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Abstract

This study proposes the utilization of municipal well records as an alternative dataset for large-scale heterogeneity character-

ization of hydraulic conductivity () and specific storage () using hydraulic tomography (HT). To investigate the performance

of HT and the feasibility of utilizing municipal well records, a three-dimensional aquifer/aquitard system is constructed and

synthetic groundwater flow and solute transport experiments are conducted to generate data for inverse modeling and validation

of results. In particular, we simultaneously calibrate four groundwater models with varying parameterization complexity using

five datasets consisting of different time durations and periods. Calibration and validation results are qualitatively and quanti-

tatively assessed to evaluate the performance of investigated models. The estimated and tomograms from different model cases

are also validated through the simulation of independently conducted pumping tests and conservative solute transport. Our

study reveals that: 1) the HT analysis of municipal well records is feasible and yields reliable heterogeneous and distributions

where drawdown records are available; 2) accurate geological information is of critical importance when data density is low

and should be incorporated for geostatistical inversions; 3) the estimated and tomograms from the geostatistical model with

geological information are capable in providing robust predictions of both groundwater flow and solute transport. Overall, this

synthetic study provides a general framework for large-scale heterogeneity characterization using HT through the interpretation

of municipal well records, and provides guidance for applying this concept to field problems.
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Abstract 21 

This study proposes the utilization of municipal well records as an alternative dataset for 22 

large-scale heterogeneity characterization of hydraulic conductivity (K) and specific storage (Ss) 23 

using hydraulic tomography (HT). To investigate the performance of HT and the feasibility of 24 

utilizing municipal well records, a three-dimensional aquifer/aquitard system is constructed and 25 

synthetic groundwater flow and solute transport experiments are conducted to generate data for 26 

inverse modeling and validation of results. In particular, we simultaneously calibrate four 27 

groundwater models with varying parameterization complexity using five datasets consisting of 28 

different time durations and periods. Calibration and validation results are qualitatively and 29 

quantitatively assessed to evaluate the performance of investigated models. The estimated K and 30 

Ss tomograms from different model cases are also validated through the simulation of 31 

independently conducted pumping tests and conservative solute transport. Our study reveals that: 32 

1) the HT analysis of municipal well records is feasible and yields reliable heterogeneous K and 33 

Ss distributions where drawdown records are available; 2) accurate geological information is of 34 

critical importance when data density is low and should be incorporated for geostatistical 35 

inversions; 3) the estimated K and Ss tomograms from the geostatistical model with geological 36 

information are capable in providing robust predictions of both groundwater flow and solute 37 

transport. Overall, this synthetic study provides a general framework for large-scale 38 

heterogeneity characterization using HT through the interpretation of municipal well records, and 39 

provides guidance for applying this concept to field problems. 40 

  41 



Confidential manuscript submitted to Water Resources Research 

1. Introduction 42 

Planning for the optimized use and management of groundwater resources requires the 43 

accurate characterization of subsurface heterogeneity in hydraulic conductivity (K) and specific 44 

storage (Ss), which are two importantt hydraulic properties for the construction of groundwater 45 

flow models, and in particular, for solute transport simulations (Ni et al., 2009; Illman et al., 46 

2012). In the past few decades, numerous efforts have been dedicated to map the spatial 47 

distribution of K and Ss. Typically, geostatistical interpretation of small-scale K estimates 48 

obtained from core samples, slug tests, flowmeter surveys, and single-hole pumping/injection 49 

tests is applied to map its spatial distribution (e.g., Salamon et al., 2007; Sudicky et al., 2010; 50 

Alexander et al., 2011), while Ss is commonly treated to be homogeneous as its variability is 51 

considered to be much less than K in natural geological formations (Gelhar, 1993). Using this 52 

approach, a sufficient number of small-scale estimates is required to fully capture the 53 

heterogeneity patterns of hydraulic properties (Rehfeldt et al., 1992). On the other hand, 54 

Kuhlman et al. (2008) demonstrated that the interpolated K and Ss fields strongly relied on the 55 

estimated small-scale values, which may be biased in representing realistic conditions due to the 56 

restricted assumptions implied in analytical solutions (e.g., Theis (1935)) for these estimates.  57 

An alternative approach to the geostatistical interpretation of small-scale values, hydraulic 58 

tomography (HT) was proposed and developed (e.g., Gottlieb and Dietrich, 1995; Yeh and Liu, 59 

2000) for subsurface heterogeneity characterization. Fundamentally, the HT approach involves 60 

the inverse modeling of groundwater response data collected at various locations during a series 61 

of spatially varying pumping/injection tests. Yeh et al. (2008) concluded that the data collected 62 

in such tomographic surveys provide many constraints for model calibration, yielding more 63 
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accurate estimations of K and Ss fields with less uncertainty in comparison to traditional 64 

characterization methods. 65 

The robust performance of HT in revealing K and Ss heterogeneity has been demonstrated 66 

through numerous numerical (e.g., Yeh and Liu, 2000; Bohling et al., 2002; Zhu and Yeh, 2005), 67 

laboratory (e.g., Liu et al., 2002; Illman et al., 2007, 2010, 2015; Berg and Illman, 2011a; Zhao 68 

et al., 2015; Luo et al., 2017) and dedicated field experiments (e.g., Straface et al., 2007; Bohling 69 

et al., 2007; Illman et al., 2009; Berg and Illman, 2011b; Zha et al., 2016; Zhao and Illman, 70 

2017). Nevertheless, most of these studies were performed at small-scale (limited to tens of 71 

square meters) sites, while only a  few studies have been carried out for large-scale (several 72 

square kilometers) site characterization using the approach of HT (e.g., Illman et al., 2009; Zha 73 

et al., 2016, 2019). In small-scale studies, each single-well pumping/injection test is able to stress 74 

the entire aquifer and generate a head response throughout the domain which can be monitored 75 

with a well-designed monitoring network. However, designing and conducting HT surveys for 76 

large-scale heterogeneity characterization is typically expensive, time-consuming, and 77 

sometimes impractical. Illman et al. (2009) applied the approach of transient HT to characterize a 78 

kilometer-scale fractured granite site at Mizunami, Japan, using data from two large-scale cross-79 

hole pumping tests. The estimated K and Ss tomograms qualitatively agreed well with observed 80 

drawdown records, available fault information, and coseismic groundwater responses during 81 

several large earthquakes (Niwa et al., 2012). However, they pointed out that the estimated fault 82 

and fracture zones might still involve great uncertainty due to the limited hydraulic data for 83 

inverse modeling. Through the inclusion of datasets from two additional pumping tests 84 

conducted at the same site, Zha et al. (2016) yielded K and Ss tomograms with improved 85 

delineation of fault zones in terms of their locations and patterns. However, they indicated that 86 
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with limited number of wells, the collected hydraulic data from four large-scale pumping tests 87 

were still insufficient to map the detailed distribution of fractures and faults.  88 

Instead of the traditional data collection strategy used for HT surveys, alternative datasets 89 

have been proposed and utilized for large-scale heterogeneity characterization using HT (e.g., 90 

Kuhlman et al., 2008; Yeh et al., 2009; Wang et al., 2017; Zha et al., 2019). For instance, 91 

