81

the west and moist tropical air to the Eastern Sahel[?]. Warming strengthens this effect82

and contributes to drying in the West and wetting in the East: an asymmetry that83

should be exacerbated as greenhouse gases increase[?]. Finally, greenhouse gas forcing84

is expected to affect the seasonality of precipitation[?], with increases in rainfall largely85

confined to the late portion of the rainy season[?], when the barriers to convection in a86

more stable atmosphere are more easily overcome[?].87

To what extent, then, do recent Sahel rainfall trends reflect the recovery from88

aerosol-induced drought versus the response to increasing greenhouse gas forcing? And89

is either of these responses distinguishable from internal variability? Previous work90

has attempted to separate the roles of these forcings by linking them to different SST91

warming patterns[?, ?]. Bonfils et al (in revision) employed a global-scale analysis of92

temperature, precipitation, and aridity to distinguish two modes of externally-forced93

fingerprints associated with greenhouse gas and aerosol forcing.94

We build on this by employing the statistical techniques of multivariate detection95

and attribution to precipitation at a regional scale. Exploiting the coherent response96

to forcing across multiple variables, regions, or scales may both enhance the signal of97

anthropogenic forcing and decrease the noise, by rendering internal variability less likely98

to project by chance on the response to forcing. Here, we will use the characteristics of99

Sahel rainfall to create a multidimensional fingerprint that captures coherent aspects of100

expected forced change.101
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2. Methods102

The simplest possible approach to detecting climate changes is to calculate the trends103

in regional or global mean variables and compare them to similar-length trends in104

unforced variability estimated by climate models[?, ?]. If such trends are deemed105

unusual in the context of model-estimated internal variability by some statistical test,106

they may be considered detectable. However, detecting the signatures of external107

forcings on regional climate is challenging for several reasons: internal variability108

may be considerable on regional scales, observational uncertainty may be large, and109

in some regions, high-quality observations do not exist over long timescales. Several110

authors [?, ?] have therefore advocated a process-based perspective that captures the111

specific spatial or seasonal aspects of the forced response in order to enhance the signal112

and decrease the noise. In detection and attribution research, the main goal is to113

separate the forced responses (“fingerprints”) from the noise. In the literature, different114

statistical/numerical techniques exist to estimate these fingerprints (e.g., least-squares115

regression, optimal fingerprints with or without the need for EOF truncation and others116

methods [?, ?, ?]) . These may be trends, as discussed above, characteristic time117

series[?], or spatial patterns that capture the forced response[?]. Here, we will treat118

the “fingerprint” as a spatial pattern and define the fingerprint of a particular external119

forcing or collection of forcings as the leading empirical orthogonal function (EOF) of120

the average of model simulations run subject to those forcings[?]. Because the averaging121

process damps internal variability, the leading EOF generally explains a large proportion122

of the total variance[?, ?].123

To track expected and observed spatiotemporal changes, we consider four124

indicators: two variables (monthly mean precipitation, hereafter PRMEAN) and the125

fraction of rainy days, defined as days where rainfall exceeds 1mm and hereafter referred126
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to as R1) averaged over two regions (the central-eastern portion of the Sahel (east127

of the prime meridian) and the western Sahel (west of the prime meridian)). These128

quantities are calculated for CMIP5 historical simulations beginning in 1901. Because129

these historical simulations end in 2005, we extend them to the year 2100 by splicing130

with the corresponding RCP8.5 simulation beginning in 2006; we will refer to these131

extended simulations as H85. A list of all model simulations that provided relevant132

data for the historical and RCP8.5 simulations is provided in Table B1. Where multiple133

ensemble members are present, we calculate the multi-model average by first averaging134

over ensembles and then over models.135

To ensure all variables carry the same units, we create z-scores ZX(t) = X(t)/σX
C136

by normalizing each variable X(t) by a measure of noise σX
C . This is obtained by137

calculating monthly anomalies in X in the first 200 years of every pre-industrial control138

simulation, concatenating the resulting time series, and taking the standard deviation139

of the concatenated values.140

To calculate the fingerprint, we construct the state vector

Z = [ZPRMEAN(east), ZPRMEAN(west), ZR1(east), ZR1(west)]

and perform the singular value decomposition

Z = UΣVT

where Σ is a diagonal matrix whose elements represent the eigenvalues. The unitary141

matrix U represents the multivariate EOFs, while V contains the principal components.142