Kuhlman et al. (2008) applied the HT approach to characterize subsurface heterogeneity (T and S) 92 

at the basin scale using head response data collected from multiple simultaneous pumping wells. 93 

Through cycling the operation of different sets of pumping wells, the regional aquifer is 94 

repeatedly stressed to yield groundwater responses that cover most of the simulation domain. 95 

They concluded that the head data collected from potentially disparate aquifer tests could be 96 

jointly interpreted to estimate basin-wide aquifer properties using HT. It was suggested that this 97 

characterization approach could be applied to municipal or pump-and-treat wellfields with 98 

existing monitoring networks. However, due to the operational requirements of municipal well 99 

fields, it is unlikely to be able to cease pumping/injection to conduct dedicated pumping tests for 100 

aquifer characterization, thus making the application of typical HT methodologies infeasible. 101 

Yeh et al. (2008) provided an opinion of using natural stimuli (e.g., river-state variations, 102 

lightning, earthquake, barometric variations, storm events, etc.) as sources of excitations for 103 

basin-scale subsurface characterization. Unlike traditional single-well or advanced multiple-well 104 

(Kuhlman et al., 2008) pumping tests, natural stimuli can easily stress the aquifer to yield 105 

groundwater responses over the entire basin. They pointed out that groundwater variations at 106 

different scales induced by natural stimuli with frequent and spatially varying occurrence is 107 

analogous to that of HT surveys, and the monitored groundwater responses along with the 108 

characterized corresponding natural stimuli can be interpreted for hydraulic properties estimation. 109 
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Following this thought, Yeh et al. (2009) proposed  river stage tomography as a new approach 110 

for basin-scale subsurface heterogeneity characterization. Specifically, the migration of river 111 

stage perturbation along the river was treated as a natural stimuli that induces groundwater 112 

fluctuations over the entire basin. The temporal and spatial variations of river stage as well as the 113 

corresponding groundwater response data were then incorporated for inverse modeling to 114 

estimate the spatial distribution of hydraulic properties (T and S) of the basin. The efficiency of 115 

river stage tomography in revealing basin-scale hydraulic heterogeneity was later evaluated 116 

through a field experiment conducted in Zhoushui River alluvial fan, Taiwan (Wang et al., 2017). 117 

Yeh et al. (2008) contended that natural stimuli-based HT surveys should be a future direction 118 

for large-scale subsurface characterization; however, significant challenges still exist in 119 

accurately characterizing the locations and strengths of natural stimuli. 120 

To avoid the uncertainty associated with natural stimuli, existing hydraulic head records in a 121 

wellfield with well-characterized artificial stimuli (pumping/injection operations with known 122 

locations and rates) can be utilized as alternative datasets for subsurface heterogeneity 123 

characterization, as suggested by Yeh and Lee (2007). Such records are typically abundant and 124 

can be readily obtained from contaminant monitoring or municipal water-supply wellfields, but 125 

they are rarely adopted for mapping the heterogeneity of hydraulic properties. Most recently, Zha 126 

et al. (2019) exploited the pump-and-treat system for subsurface heterogeneity characterization at 127 

the AFP44 site located in Tucson, Arizona, US. In particular, hydraulic head changes during four 128 

distinct events (e.g., system shutdown and resumption, changes in pumping/injection operations, 129 

and significant variations of flow rates) were extracted from the existing head records and 130 

utilized for inverse modeling. Here, it should be noted that the characteristics of well 131 

hydrographs might be quite different from one wellfield to another, depending on the associated 132 
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pumping/injection regime. Without presenting apparent changes of hydraulic head with distinct 133 

events, the well hydrographs in a municipal wellfield appear to be highly variable due to the 134 

continuous operation of water-supply wells with variable flow rates. Sun et al. (2013) proposed a 135 

temporal sampling strategy for HT analysis using dedicated pumping test data; however, 136 

questions remain as to which data points should be extracted from the long-term head records 137 

and utilized for subsurface heterogeneity characterization. On the other hand, the extracted 138 

hydraulic head records within selected periods are affected by prior pumping/injection operations 139 

at the same site, resulting in significant difficulties in interpretation of head records due to 140 

unknown initial condition for groundwater modeling. 141 

In this study, a series of numerical experiments that mimic the hydraulic conditions at the 142 

Mannheim East site, a municipal water-supply wellfield located in the southwest area of the city 143 

of Kitchener, Ontario, Canada, was performed. In particular, a synthetic three-dimensional multi-144 

aquifer/aquitard system was developed and characterized using different modeling approaches 145 

with different head records for groundwater flow and solute transport predictions. Fundamentally, 146 

such a synthetic study with minimized sources of error (e.g., model identification and head 147 

measurement) yields a general framework for subsurface heterogeneity characterization using the 148 

existing long-term pumping/injection and water-level records.  149 

The main objectives of this synthetic study were to: 1) explore the feasibility of utilizing 150 

municipal well data for subsurface heterogeneity characterization using HT, 2) evaluate the 151 

performance of three different modeling approaches (homogeneous, geological, and 152 

geostatistical models) for HT analyses with well data from a municipal wellfield, and 3) 153 

investigate the effect of data selection for inverse modeling. The computed K and Ss tomograms 154 



Confidential manuscript submitted to Water Resources Research 

from the different models were validated through the simulation of nonreactive tracer migration 155 

through the municipal wellfield. 156 

2. Experimental Setup 157 

The Mannheim East wellfield is located within the core area of the Waterloo Moraine, 158 

which is classified as a kame deposit with three main aquifers separated by two glacial tills 159 

(Karrow, 1993). To mimic the multi-aquifer/aquitard system of the study site, a layer-cake 160 

geological model was constructed for this synthetic study, as shown in Figures 1a and 1b. The 161 

size of the model was set to be 5000 m, 5000 m, and 200 m in X, Y, and Z directions, 162 

respectively. In total, seven geological layers were identified beneath the study site with AT and 163 

AF representing aquitard and aquifer, respectively. These layers were identified following the 164 

conceptual hydrogeological model of the Waterloo Moraine constructed by Bajc and Shirota 165 

(2007), whereas some layers with thin thicknesses were merged and irregular layer boundaries 166 

was not considered. In each geological layer, random K and Ss fields were generated by assuming 167 

the Gaussian distributions of lnK and lnSs fields with known information of their means, 168 

variances, and correlation lengths using the spectral approach (Robin et al., 1993). The mean 169 

values of lnK and lnSs were obtained based on the predominant materials in each geological layer, 170 

while the variances and correlation lengths were estimated according to the statistical properties 171 

of spatial K and Ss distributions in natural geological formations. The generated nonstationary 172 

“true” K and Ss fields for the synthetic study are illustrated as Figures 4d and 5d, respectively, 173 

while the statistical details of hydraulic parameters are summarized in Table S1 of the 174 

Supplementary Information section. To better evaluate the results, the entire simulation domain 175 

was subdivided into three zones (ZONE 1, ZONE 2, and ZONE 3, as shown in Figures 1a and 1b) 176 

based on the density of well screens. 177 
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 178 

Figure 1: The synthetic layer-cake geological model domain along with the distribution of 179 

pumping and monitoring wells. a) and b) illustrate the plan-view and cross-section of the 180 

simulation domain, respectively; c) shows spatial distribution of assigned wells with IDs. 181 

To mimic the hydraulic condition in a municipal water-supply wellfield, the same well 182 

configuration as the Mannheim East wellfield was applied for the synthetic study. Within the 183 

wellfield, a subdivide well site with Aquifer Storage and Recovery (ASR) system was designed 184 

to inject and store treated surface water during low water demand periods and extract the stored 185 

water during high demand periods. In total, 13 pumping/injection municipal wells screened in 186 

the water-supply aquifer (AF2) and 28 water-level monitoring wells screened at different layers 187 

were included in the model. The spatial distribution of these wells and their screens are 188 
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illustrated in Figure 1. Other than the existing wells, five additional water-supply wells (AWSWs 189 

1-5) were included for the purpose of model validation using independent pumping test data. 190 

The synthetic model was discretized into 33,072 triangular prism elements with 18,050 191 

nodes, as shown in Figure S1 of the Supplementary Information section. The mesh was refined 192 

around wells, but became coarser when moving towards boundaries. The four lateral boundaries 193 

of the model were set as constant head boundaries of 340 m, while the top and bottom 194 

boundaries were set as no-flow. Transient groundwater flow was then considered for the 195 

generation of synthetic head data, and the governing equation can be expressed as: 196 

𝛁 ∙ [𝐾(𝐱)𝛁ℎ] + 𝑄(𝐱𝑝) = 𝑆𝑠(𝐱)
𝜕ℎ

𝜕𝑡
                    (1) 

subject to initial and boundary conditions: 197 

ℎ|𝑡=0 = ℎ0,  ℎ|𝛤1
= ℎ1,  𝑎𝑛𝑑 [𝐾(𝐱)𝛻ℎ] ∙ 𝐧|𝛤𝑁

= 𝑞                    (2) 

where, in Eq. (1), 𝛁  is the gradient operator, 𝐾(𝐱)  is hydraulic conductivity (L T
-1

), ℎ  is 198 

hydraulic head (L), 𝑄(𝐱𝑝) is the rate of pumping per unit volume (T
-1

) at location 𝐱𝑝, and 𝑆𝑠(𝐱) 199 

is specific storage (L
-1

). In Eq. (2), ℎ0 represents the initial hydraulic head, ℎ1 is a constant head 200 

(L) at boundary 𝛤1, 𝑞 is the specific discharge (L T
-1

) at the Neumann boundary 𝛤𝑁, and 𝐧 is a 201 

unit vector normal to 𝛤2. 202 

In this study, the transient flow equation was solved using the forward simulation code 203 

HydroGeoSphere (HGS) (Aquanty, 2019) to generate synthetic head data for analyses. In 204 

particular, variable pumping/injection records in all 13 water-supply wells during the years of 205 

2012 and 2013 (Figure 2) were extracted from Water Resources Analysis System (WRAS+) 206 

(Regional Municipality of Waterloo, 2014) database and included in the forward model. 207 
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Simulated head values were report at all 28 monitoring well locations during the year of 2013 (as 208 

shown in Figure S2 of the Supplementary Information section) for the analyses presented in this 209 

study. The purpose of including pumping/injection information prior to the observation data is to 210 

mimic the pumping history of the system prior to the calibration period, which leads to uncertain 211 

initial conditions at the beginning of observation data. In addition to municipal well data, 212 

dedicated pumping test data from additional water-supply wells (AWSWs 1-5) were generated as 213 

independent pumping test data and utilized for model validation. In particular, a constant 214 

pumping rate of 8,000 m
3
/day was assigned to each additional well, and drawdown data in all 28 215 

monitoring wells were simulated (as shown in Figure S3 of the Supplementary Information 216 

section). The utilization of these independent pumping test data is to assess the ability of the 217 

obtained hydraulic parameter (K and Ss) fields in guiding the construction of new water-supply 218 

wells at the study site. 219 



Confidential manuscript submitted to Water Resources Research 

 220 

Figure 2: Extraction (positive) and injection (negative) pumping rate records at all 13 municipal 221 

wells during the years of 2012 and 2013 from the WRAS+ database. 222 

3. Data Utilized for Inverse Modeling 223 

Instead of including all simulated head data (0.1-day interval) for analysis, daily observation 224 

data at the beginning of each day (12:00 am) are extracted and utilized for model calibration (0 – 225 

120 days) and validation (180 – 365 days). To investigate the effect of data selection on inverse 226 

modeling, five datasets with different durations and periods are selected for model calibration in 227 

the synthetic study, as shown in Figure 3, with their properties summarized in Table S2. In 228 

particular, Dataset A includes daily observation data in all 28 monitoring wells during the first 30 229 

days, while Datasets B and C extend the simulation durations to 60 and 120 days, respectively. 230 

Daily observation data during the second 30 days are extracted as Dataset D, which shares the 231 

same simulation duration as Dataset A, but with a relatively small magnitude of water-level 232 
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variations. Dataset E has the same simulation duration as Dataset C (120 days); however, instead 233 

of incorporating all observation points, only the periods with large water-level variations are 234 

selected and utilized for model calibration. 235 

As mentioned previously, the interpretation of municipal well data still suffers an issue of 236 

uncertain initial conditions for groundwater modeling due to the continuous operation of 237 

municipal water-supply wells. The effect of uncertain initial condition on groundwater modeling 238 

has been investigated by Yu et al. (2019). Based on their results, the proposed spin-up method is 239 

adopted here to minimize the effect of uncertain initial conditions. In particular, 240 

pumping/injection rate records prior to the observation data are utilized for model spin-up and 241 

incorporated for model calibration. The model spin-up time is determined by incorporating 242 

different lengths of prior pumping/injection records for forward simulations with known 243 

hydraulic parameter (K and Ss) fields. The simulated head variations at monitoring locations are 244 

then compared quantitatively to the observed ones (Figure S1), with the comparison results 245 

illustrated in Figure S4 of the Supplementary Information section. Results reveal that the 246 

discrepancy between simulated and observed head data decreases significantly as the spin-up 247 

period increases and stabilizes in magnitude after incorporating pumping/injection records 180 248 

days prior to the observation data. As a result, pumping/injection rate records for 180 days prior 249 

to the observation data are extracted and incorporated for model calibration in this synthetic 250 

study.  251 
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 252 

Figure 3: Selected datasets for model calibration. Dataset A (0 – 30 days), Dataset B (0 – 60 253 

days), Dataset C (0 – 120 days), Dataset D (30 – 60 days), Dataset E (0 – 120 days with selected 254 

large drawdown variation periods). 255 

4. Groundwater Flow Modeling Approaches 256 

4.1 Case 1: Effective Parameter Model 257 

The synthetic multi-aquifer/aquitard system is first characterized as a homogeneous, isotropic 258 

medium to estimate the effective K and Ss values by coupling the groundwater flow model HGS 259 