The fingerprint is then defined as the leading multivariate EOF[?, ?] and has 48143

dimensions: it reflects changes in four variables over the twelve months of the calendar144
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year. This fingerprint captures the model-predicted response to external forcing over145

multiple aspects of the Sahel rainy season.146

The leading EOF of the H85 simulations is nonstationary: the fingerprint of external147

forcing varies with time because the forcings themselves vary with time. Figure 1 shows148

the fingerprints calculated from the H85 simulations over the twentieth (a) and twenty-149

first (b) centuries. The twentieth century fingerprint (hereafter 20CEN) is characterized150

by a symmetric decrease in precipitation in the rainy season across the eastern and151

western Sahel, and by a commensurate decline in the monthly fraction of rainy days.152

The twenty-first century fingerprint (21CEN), by contrast, is characterized by strong153

seasonality and spatial differences (Figure 1b), as has been noted previously[?]. In the154

eastern Sahel, rainfall increases throughout the rainy season. In the west, however, the155

pattern of change is characterized by a decrease in precipitation early in the rainy season156

and a smaller increase towards its end. The fingerprint is also characterized by changes157

in rainfall frequency, as measured by the total number of rainy days. The western Sahel158

experiences a decrease in the proportion of rainy days throughout the spring, summer,159

and fall, while the Eastern Sahel experiences decreases in the proportion of rainy days160

that are larger (and, in July, of opposite sign) than the changes in precipitation. The161

21CEN fingerprint is nearly identical to the leading EOF calculated from the full 1901-162

2100 time period (Figure A1), while the 20CEN fingerprint strongly resembles the second163

EOF.164

Here, we will argue that the 20CEN fingerprint largely captures the multi-model165

mean regional response to aerosols, while 21CEN captures the regional response to166

greenhouse gases. Aerosol forcing is believed to primarily affect Sahel precipitation167

remotely[?], by cooling the North Atlantic and forcing the ITCZ southward. This168

leads to a decrease in precipitation in the rainy season throughout the entire region:169
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Figure 1. (a) Multi-variate fingerprint of forced changes in Sahel rainfall in the H85

simulations calculated over 1900-1999 (20CEN); solid lines depict total precipitation;

dotted lines depict frequency of rainy days; purple is for Central and Eastern Sahel

(east of the prime meridian) and orange is for the Western Sahel. (b) same as in (a),

but over the period 2000-2099 (21CEN). (c) The principal component associated with

the 20CEN fingerprint. (d) as in (c), but for 21CEN.

the response captured in the 20CEN fingerprint. The associated principal component170

(Figure 1c) tracks the temporal evolution of aerosol forcing, increasing through much171

of the twentieth century before peaking around 1980 and then decreasing. Greenhouse172

gas forcing dominates the RCP8.5 scenario, and the principal component associated173

with the 21CEN fingerprint (Figure 1d) reflects the monotonic increase in greenhouse174

gas emissions over the twenty-first century. The fingerprint itself captures many of175

the theoretically-expected characteristics of the response to greenhouse gas forcing: the176

asymmetry between the eastern and western Sahel, the seasonal variations, and the177

decoupling of mean precipitation change and number of rainy days. While the choice of178

the year 2000 as the dividing point between these two fingerprints is somewhat arbitrary,179
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it does capture the fact that Western European and North Atlantic aerosols peaked and180

declined over the first period, and that the subsequent period is largely dominated by181

increasing greenhouse gas emission projected in RCP8.5. Other reasonable choices for182

the boundary between the aerosol-dominated period (for example, 2005, when historical183

simulations end, or 1990, slightly after the predicted peak in aerosol emissions) yield184

similar results.185

The historical and RCP8.5 simulations are not forced by a single forcing agent, but186

by changes in anthropogenic (aerosols and greenhouse gases, but also ozone depletion187

and land-use changes) and natural (orbital changes, solar variability, and volcanic188

eruptions) forcings. It is therefore desirable to isolate the response to a single forcing189

by performing targeted simulations. Indeed, the CMIP5 archive contains some single-190

forcing simulations, namely those in which CO2 is increased at 1% per year (1pctCO2)191

and the subset of historicalMisc simulations run with only aerosol forcing. But there is192

a paucity of data in these simulations compared to the historical and RCP8.5 archives.193

Fewer models provided daily data (required to calculate R1) for 1pctCO2, and only four194

modeling groups provided the necessary data for the aerosol-only runs. The aerosol-195

only and CO2-only fingerprints can be calculated from these ensembles of reduced196

size and are shown in Figure A2. (We note that greenhouse gas-only “historicalGHG”197

simulations are also available in CMIP5, but we here use 1pctCO2 runs because more198

simulations of this type are available, and because the signal of greenhouse gas forcing is199

stronger in 1pctCO2 runs, resulting in a clearer fingerprint less contaminated by internal200

variability). They are qualitatively similar to the 20CEN and 21CEN fingerprints,201

respectively, but not exactly alike: the precipitation decreases in the aerosol-only202

fingerprint are confined to September and October, while the 1pctCO2 fingerprint shows203

more drying early in the rainy season in the eastern Sahel and does not show an increase204
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late in the rainy season in the west. The differences between single-forcing and the H85205

fingerprints, however, are artifacts of the reduced ensemble of models used. When206

20CEN is re-calculated using only the models that provided aerosol-only simulations,207

the spatial correlation between this reduced-ensemble fingerprint and the aerosol-only208

fingerprint exceeds 0.95. When 21CEN is re-calculated using only the models that209

provided 1pctCO2 simulations, the spatial correlation between it and the 1pctCO2210

fingerprint is 0.82. In order to utilize as many models as possible, here we will rely211

on the 20CEN fingerprint to approximate the CMIP5 multi-model mean response to212

aerosols, and on 21CEN to approximate the response to greenhouse gases.213

The sensitivity of both fingerprints to the ensemble of models used indicates214

considerable uncertainty in the model responses to external forcings; this is reinforced by215

the comparatively small percentage of variance explained by CEN20 (27% of the variance216

in the 1900-1999 H85 multi-model mean) and CEN21 (50% of variance in the 2000-217

2099 H85 multi-model mean). Because the averaging process damps internal variability,218

the leading EOF of the multi-model average generally explains a large proportion of219

the variance- so why do CEN20 and CEN21 explain so little? First, the historical220

simulations are also forced by GHG and natural forcings, including volcanic eruptions221

that are intermittently quite large. These forcings have a response on Sahel rainfall222

that is non-negligible and not necessarily captured by the leading EOF. Similarly, while223

dominated, especially at the end of the 21st century, by greenhouse gases, the RCP224

simulations also include a reduction of anthropogenic aerosol forcing. Second, there is225

also considerable model disagreement in the response to single forcings: the aerosol-226

only and 1pctCO2 fingerprints explain only 22% and 36% of the multi-model average227

variance in the multi-model average of these ensembles, respectively. While this may be228

due to the smaller sample size of simulation and a less-clear separation between signal229
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and noise, it is well-established that model uncertainties in forced responses may arise230

from biases in model climatology, particularly in the location of the major features of the231

circulation [?, ?], from differences in model dynamics[?, ?], uncertainty in the aerosol232

forcing itself[?], or differences in the model representation of aerosol direct and indirect233

effects[?].234

The multivariate 20CEN and 21CEN fingerprints have the advantage of being nearly235

orthogonal to one another- the spatial correlation between the two is 0.1. (This can also236

be seen in the two leading EOFs of the total 1900-2099 H85 simulation, which resemble237

21CEN and 20CEN, respectively, and are orthogonal by construction, Figure A1). This238

property means that, at least in models, it is possible to distinguish between the response239

to aerosol forcing (particularly as precipitation amounts recover from aerosol-induced240

declines) and the response to GHG forcing, as the leading response to one forcing will241

not strongly project on the fingerprint of the other.242

The regional precipitation response to external forcing occurs against a backdrop243

of natural internal variability: climate “noise”. Because we have no recent observations244

of unforced climate, and because paleoclimate proxies represent a climate forced by245

pre-industrial anthropogenic and natural forcings, we must rely on climate model pre-246

industrial control simulations (piControl) to characterize this variability[?]. We therefore247

calculate R1 and PRMEAN for the east and west Sahel in CMIP5 preindustrial control248

simulations, compute the anomalies, and concatenate the resulting time series. To249

prevent our results being dominated by models that performed extremely long piControl250

simulations, here we use only the first 200 years of each simulation. Figure 2 shows the251

three model-predicted leading noise modes. The primary mode of internal variability,252

figure 2a, is likely associated with northward and southward shifts in the ITCZ and is253

characterized by decreases in precipitation and number of rainy days throughout the254
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entire Sahel in the rainy season. The decrease in rainy days accompanies the decrease255

in precipitation, indicating no substantial change in the intensity of rainfall. This mode256

strongly resembles the aerosol-dominated 20CEN fingerprint (the two patterns have257

a correlation above R=0.87). The second mode distinguishes between the early and258

late season but is distinct from the GHG-dominated 21CEN fingerprint in that East259

and West regions vary together and R1 tracks PMEAN. These results have important260

implications for the detectability of forced signals: because the 20CEN fingerprint is261

degenerate with the leading noise mode, models indicate that it will be more difficult to262

distinguish between the response to aerosols and internal variability. The same difficulty263

ought not affect the GHG signal.264

To review, thus far we have presented fingerprints of the Sahel rainfall response to265