(Aquanty, 2019) with the parameter estimation code PEST (Doherty, 2005), and is referred to as 260 

the ‘effective parameter’ model. The effective parameter model provides zero-resolution on 261 

subsurface heterogeneity; however, it may still able to describe the overall behavior of 262 

groundwater flow in the system. Furthermore, the estimated effective K and Ss values can be 263 

used as the initial estimate of hydraulic parameters to guide the calibration of more sophisticated 264 

groundwater flow models. For each dataset, an optimal set of K and Ss is estimated by 265 
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simultaneously matching all data points. The initial values of K and Ss input into PEST are 0.99 266 

m/day and 1.88 × 10
-4

 /m, respectively, which are the calculated geometric means of the entire 267 

“true” K and Ss fields. 268 

4.2 Case 2: Geological Model 269 

The response from the synthetic multi-aquifer/aquitard system is then used to calibrate the 270 

geological model, which is normally adopted for groundwater flow modeling at large scales (e.g., 271 

regional or basin scales). In this approach, each geological layer is characterized as a 272 

homogeneous, isotropic medium, and a uniform set of K and Ss is estimated and assigned to 273 

describe its hydraulic properties. The effect of the accuracy of constructed geological models on 274 

inverse modeling has been previously investigated through sandbox experiments (Zhao et al., 275 

2016; Luo et al., 2017). To avoid the uncertainty associated with model identification, it is 276 

assumed that the hydrostratigraphic contacts are perfectly known for the geological model. In a 277 

similar fashion to the effective model, the geological model is calibrated using PEST coupled 278 

with HGS by simultaneously matching all data points. For each geological layer, the geometric 279 

means of K and Ss from the “true” fields are utilized as initial guesses of hydraulic parameters for 280 

model calibration. Additional cases were conducted by using the calibrated effective model as 281 

initial K and Ss guesses for geological model calibration; however, unrealistic values of hydraulic 282 

parameters were obtained in layers where no hydraulic head data was available, a phenomenon 283 

note in previous studies (Berg and Illman, 2011b).. As a result, the heterogeneous K and Ss fields 284 

based on the stratigraphic information are applied as initial guesses. In total, 14 parameters are 285 

estimated for subsurface heterogeneity characterization using the geological model. 286 

4.3 Case 3: Geostatistical Models 287 
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As a third case, the head response to the synthetic municipal well data are interpreted with 288 

highly parameterized geostatistical models for subsurface heterogeneity characterization. All 289 

geostatistical inversions are conducted using the Simultaneous Successive Linear Estimator 290 

(SimSLE), developed by Xiang et al. (2009) and modified for this study to account for variable 291 

pumping/injection records. In this study, geostatistical inversion using SimSLE assumes a 292 

transient groundwater flow field, and the natural logarithm of K and Ss are both treated as multi-293 

Gaussian, second-order stationary, stochastic processes. Other than estimating the spatial 294 

distributions of hydraulic parameters (K and Ss tomograms), SimSLE also provides the variance 295 

maps of lnK and lnSs to describe the uncertainty of estimated values, with large variance 296 

meaning high uncertainty in the estimated parameters and vice versa. 297 

Based on the differences in initial K and Ss fields, two geostatistical inversion cases are 298 

investigated. For Case 3a, homogeneous initial K and Ss fields are used for model calibration, 299 

representing the scenario of calibrating hydraulic data only. In this case, the K and Ss values 300 

obtained from the effective parameter model (Case 1) are utilized as initial guesses and assigned 301 

to the entire domain. For Case 3b, geological information is incorporated for model calibration. 302 

Geostatistical inversions in this case start from heterogeneous initial K and Ss fields which are the 303 

same as those utilized for geological model calibration. For both cases, the variances of lnK and 304 

lnSs (
2

lnK, 
2

lnSs) are initially set to be 4.0 and 2.0, respectively, while the correlation scales are 305 

set to be x = 400 m, y = 400 m, and z = 5 m for both K and Ss. Due to the fact that the 306 

statistical properties of heterogeneous K and Ss fields are commonly unknown for field studies, 307 

the input properties for geostatistical inversions are set to be different from those utilized for 308 

“true” K and Ss fields generation (as shown in Table S1 of the Supplementary Information 309 

section). 310 



Confidential manuscript submitted to Water Resources Research 

5. Results and Discussion 311 

In this study, five datasets (Datasets A-E) are interpreted with four different models (Cases 1, 312 

2, 3a and 3b). Results from all investigated models are summarized and examined. In particular, 313 

K and Ss values estimated from different models are first compared to the “true” fields to 314 

illustrate the accuracy of these estimates. Then, calibration and validation results are assessed 315 

qualitatively and quantitatively by plotting scatterplots of simulated versus observed head 316 

variations and evaluating model errors, respectively. The evaluation of model errors is performed 317 

by computing the mean absolute error (L1), mean square error (L2), and coefficient of 318 

determination (R
2
) between simulated and observed head values using: 319 

𝐿1 =
1

𝑛
∑|𝑥𝑖 − 𝑥̂𝑖|

𝑛

𝑖=1

                    (3) 

𝐿2 =
1

𝑛
∑(𝑥𝑖 − 𝑥̂𝑖)2

𝑛

𝑖=1

                    (4) 

𝑅2 = [

1
𝑛

∑ (𝑥𝑖 − 𝜇𝑥)(𝑥̂𝑖 − 𝜇𝑥̂)𝑛
𝑖=1

√1
𝑛

∑ (𝑥𝑖 − 𝜇𝑥)2 1
𝑛

∑ (𝑥̂𝑖 − 𝜇𝑥̂)2𝑛
𝑖=1

𝑛
𝑖=1

]2                    (5) 

where n is the total number of head data, 𝑥𝑖 and 𝑥̂𝑖 represent ith simulated and observed head 320 

data, respectively, 𝜇𝑥 and 𝜇𝑥̂ represent averaged simulated and observed head data, respectively. 321 

These values were calculated to quantitatively analyze the discrepancy and correspondence 322 

between the simulated and observed head data. 323 

In the following sections, calibration and validation results associated with Dataset A are 324 

first presented to evaluate the performance of different models in revealing large-scale 325 
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heterogeneities and predicting groundwater flow, while the summarized results associated with 326 

other datasets (Datasets B-E) are provided in the Supplementary Information section. Then, 327 

statistical summary (L1, L2, and R
2
) of the validation results obtained from all investigated 328 

models is presented to show the effect of data selection on inverse modeling. 329 

5.1 Model Calibration 330 

Through the interpretation of Dataset A, the effective parameter model (Case 1) yields K and 331 

Ss estimates as well as their 95% confidence intervals of K = 9.87 ± 0.14 m/day and Ss = 2.56 × 332 

10
-4

 ± 2.5 × 10
-5

 /m. Compared to the calculated geometric means from the “true” fields (0.99 333 

m/day and 1.88 × 10
-4

 /m for K and Ss, respectively), the effective K and Ss obtained from the 334 

municipal well data are more representative to the effective hydraulic parameters of the layers 335 

where most monitoring wells are screened (AF1, AT2, and AF2). This implies that more 336 

observation ports in upper and lower geological layers are required to obtain unbiased effective 337 

hydraulic parameters for the entire multi-aquifer/aquitard system. 338 

Figure 4 illustrates the obtained K tomograms from the geological (Case 2) and geostatistical 339 

models (Cases 3a and 3b) through the interpretation of Dataset A. The “true” K field is included 340 

on the bottom right as a reference for comparison. Figure5 illustrates the same, but for the 341 

estimated Ss tomograms.  342 
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 343 