aerosols and greenhouse gases. The two are distinct from one another, indicating that a266

multivariate approach may be able to distinguish between the response to different267

forcings. Additionally, the GHG-dominated fingerprint is distinct from the leading268

modes of internal variability: in models, at least, internal variability does not project269

strongly on the predicted response to GHG forcing. The same is not true for the aerosol-270

dominated 20CEN fingerprint: because the response to aerosols strongly resembles the271

leading mode of internal variability, the models indicate that an aerosol signal must be272

extremely strong or persistent in order to become detectable over the background of273

climate noise.274

3. Results275

3.1. Model-predicted emergence time276

We begin the detection and attribution analysis with a preliminary analysis to ascertain

when the models themselves predict emergence of these signals. Given a dataset
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(b) Noise PC1
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(d) Noise PC2
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(d) Noise PC2

Figure 2. Leading multi-variate EOFs of Sahel rainfall natural variability as estimated

by the CMIP5 pre-industrial control simulations. (a) First noise mode, explaining 17%

of the total variance, and (b) the associated PC. (c) Second noise mode, explaining

12% of the total variance, and (d) the associated PC. (e) Third noise mode, explaining

11% of the total variance, and (f) the associated PC.. Line styles as in ?? and in

legend.

beginning in 1901, when might we expect to see a detectable signature of these forcings?

The model-predicted signal time of emergence is generally calculated using a standard

framework employed in many previous detection and attribution studies[?, ?]. For each

model m, in each year t, we calculate monthly anomalies of PRMEAN and R1 in the

east and west Sahel. We create z-scores by normalizing by σX
C and, as in calculating
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the fingerprint, create a state vector

Zm(t) = [Zm
PRMEAN(east)(t), Z

m
PRMEAN(west)(t), Z

m
R1(east)(t), Z

m
R1(west)(t)].

We will define the projection as the dot product at every year t of this 48-element277

vector and the searched-for fingerprint. The resulting time series P (t) measures the278

spatial covariance between the fingerprint and the observational or model data. If the279

fingerprint is increasingly present in the data, then P (t) should trend upward. If the data280

is increasingly dissimilar to the fingerprint, then P (t) should trend downward. Long-281

term changes in the projection time series therefore capture the resemblance between the282

searched-for fingerprint and the data, and we define the signal S(L) as the L-length trend283

in P (t), obtained by least-squares regression. This process reduces multidimensional284

data, varying across space, time, and multiple aspects of precipitation, to a single scalar285

signal.286

Assessing the significance of such a signal requires an understanding of how internal287

variability– climate “noise”– could project onto the fingerprint due to chance alone.288

We therefore calculate z-scores from the CMIP5 preindustrial control simulations,289

normalizing, as before, with σX
C , the standard deviation of the concatenated anomalies.290

We project the resulting state vector Zcontrol onto the fingerprint to obtain a long time291

series Pc(t). Because there is no a priori reason for internal variability to project292

positively or negatively on the fingerprint except by chance, the distribution of all293

possible L-length trends in this time series is here (and in general) well-approximated294

by a Gaussian with zero mean. We follow e.g. [?] in using the standard deviation of295

this distribution N(L) to define the noise. When the signal-to-noise ratio exceeds some296

pre-determined confidence interval, the signal is considered detectable. For example,297

when the signal-to-noise ratio exceeds 1.64, the observed signal is considered detectable298
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at the 90% confidence level; in IPCC parlance it is “very unlikely” to be due to internal299

variability. The “time of emergence” is here defined as the year in which a signal,300

beginning in 1901, crosses this detectability threshold. If the detectable signal lies301

within the 90% confidence interval of simulations run subject to forcing, then it is “very302

likely” attributable to the forcing or collection of forcings in that simulation.303

To determine the model-projected times of emergence, we calculate the projections304

P20(t) and P21(t) of each H85 model simulation onto the 20CEN (aerosol-dominated) and305

21CEN (GHG-dominated) fingerprints, respectively. The multi-model mean projection306

P20(t) is shown as the thick pink line in Figure 3a; the 90% confidence interval of model307

P20(t) is shown as a pink shaded region. The multi-model mean is again calculated308

by averaging over ensemble members and then models; the model spread is calculated309

by projecting individual ensemble members onto the fingerprint. Figure 3b shows the310

multi-model mean projection P21(t) onto the 21CEN fingerprint (thick green line) and311

the 90% confidence interval determined by the H85 simulation projections. As indicated312

by the principal components in Figures 1c and 1d, on average H85 model simulations313

increasingly resemble the aerosol-dominated 20CEN fingerprint until roughly 1980, after314

which the projections trend negative. However, there is considerable uncertainty in the315

model projections onto this fingerprint throughout the 20th and 21st centuries; the316

90% confidence interval, as determined by the spread in the model ensemble members,317

widens as the 21st century progresses, and we cannot say with confidence that the multi-318

model average projection onto 20CEN is positive or negative. There is considerably less319

ambiguity in the multi-model average projection onto the greenhouse gas-dominated320

21CEN fingerprint, which remains positive throughout the 21st century.321

Positive or negative trends in the projection time series can arise due to internal322

variability, and it is necessary to test such trends for detectability by calculating the323
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(c): 20CEN Signal-to-noise
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Figure 3. (a): Projection of observations and H85 simulations onto the 20CEN

fingerprint. Thick pink line is for the mean across all H85 simulations and pink shading

represents the 90% confidence interval as estimated from the ensemble spread. The

blue line is the projection of observations on the 20CEN fingerprint. (b): same as (a),

but for the 21CEN fingerprint. (c): Signal to noise ratio in forced trends. The signal

is the magnitude of the trend in the 20CEN projection time series; the noise is the

standard deviation of the distribution of trends in the pre-industrial control; trends

start in 1900; the signal/noise ratio is plotted as a function of the trend end year.

Pink line and shading for the H85 simulations and blue line for observations, as in (a).

Values outside the dotted lines are detectable at the 90% level. (d) same as (c), but

for the 21CEN fingerprint.

distribution of trends of the same length in the preindustrial control projection time324

series. To translate the projections in Figure 3a and 3b into signal-to-noise time series,325

we calculate the signal at time L for each H85 simulation, defined as the 1900-L trend in326

the projection, and divide by the corresponding noise term N(L)[?, ?]. Figure 3c shows327

the signal-to-noise ratio for the aerosol-dominated 20CEN fingerprint. The aerosol-328

dominated 20CEN fingerprint (as predicted by the CMIP5 multi-model mean) becomes329

detectable at the “very likely” (90% confidence) level in 1982, peaks in 1993, then330
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declines as aerosol forcing decreases. The models diverge in their 21st century behavior:331

some show a detectable resemblance to the 20CEN fingerprint, while some project332

that, under the RCP8.5 scenario, Sahel rainfall will become increasingly dissimilar.333

By contrast, the greenhouse gas-dominated 21CEN fingerprint first becomes detectable334

(in the multi-model mean) in 2017, and the signal-to-noise ratio increases with high335

confidence: the lower bound of the model ensemble-determined 90% confidence threshold336

crosses the detectability threshold before the end of the twenty-first century.337

To illustrate the usefulness of the multivariate approach, we can also calculate338

model-projected times of emergence for individual variables (Figure A3). The GHG-339

dominated 21CEN fingerprint first becomes detectable in eastern Sahel rainfall in 2040,340

and in eastern Sahel rainy days in 2042, indicating that a multivariate fingerprint341

including these variables leads to earlier detection times than considering either342

individually. By contrast, the 21CEN fingerprint for mean rainfall and rainy days in343

the western Sahel becomes detectable in 1981 and 1983, respectively. But these early344

detection times result from the degeneracy between the aerosol-dominated (20CEN) and345

GHG-dominated (21CEN) effects on the Western Sahel. The models project a detectable346

signal of external forcing on the western Sahel rainy season emerging by the early 1980s,347

but are unable to distinguish between the responses to different external forcings. Only348

a process-based fingerprint that captures multiple aspects of Sahel rainfall change can349

distinguish between the responses to greenhouse gases and aerosols.350

We note that these future projections are based on CMIP5’s RCP8.5 simulations,351

which represent a plausible worst-case scenario but should not be construed as “business-352

as-usual”. As more next-generation CMIP6 simulations begin to come online, modelers353

will be able to explore the consequences of more complex emission scenarios. In the354

RCP8.5 scenario used, global sulphur dioxide emissions sharply decline over the 21st355
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century[?]. In other scenarios and in reality, the relative emissions of greenhouse gases356

and aerosols will change in the future in unpredictable ways. It is therefore imperative357

to stress that these future projections are dependent on a particular scenario, and may358

not represent the most likely future. As we will now show, there is another potential359

reason to question the results of the climate models: discrepancies between models and360

observations over the historical time period.361

3.2. Detection and Attribution362

To compare model output to observations, we use the gauge-based CRU TS dataset[?],363

which contains monthly time series of precipitation over Earth’s land areas for 1901-364

2016 and uses the same station data to calculate the number of rain days R1. Its long365

extent and extensive validation make it useful for model-observation comparisons.366