Figure 4: Estimated K tomograms from three model cases through the interpretation of Dataset 344 

A as well as the “true” K field. a) Case 2: geological model, b) Case 3a: geostatistical model 345 

without geological information, c) Case 3b: geostatistical model with geological information, 346 

and d) “true” K field. In each contour map, small black circles represent the location of 347 

monitoring well screens. 348 
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 349 

Figure 5: Estimated Ss tomograms from three model cases through the interpretation of Dataset 350 

A as well as the “true” Ss field. a) Case 2: geological model, b) Case 3a: geostatistical model 351 

without geological information, c) Case 3b: geostatistical model with geological information, 352 

and d) “true” Ss field. In each contour map, small black circles represent the location of 353 

monitoring well screens. 354 

As shown in Figures 4a and 5a, the estimated K and Ss values from the geological model 355 

(Case 2) are found to roughly describe the average hydraulic properties of each geological layer 356 

in comparison to the “true” field (Figures 4d and 5d for K and Ss, respectively). Here, it should 357 

be noted that geological models in this synthetic study are calibrated with known stratigraphic 358 
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information and well estimated initial K and Ss values (the geometric means of random K and Ss 359 

fields in each geological layer). However, typically there is significant uncertainty in the 360 

geological model constructed with sparse boreholes and utilized as prior information. To further 361 

evaluate these estimates, natural logarithm of these K and Ss estimates as well as their 95% 362 

confidence intervals are plotted as Figure S13 of the Supplementary Information section. Results 363 

reveal that the narrowest confidence intervals of K estimates are obtained in the water-supply 364 

aquifer (AF2), where all pumping/injection and monitoring wells are screened, suggesting the 365 

high confidence of the K estimate of this layer. In contrast, when we examine the upper and 366 

lower layers, the confidence of K estimates decreases resulting in larger confidence intervals due 367 

to fact that fewer observation data are available in these layers for estimating reliable K values. 368 

This is in line with the conclusion provided by Luo et al. (2017) that when using a zonation 369 

model for subsurface characterization, hydraulic head data in each identified zones are required 370 

to yield reliable estimates of hydraulic parameters of these zones.  371 

In comparison to the K estimates, the estimated Ss values are found to have larger confidence 372 

intervals, suggesting higher uncertainty associated with these Ss estimates. This may be attributed 373 

to the fact that daily observation data are extracted and interpreted for hydraulic parameters 374 

estimation in this study. The utilization of such data points ignores early-time water-level 375 

variations right after the change of pumping/injection rates which are of critical importance for 376 

obtaining reliable Ss estimates (Sun et al., 2013). The interpretation of datasets in a denser 377 

fashion (e.g., hourly observation points) may improve the estimation of Ss. However, due to the 378 

computationally intensive nature of geostatistical inversions, such a scenario of including a dense 379 

dataset was not included in this study. 380 
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The obtained K and Ss tomograms from the geostatistical models are illustrated as Figures 4b 381 

– 4c and Figures 5b – 5c, respectively. As shown in Figure 4b, the geostatistical inversion of 382 

hydraulic head data only (Case 3a) is able to reveal heterogeneity details, where wells are 383 

concentrated with sufficient head data. However, the estimated K tomogram is found with great 384 

loss of heterogeneity details in comparison to the “true” K field. Although some major zones are 385 

delineated, the overall smooth patterns fail to capture the precise shapes of stratigraphic features. 386 

Different from the K tomogram, the Ss tomogram estimated from Case 3a does not show any 387 

distinct heterogeneity details, as shown in Figure 5b. This result again implies that the selected 388 

head data for model calibration are restrictive for Ss estimations. After incorporating the 389 

geological information for geostatistical inversion (Case 3b), significant improvement in 390 

revealing heterogeneity details is observed for both K and Ss tomograms, as shown in Figures 4c 391 

and 5c, respectively. In particular, greater detail in K heterogeneity is revealed within the water-392 

supply aquifer (AF2), resulting the spatial distribution of K in this layer comparable to that in the 393 

“true” field. For upper and lower layers, the loss of heterogeneity details is still observed due to 394 

the lack of hydraulic information in these layers. We believe that the estimated K tomogram can 395 

further be enhanced if more monitoring wells are available for head response records at different 396 

layers. The improvement in the Ss tomogram is not as distinct as that in the K tomogram; 397 

however, slight patterns of Ss heterogeneities are still revealed after the incorporation of 398 

geological information, as shown in Figure 5c. 399 

The estimated K and Ss values from geostatistical models (Case 3a and 3b) are then evaluated 400 

by analyzing the uncertainty associated with these estimates and comparing them to the “true” 401 

values. For uncertainty analysis, the corresponding lnK and lnSs variance maps are plotted (as 402 

shown in Figure S18 of the Supplementary Information section), with larger variances indicate 403 
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higher uncertainty of the estimates. For both cases, relatively small lnK variances are obtained in 404 

the central area of the simulation domain, where wells are concentrated for hydraulic head data, 405 

while variances become larger when moving away from the wells. In general, the lnSs variances 406 

are computed to be larger than those of lnK, suggesting the higher uncertainty of these Ss 407 

estimates in comparison to the K estimates. This may again attribute to the factor of the temporal 408 

resolution of observation data for model calibration, as discussed above. The estimated K and Ss 409 

values are then compared to the “true” values by plotting the scatterplots of corresponding 410 

estimated versus “true” lnK and lnSs values (as shown in Figure S23 of the Supplementary 411 

Information section). Comparison results reveal that the geostatistical inversion of hydraulic 412 

head only (Case 3a) is still able to yield relatively reliable K and Ss estimates in the area with 413 

sufficient hydraulic head data (ZONE 1), while large discrepancies of these estimates are 414 

observed in ZONEs 2 and 3. After incorporating the stratigraphic information, significant 415 

improvements are observed for both K and Ss estimates in all three zones. These results indicate 416 

that the municipal well data can be used to characterize subsurface heterogeneity with HT 417 

methods. However, since such hydraulic data are typically concentrated in the pumping area, 418 

accurate stratigraphy information is of critical importance for geostatistical inversions to 419 

accurately reveal heterogeneity patterns and yield reliable estimates of hydraulic parameters. 420 

Earlier studies by Zhao et al. (2016) and Luo et al. (2017) have shown that the inclusion of 421 

inaccurate stratigraphy information will have deleterious impacts on parameter estimates. 422 

The performance of four different models are then assessed qualitatively and quantitatively 423 

by plotting the scatterplots of calibration results, as shown in Figure 6.  In each scatterplot, data 424 

points corresponding to three subdivided zones are distinguished with different colors. A linear 425 

model that fits all data points is provided along with the corresponding coefficient of 426 
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determination (R
2
), as well as calculated L1 and L2 norms. Examination of Figure 6 reveals that 427 

the calibration results in terms of head data matching improve when a larger number of estimated 428 

parameters are accounted for inverse modeling (from Case 1 to Cases 3). This makes sense since 429 

the highly parameterized geostatistical model allows for the adjustment of K and Ss estimates in 430 

each element to fit the observation data. After incorporating the geological information, the 431 

geostatistical model (Case 3b) yields the best fit of simulated and observed head variations 432 