The CMIP5 models project the aerosol-dominated 20CEN fingerprint to be367

detectable in 1982, and the GHG-dominated 21CEN fingerprint in 2017. Despite368

substantial uncertainty in these signal emergence times, models indicate that detectable369

signals should be present in the observations. Are they?370

Using the long-record CRU dataset, we calculate PRMEAN and R1 in the eastern371

and western Sahel between 1901-2016, normalize by σX
C , and calculate the projections372

P20(t) and onto the 20CEN fingerprint (blue line, Figure 3a). Over the 20th century,373

the observations appear increasingly dissimilar to the fingerprint until 1950, after which374

the resemblance sharply increases. Following the severe drought year of 1984, the375

fingerprint becomes less apparent in the observations. However, the observed trends376

in the projection P20(t) are far larger than in any model. This is reflected in the377

observed signal-to-noise ratio (blue line, figure 3c), which is far more variable than378

in any of the models. As indicated in Figure 3c, the 1900-1950 downward trend in the379

observations is large: over this time period the observations are increasingly dissimilar to380
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the fingerprint. This trend is larger than in most piControl simulations. Post 1950, the381

observed P20(t) trends upward (Figure 3c). The observed signal-to-noise ratio begins to382

increase and exceeds the 90% detectability threshold in 1987. The 1901-1987 trend383

is formally detectable and attributable (ie, inconsistent with model-estimated noise384

but consistent with the forced model distribution), and the signal remains (formally)385

detectable through the present. This should not, however, obfuscate the fact that while386

models and observations may agree over this centennial time scale, there is a substantial387

disconnect between models and observations at shorter, multidecadal scales.388

On these shorter time scales, there is clearly more variability in the projection of389

the observations onto 20CEN than in the model projections onto the same fingerprint:390

Figure 3(a) indicates a larger observed negative trend and more significant signal-391

to-noise ratio (Figure 3(c)) than in the CMIP5 models. This suggests that models392

underestimate multidecadal variability because they fail to capture the full spectrum393

of low-frequency internal variability present in the real world, a realistic response to394

aerosol forcing, or both. This analysis cannot distinguish between the two, since the395

response to aerosol forcing (Figure 1a) in these variables so closely resembles internal396

variability (Figure 2a). The large 1900-1950 negative trend, over a time period when397

aerosol forcing was small, compared to its later peak in 1950-1980, but increasing may398

constitute evidence for the hypothesis that models fail to capture multidecadal internal399

variability.400

The blue line in Figure 3d shows the observed signal-to-noise ratio for the GHG-401

dominated fingerprint 21CEN. In the observations, the signal becomes detectable as402

early as 1940 before decreasing, finally re-emerging at the 90% detectable level in 2001.403

The 1900-1950 signal lies at the edge of the 90% confidence interval of the H85 models,404

indicating that, very likely, either models underestimate the greenhouse gas response,405
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there exists a mode of internal variability not simulated by climate models that resembles406

the greenhouse gas fingerprint, or both.407

The linear approach to signal detection is complicated by forcings that do not408

increase or decrease monotonically. For example, the 20CEN fingerprint is detectable in409

1901-2016 observations and compatible with model trends in P20(t) over the same period,410

but this model-observation agreement masks the fact that, in the observations, a large411

positive 1950-1980 trend is preceded by a large negative 1900-1950 trend, rendering the412

aggregate 1901-2016 trend less positive and therefore compatible with the smaller model-413

predicted trends. We therefore perform the linear detection analysis on three periods:414

1900-1950, where the observed trend is negative, 1950-1980, where it is positive, and415

1980-2016. Figure 4 shows the resulting signal-to-noise ratios for both the 20CEN and416

21CEN fingerprints. Model-predicted signals of 20CEN are shown as pink lines; the417

observed trends are shown as white circles. Over the 1950-1980 period, the observed418

20CEN signal is larger than in either forced or unforced model simulations. However,419

the distribution of simulated forced trends is not distinguishable from the distribution of420

unforced trends arising from the model-estimated internal variability, muddling a clear421

attribution to increasing AA forcing. The 1980-2016 trend is again far more negative422

than in forced or unforced model simulations. This time, the distribution of simulated423

forced trends is distinguishable from the distribution of unforced trends, suggesting424

that a decline in the impact of aerosols after the Clean Air Act is operating in both425

observations and models. However, the model response underestimates the amplitude426

of the observed response.427

The observed projections onto the greenhouse gas-dominated 21CEN fingerprint428

tell a different story. The observed signal of greenhouse gas forcing is detectable in the429