(Figure 6d). 433 

 434 

Figure 6: Calibration scatterplots (Dataset A) of simulated versus “observed” drawdowns for 435 

four model cases. a) Case 1: effective parameter model, b) Case 2: geological model, c) Case 3a: 436 
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geostatistical model without geological information, d) Case 3b: geostatistical model with 437 

geological information. 438 

5.2 Model Validation 439 

Model validation in this study is performed in two scenarios. For Scenario 1, the municipal 440 

well data during the second half year of 2013 are utilized for model validation. Specifically, the 441 

obtained K and Ss tomograms are applied to continuously predict head variations using the same 442 

well configuration (water-supply and monitoring wells) as that for model calibration. For 443 

Scenario 2, the independent pumping test data obtained from additional water-supply wells 444 

(AWSWs 1-5) that not used in the calibration effort are utilized for model validation. The 445 

validation scatterplots of different model cases associated with Dataset A are illustrated in 446 

Figures 7 and 8, for Scenarios 1 and 2, respectively. 447 

Examination of Figure 7 reveals that when the municipal well data are utilized for model 448 

validation (Scenario 1), the performances of different model cases share the same order as the 449 

calibration results. In particular, Case 3d (Figure 7d) performs the best in continuously predicting 450 

drawdown variations for the entire domain, followed by Case 3a (Figure 7c), while Case 1 yields 451 

the worst prediction results in terms of bias and scatter. Case 2 is found able to adequately 452 

predict drawdown variations at monitoring locations in all subdivided zones; however, the lack 453 

information of intralayer heterogeneity resulted in relatively large scatter between the simulated 454 

and observed head variations. It is of interest to note the K and Ss tomograms obtained from the 455 

geostatistical model without geological information (Case 3a) reveal greater loss of 456 

heterogeneity details (as shown in Figures 4b and 5b for K and Ss, respectively); however, they 457 

could still be applied to yield adequate predictions of head variations in all monitoring wells. 458 

This is because the data utilized for validation in Scenario 1 share the information of well 459 
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configuration as the datasets utilized for model calibration, thus making these validation results 460 

biased for the assessment of the performance of different models. 461 

 462 

Figure 7: Validation scatterplots (Dataset A) of simulated versus “observed” municipal well data 463 

(Scenario 1) for four model cases. a) Case 1: effective parameter model, b) Case 2: geological 464 

model, c) Case 3a: geostatistical model without geological information, d) Case 3b: geostatistical 465 

model with geological information. 466 
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 467 

Figure 8: Validation scatterplots (Dataset A) of simulated versus “observed” independent 468 

pumping test data (Scenario 2) for four model cases. a) Case 1: effective parameter model, b) 469 

Case 2: geological model, c) Case 3a: geostatistical model without geological information, d) 470 

Case 3b: geostatistical model with geological information. 471 

To ensure a more credible validation of the different models, independent pumping test data 472 

that was not used in the calibration effort are utilized for model validation (Scenario 2), as 473 

suggested by Illman et al. (2010). As shown in Figure 8, Case 1 (Figure 12a) still performs the 474 

worst in predicting drawdowns from the independent pumping tests. However, it is surprising to 475 

find that Case 2 (Figure 8b) provides much better prediction results in comparison to Case 3a 476 

(Figure 8c), especially for monitoring wells screened in ZONEs 2 and 3. The comparison result 477 
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reveals that the stratigraphic information becomes increasingly important for subsurface 478 

heterogeneity characterization when fewer hydraulic head data are available for inverse 479 

modeling, which is again in line with the conclusion provided by Luo et al. (2017). After 480 

incorporating geological information, Case 3b (Figure 8d) yields the best prediction results with 481 

the highest correlation and smallest discrepancy between simulated and observed drawdowns in 482 

comparison to other model cases. The validation results associated with Case 3b reveal that the K 483 

and Ss tomograms obtained from the geostatistical model with geological information cannot 484 

only be used to predict water-level variations in the existing municipal wells, but also guide the 485 

construction of new water-supply wells. 486 

The calibration and validation results presented above reveal that stratigraphic information is 487 

of critical importance for large-scale site characterization using the municipal well data. The 488 

calibrated geological model yields relatively adequate predictions of water-level variations 489 

induced by both the existing (Scenario 1) and additional (Scenario 2) water-supply wells, while 490 

remarkable improvements in prediction results are observed when accurate geological 491 

information was incorporated for geostatistical inversions. However, it should be noted that the 492 

stratigraphic information adopted here is extracted from the synthetic model with no error. 493 

Following the conclusion provided by Zhao et al. (2016) and Luo et al. (2017), close attention 494 

should be paid in constructing accurate geological model when using the actual municipal well 495 

data for site characterization. 496 

5.3 Effect of Data Selection on Inverse Modeling 497 

To investigate the effect of data selection on inverse modeling, the statistical properties (L1, 498 

L2, and R
2
) of the validation results from all investigated models are computed and plotted in 499 

Figure 9 with all values summarized in Table S3 of the Supplementary Information section. In 500 
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general, when different datasets are included for model calibration, the effective parameter 501 

model (Case 1) always performs the worst in predicting groundwater flow, while the 502 

geostatistical model with geological information (Case 3b) always performs the best. On the 503 

other hand, the performance of the geological model (Case 2) and the geostatistical model 504 

without geological information (Case 3a) vary from one dataset to another. 505 

 506 

Figure 9: Statistical Summary (L1, L2, and R
2
) of validation results for four model cases when 507 

different datasets were incorporated for model calibration. a) municipal well data (Scenario 1), b) 508 

independent pumping test data (Scenario 2). 509 

When more observation points with longer simulation durations are included for model 510 

calibration (from Dataset A to Dataset C), the estimated K and Ss tomograms from Case 2 show 511 

distinct improvement in continuously predicting municipal well data (Scenario 1, as shown in 512 

Figure 9a) in terms of computed L1, L2, and R
2
 values. Such improvement is not observed for the 513 

prediction of independent pumping test data (Scenario 2, as shown in Figure 9b); however, 514 
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slightly better prediction results are still obtained when using Dataset C for the geological model 515 

calibration. It is interesting to find that Case 3a behaves oppositely to Case 2, in which, worse 516 

validation results are obtained for Case 3a after increasing the simulation duration for model 517 

calibration. This may be attributed to the fact that with longer simulation durations, 518 

pumping/injection influence from the water-supply wells propagates to an area beyond the 519 

production area, resulting observation data in monitoring wells affected by the heterogeneity of 520 

K and Ss in a greater area without any hydraulic information. When interpreting municipal well 521 

data with long simulation durations, the calibration of geostatistical models using hydraulic head 522 

only (Case 3a) is likely solving ill-posed inverse problems, yielding inaccurate estimation of 523 

hydraulic parameters. Dataset D is selected to have the same simulation of Dataset A, but with 524 

much smaller magnitude of head variations. Results reveal that the validation results associated 525 

with Dataset D are distinctly worse in comparison to those associated with Dataset A for all 526 

model cases, implying that the periods with large water-level variations should be included when 527 

interpreting the municipal well data for site heterogeneity characterization. Dataset E shares the 528 

same simulation duration as Dataset C, but only the periods with large water-level variations are 529 

utilized for model calibration. In comparison to Dataset C, Dataset E yields slightly worse 530 

validation results for all model cases. This may be the case because the analysis presented in this 531 

study aims to estimate hydraulic parameters using long-term pumping/injection and water-level 532 

records. Instead of using the periods with large head variations only, continuous data points 533 

should be included to accurately describe the overall trends of water-level variations in 534 

monitoring wells. 535 

The results presented above reveal that the effects of data selection on inverse modeling are 536 

different for different modeling approaches. Through the comparison of the validation results 537 
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from all investigated models, the geostatistical model with geological information (Case 3b) is 538 

suggested to interpret continuous head data with large variations for large-scale heterogeneity 539 

characterization. However, new approaches need to be developed for big data synthesis and 540 

intelligent data selection for inverse modeling.  541 

6. Solute Transport Prediction 542 

One remaining question is whether the estimated K and Ss tomograms from the municipal 543 

well data can be applied to predict solute transport. To investigate this issue, additional model 544 

runs are performed by simulating solute transport using the estimated K and Ss tomograms. 545 

Results are then compared to the scenario simulated using the “true” K and Ss fields to evaluate 546 

the performances of these K and Ss estimates in predicting solute transport. For this investigation, 547 

the estimated K and Ss tomograms from four model cases through the interpretation of Dataset A 548 

are utilized. 549 

6.1 Solute Transport Simulation 550 

To simulate solute transport, a point source of the conservative solute chloride (Cl) was 551 

added into the synthetic system, located in the central area of layer AF1 with X, Y, and Z equal 552 

to 2,750 m, 2,750 m, and 175 m, respectively. The source was assigned with a constant Cl 553 

concentration of 1,000 mg/L and removed after 50 years of simulation. The dispersivities of the 554 

system were assumed to be 20 m, 5 m, and 0.02 m for longitudinal, transverse, and vertical 555 

transverse directions, respectively. The porosity was assigned to be 0.4 throughout the simulation 556 

domain. To mimic the migration of plume under real conditions, regional groundwater flow was 557 

accounted for in the solute transport simulation, in which groundwater was considered to flow 558 

from northwest to southeast with a hydraulic gradient of 0.0014. The influence of municipal 559 
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water-supply pumping was also accounted for by assigning a constant pumping rate in each 560 

water-supply well based on its corresponding rate records. A slightly modified form of 561 

conventional advection-dispersion equation was adopted in this study for solute transport 562 

simulation, following the work of Burnett and Frind (1987). Specifically, it accounts transverse 563 

dispersivities at both horizontal and vertical directions and can be expressed as:  564 

−𝛁 ∙ (𝐪𝐶 − 𝜃𝑠𝐃𝛁𝐶) ± 𝑄𝑐 = 𝜃𝑠

𝜕𝐶

𝜕𝑡
                  (6) 

𝐷𝑖𝑗 = [𝛼𝐿 − 𝛼𝑇]
𝑣𝑖𝑣𝑗

|𝐯|
+ 𝛼𝑇|𝐯|𝛿𝑖𝑗 + 𝐷0𝛿𝑖𝑗 ,          𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧          (7) 

subject to initial and boundary conditions: 565 

𝐶(𝐱, 𝑡)|𝑡=0 = 𝐶0, 

𝐶(𝐱, 𝑡)|𝛤𝐷
= 𝐶𝐷, [𝜃𝑠𝐃𝛁𝐶] ∙ 𝐧|𝜞𝑵

= 0, and [−𝐪𝐶 + 𝜃𝑠𝐃𝛁𝐶] ∙ 𝐧|𝛤𝐶
= 𝐪𝐶0     (8) 566 

where in Eq. (1), q = -K(x)𝝯h(x) is the flux (L T-1) and 𝜃𝑠 is the effective porosity (dimensionless). C 567 

is the solute concentration (M L
-3

), and 𝑄𝑐 is the rate at which solutes are injected (source) or 568 

extracted (sink) (M L
-3

 T
-1

). 𝐃 is the macrodispersion coefficient (L
2
 T

-1
) evaluated from velocity 569 

and dispersivities, as shown in Eq. (2). 𝛼𝐿 and 𝛼𝑇 are longitudinal and transverse dispersivity (L
2
 570 

L
-1

), respectively. 𝑣𝑖 and 𝑣𝑗 are velocities (L T
-1

) at different directions, and |𝐯| is the magnitude 571 

of the velocity. 𝐷0 is the effective molecular diffusion coefficient (L
2
 T

-1
), and 𝛿𝑖𝑗 is the identity 572 

tensor. In Eq. (3), 𝐶0  is the initial concentration in the entire system, 𝐶𝐷  is the specified 573 

concentration at the Dirichlet boundary (𝛤𝐷 ), no dispersive flux is applied at the Neumann 574 

boundary (𝛤𝑁), and 𝐪𝐶0 is the mass flux (M L
-2

 T
-1

) at the Cauchy boundary (𝛤𝐶). 575 
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In this investigation, solute transport within the domain is simulated with HGS, using the 576 

“true” and estimated K and Ss fields. The total simulation duration is set to be 300 years. The 577 

performance of the different model cases in predicting solute transport are then assessed by 578 

comparing simulation results in terms of plume patterns, Cl concentrations at sampling locations, 579 

breakthrough curves and their temporal moments.  580 

6.2 Simulation Results 581 

Figure 10 illustrates the contour maps of the Cl plume simulated for the four model cases 582 

along the cross-section Northwest-Southeast at four selected times: Year 5 (early time), Year 50 583 

(source removal), Year 100 (peak concentration arrival), and Year 300 (late time). The simulated 584 

Cl plumes associated with the “true” K and Ss fields are also included at the bottom for the 585 

purpose of comparison. The outer bound of these plumes is set to be 1 × 10
-6

. Examination of 586 

Figure 10 reveals that Case 3b provides the best prediction results (Figure 10d), yielding Cl 587 

plumes quite similar to the observed ones (Figure 10e) at all time stages. Without incorporating 588 

the stratigraphic information for inverse modeling, Case 1 and Case 3a fail to capture the 589 

migration of Cl (shown as Figures 10a and 10c, respectively), especially at the early and late 590 

time stages. It is surprising to find that even with known stratigraphic information, Case 2 yields 591 

the worst prediction results (Figure 10b) in comparison to other investigated model cases. This 592 

may be attributed to the inaccurate estimation of hydraulic parameters (K and Ss) in the source 593 

layer (AF1), where few hydraulic head data are available for model calibration. The simulated Cl 594 

plume using the calibrated geological model is found to be distinctly enlarged with the presence 595 

of source (Years 5 and 50), but rapidly diluted after the removal of source (Years 100 and 300). 596 

These results reveal that solute transport is strongly impacted by the heterogeneity of hydraulic 597 

parameters (K and Ss), and the accurate estimation of K and Ss values, as well as their spatial 598 
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distributions are of critical need for the adequate prediction of solute migration in subsurface 599 

conditions. 600 

 601 

Figure 10: Simulated Cl plumes at four different time stages for four model cases and using the 602 

“true” K and Ss fields. a) Case 1: effective parameter model, b) Case 2: geological model, c) 603 