1900-1950 period and compatible with the H85 model simulations. Both the decreasing430
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Figure 4. Simulated and observed trends in the projections on 20CEN (pink lines

and open circles) and 21CEN (green lines and filled circles) fingerprints for the periods

1900-1950, 1950-1980, 1980-2016, and 1901-2016. Pink and green lines depict the

90% confidence interval determined by the spread in H85 simulations; circles depict

observed values; the vertical dotted lines mark the 90% confidence intervals for the

signal-to-noise ratio.

similarity between the observations and the 21CEN fingerprint over the 1950-1980431

period and the subsequent increase in observed P21(t) from 1980-2016 do not exceed the432

detectability threshold, and are compatible with model-simulated internal variability.433

The longer 1900-2016 trend is just outside the 90% confidence interval for unforced434

variability and might therefore be considered detectable and attributable to greenhouse435

gases. The fact that the signal emerges in 1950 but subsequently wanes even as the436

forcing increases suggests that, in the real world, the effects of aerosol forcing or internal437

variability may mask the projection onto the greenhouse gas-dominated fingerprint.438

Because of this, and given the inability of models to capture the observed trends in439

projections onto the 20CEN fingerprint, we urge caution in interpreting these projections440

onto the 21CEN fingerprint.441
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4. Conclusions442

Detecting and attributing changes in regional precipitation is challenging due to443

uncertainty in model responses to multiple forcing agents and the large amplitude of444

internal variability. Here, we have adopted a process-based approach to fingerprinting,445

exploiting coherent responses across multiple variables to distinguish the signals of446

different external forcings. In models, the seasonality and east-west gradient of change447

differ under greenhouse gas and aerosol forcing, resulting in multivariate fingerprints448

that are distinct from one another.449

However, we show substantial differences in the modeled and observed projections450

onto the 20CEN fingerprint, a pattern we argue reflects the multi-model mean response451

to aerosol forcing. This is complicated by the fact that this aerosol-dominated fingerprint452

(Figure 1a) so closely resembles the leading noise mode (Figure 2a) in climate models.453

This means that, in addition to the usual explanations for an observed signal-to-noise454

ratio being higher than that in models (the observed signal is stronger than in models, or455

the model-estimated noise term is too small), it may also be the case that the degeneracy456

between the fingerprint representing the forced response and the pattern characteristic457

of the leading noise mode in the models, which delays the emergence of the signal, does458

not hold in the real world.459

The projection on the 21CEN fingerprint increases somewhat faster than expected460

(at the 90% level) during the first half of the 20th century, and the mismatch is not easily461

interpreted as a bias in the model-simulated noise. This is because the model response to462

greenhouse gas forcing does not strongly resemble model-simulated climate noise modes.463

It is possible that this is due to errors in simulated internal variability, but this would464

suggest models fail to capture an important mode or modes of climate noise, not just465

their amplitude. It is also possible that climate models fail to capture the strength of466
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the response to greenhouse forcing. However, the observed greenhouse gas-dominated467

21CEN signal is detectable from 1901-1950, and while the observed trend is larger468

than most forced runs, it is still compatible with the forced distribution. The signal is469

subsequently lost at mid-century, likely due to a masking effect from the aerosols, and470

then reappears. In each case, it is compatible with the simulated trends.471

Finally, while we show that in the limited-size ensemble of models that performed472

single-forcing simulations, the 20CEN fingerprint resembles the aerosol-only fingerprint473

and the 21CEN fingerprint resembles the CO2-only fingerprint, it is important to note474

that historical simulations and observations contain the climate response to multiple475

external forcing factors, both natural and anthropogenic. It is useful to show as we476

do here, that multivariate fingerprints can distinguish between aerosol-dominated and477

greenhouse gas-dominated responses in models. However, multiple studies[?, ?] have478

identified a signature of naturally forced change in Sahel precipitation over the twentieth479

century. Larger ensembles of single-forcing simulations are needed to more clearly480

identify the model responses to natural forcings and distinguish these from aerosol and481

greenhouse gas responses.482

What is the way out of this impasse? The transition from CMIP3 to CMIP5 or,483

as shown by a preliminary analysis [?], to the CMIP6 generation of climate models484

has not solved these issues. Regional simulations that can explicitly simulate mesoscale485

systems and thus the intensity characteristics of Sahel rainfall are coming online, but486

their response to external forcing still depends on the boundary conditions simulated487

by coarser GCMs [?], so that reasons for doubt persist. Moreover, even at global488

scales, the spread in the CMIP6 climate model ensemble appears to be increasing[?].489

Nevertheless, we can better understand the sources of model biases in Sahel rainfall490

variability if we make strategic use of different sets of multi-model simulations: in491
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idealized configurations, of high-resolution atmosphere-only models forced by SST,492

in large-ensemble historical coupled simulations, and in those initialized for decadal493

predictions. Such a concerted effort will potentially reduce uncertainty in the regional494

response to aerosol forcing, in the history of internal modes of SST variability at decadal495

time scales, and in the role of convective-scale processes – both in the atmosphere and496

at the land surface – in shaping structural uncertainty in model responses. The many497

MIP ensembles now coming online as part of CMIP6 provide an opportunity to advance498

our knowledge of forced Sahel rainfall trends in the next decade.499
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(b): 1901-2100 H85 PC1
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Figure 1: Fingerprints calculated using 1900-2100 H85 model simulations:
(a) EOF1 and (b) the associated PC; (c) EOF2 and (d) the associated PC

1



JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

0.4

0.3

0.2

0.1

0.0

EO
F 

lo
ad

in
g

East: precipitation
East: number of rainy days
West: precipitation
West: number of rainy days

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

0.4

0.3

0.2

0.1

0.0

0.1

EO
F 

lo
ad

in
g

East: precipitation
East: number of rainy days
West: precipitation
West: number of rainy days

Figure 2: Fingerprints calculated using (a) CMIP5 aerosol-only ”histori-
calMisc” simulations over the period 1900-2005 and (b) CMIP5 “1pctCO2”
simulations
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Figure 3: Single-variable fingerprints calculated from H85 simulations for (a)
the 20th century and (b) the twenty-first century. We note the resemblance of
these fingerprints to their counterparts in the multivariate fingerprints. (c):
Multi-model average signal-to-noise ratio for the emergence of the 20CEN
fingerprint in indiviual variables (d): Same as (c), but for the 21CEN finger-
print
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Modeling group name simulation ID
CCSM4 r1i1p1
CCSM4 r2i1p1

CESM1-CAM5 r1i1p1
CMCC-CM r1i1p1
CMCC-CMS r1i1p1
CNRM-CM5 r1i1p1

CSIRO-Mk3-6-0 r1i1p1
CanESM2 r1i1p1
CanESM2 r2i1p1
CanESM2 r3i1p1
CanESM2 r4i1p1
CanESM2 r5i1p1

GFDL-CM3 r1i1p1
HadGEM2-AO r1i1p1

IPSL-CM5A-LR r1i1p1
IPSL-CM5A-LR r2i1p1
IPSL-CM5A-LR r3i1p1
IPSL-CM5A-LR r4i1p1
IPSL-CM5A-MR r1i1p1
IPSL-CM5B-LR r1i1p1

MIROC-ESM-CHEM r1i1p1
MIROC-ESM r1i1p1

MIROC5 r1i1p1
MIROC5 r2i1p1
MIROC5 r3i1p1

MPI-ESM-LR r1i1p1
MPI-ESM-LR r2i1p1
MPI-ESM-LR r3i1p1
MPI-ESM-MR r1i1p1
NorESM1-M r1i1p1

inmcm4 r1i1p1

Table 1: Spliced historical-RCP8.5 simulations used
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CNRM-CM5 r1i1p1
GFDL-CM3 r1i1p1

IPSL-CM5B-LR r1i1p1
MIROC5 r1i1p1

NorESM1-M r1i1p1
bcc-csm1-1 r1i1p1

Table 2: Model pre-industrial control simulation output used

CESM1-BGC r1i1p1
CESM1-BGC r1i1p2
CMCC-CM r1i1p1
CNRM-CM5 r1i1p1

CSIRO-Mk3-6-0 r1i1p1
CanESM2 r1i1p1

FGOALS-s2 r1i1p1
GFDL-ESM2G r1i1p2
GFDL-ESM2M r1i1p1
GFDL-ESM2M r1i1p2
IPSL-CM5A-LR r1i1p1
IPSL-CM5A-MR r1i1p1

MIROC5 r1i1p1
MPI-ESM-MR r1i1p1
MPI-ESM-P r1i1p1
MRI-CGCM3 r1i1p1
NorESM1-M r1i1p1
bcc-csm1-1-m r1i1p1

bcc-csm1-1 r1i1p1
inmcm4 r1i1p1

Table 3: CMIP5 1pctCO2 simulation output used
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CCSM4 r1i1p10
CCSM4 r4i1p10
CCSM4 r6i1p10

CSIRO-Mk3-6-0 r1i1p4
CanESM2 r1i1p4
CanESM2 r2i1p4
CanESM2 r3i1p4
CanESM2 r4i1p4

GFDL-CM3 r1i1p1
GFDL-CM3 r5i1p1

Table 4: CMIP5 historicalMisc aerosol-only simulation output used
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