Case 3a: geostatistical model without geological information, d) Case 3b: geostatistical model 604 

with geological information, and e) “true” K and Ss fields. 605 

 606 

Figure 11: Scatterplots of simulated and observed Cl concentrations at all wells for four model 607 

cases at four time stages: a) Year 5 (early time); b) Year 50 (source removal); c) Year 100 (peak 608 

concentration arrival); d) Year 300 (late time). 609 
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The simulation results are then assessed by plotting the scatterplots of simulated versus 610 

observed Cl concentrations at water-supply and monitoring wells (sampling points) to visualize 611 

the spatial distribution of errors in terms of bias and scatter, as shown in Figure 11. Examination 612 

of Figure 11 reveals that prediction results for all model cases are improved from the early time 613 

stage to peak concentration arrival (Figures 11a through 11c) with all data points approaching the 614 

45° line. This makes sense since more heterogeneity information is captured when the plume 615 

extends to a larger area, and the heterogeneous system behaves more like a homogeneous model 616 

with effective hydraulic parameters for solute transport prediction. After the removal of the 617 

source, the impact of heterogeneity in hydraulic properties on solute transport enhanced again, 618 

resulting biased prediction results with enlarged scatters for all model cases at the late time stage 619 

(Figure 11d). These results reveal that the heterogeneity of hydraulic parameters (K and Ss) 620 

would strongly impact the removal of solute from the subsurface and should be accurately 621 

characterized for site contaminant remediation. 622 

6.3 Breakthrough Curves 623 

Figure 12 illustrates the breakthrough curves of Cl concentration at three selected sampling 624 

points (M8b, M5a, and M4 located in ZONEs 1, 2, and 3, respectively) for four model cases as 625 

well as the “true” K and Ss fields. The breakthrough curves of Cl concentration for all sampling 626 

points are illustrated in Figure S40 of the Supplementary Information section. In each plot, the 627 

“true” breakthrough curve is illustrated as the black dash line, while the simulated ones from 628 

different model cases are illustrated as solid lines with different colors.  629 
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 630 

Figure 12: Simulated and observed breakthrough curves of Cl concentration at selected sampling 631 

locations (one for each subdivided zone) for four model cases. 632 

As shown in Figure 12a, the K and Ss tomograms obtained from the geostatistical model with 633 

geological information (Case 3b) can be utilized to adequately capture the behavior of solute 634 

transport, yielding the simulated breakthrough curve at the sampling points M8b be consistent 635 

with the “true” one. In contrast, the geological model (Case 2) yields quite poor prediction result, 636 

with much higher peak concentration, earlier arrival time, and shorter late-time tail in 637 

comparison to the “true” breakthrough curve. This is the case for most sampling points located 638 



Confidential manuscript submitted to Water Resources Research 

within ZONE 1. In ZONE 2, where hydraulic head data are lacking for inverse modeling, Case 639 

3b yields slightly biased prediction results at the late-time simulation period, as shown in Figure 640 

12b. Nevertheless, it still performs the best in predicting solute transport in comparison to other 641 

model cases. For ZONE 3, the sampling point (M4) located at the bottom layer (Bedrock) is 642 

selected and the corresponding breakthrough curves are compared, as shown in Figure 12c. 643 

Without incorporating geological information for model calibration, Cases 1 and 3a yield 644 

significantly enhanced Cl concentrations at the bottom of the simulation domain. In the 645 

following section, temporal moment analyses are performed to quantitatively compare the 646 

simulated breakthrough curves to the “true” ones. 647 

6.4 Temporal Moment Analysis 648 

Instead of characterizing the breakthrough curves at all wells, two sampling points (M4 and 649 

M8a) at the bottom layer (Bedrock) are excluded for temporal moment analysis since the Cl 650 

plume is simulated mainly present in the upper layers. The nth temporal moments (Mn) of Cl 651 

concentration at location (x, y, z) at time (t) are given by: 652 

𝑀𝑛 = ∫ 𝑡𝑛𝐶(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑡

∞

0

                    (9) 

where t is the time, and C is the Cl concentration. The zeroth (M0), first (M1), and second (M2) 653 

for all characterized breakthrough curves were then computed through numerical integration of 654 

the breakthrough data. 655 

For each breakthrough curve, the calculated M0 is used to describe the total mass of Cl 656 

passing through the corresponding well during the simulation duration. The first normalized 657 

moment is used to estimate the mean arrival time of the center of Cl mass (): 658 
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𝜇 =
𝑀1

𝑀0
                    (10) 

The variance 𝜎2 of breakthrough curves is calculated through 659 

𝜎2 =
𝑀2

𝑀0
− (

𝑀1

𝑀0
)2.                 (11) 

In general, the 𝜎2 represents the spread of the concentration distribution and is influenced by 660 

mechanical dispersion and molecular diffusion. In other words, this parameter can be used to 661 

describe the heterogeneity levels of hydraulic parameters within the simulation domain. The 662 

calculated M0, 𝜇, and 𝜎2 of the simulated and “true” breakthrough curves are then compared, 663 

with the comparison scatterplots illustrated in Figure 13. 664 

 665 

Figure 13: Temporal moment analysis of simulated versus observed breakthrough curves for 666 

four model cases. a) total mass (M0), b) mean arrival time (μ), and c) variance (σ
2
). 667 

Figure 13a reveals that at the wells highly impacted by the Cl plume, significantly large M0 668 

values are estimated from the geological model (Case 2) in comparison to the observed ones. The 669 

estimation of M0 at these wells improves gradually when the effective parameter model (Case 1) 670 

and the geostatistical model without geological information (Case 3a) are utilized for prediction, 671 
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while the geostatistical model with geological information (Case 3b) yields the best estimation of 672 

M0 with smallest discrepancy between the simulated and observed values. To enlarge the 673 

comparison results at the wells with small M0 values, the logarithm of the simulated and 674 

“observed” M0 estimates are computed and compared, as shown in the subplot of Figure 13a. 675 

The comparison results show that the geostatistical model with geological information is able to 676 

adequately estimate M0 values at almost all wells with all data points clustered around the 45 677 

line; however, biased M0 estimates with relatively large scatters are obtained from other model 678 

cases. These results imply that detailed heterogeneity and accurate K and Ss estimates are 679 

required to adequately capture the total solute mass. 680 

The comparison of the simulated and observed mean arrival time () for all model cases is 681 

illustrated in Figure 13b. Results show that the estimated mean arrival time at all wells were, on 682 

average, shorter in comparison to the observed ones for all model cases. This may be attributed 683 

to the poor estimation of K and Ss values in the source layer (AF1), where hydraulic head data 684 

are limited for detailed heterogeneity characterization, resulting in biased prediction of solute 685 

transport at early time. However, Case 3b still yields the best estimation of the mean arrival time 686 

with relatively smaller discrepancy between the simulated and observed values in comparison to 687 

other model cases. Based on these results, geostatistics-based HT is suggested to reveal 688 

heterogeneity details for more accurate estimation of the mean solute arrival time, which is in 689 

line with the conclusion provided by Illman et al. (2012) based on a sandbox study. 690 

Figure 13c illustrates the comparison of the simulated and “observed” variances (𝜎2). In 691 

general, Case 3b still performs the best in estimating the variances, followed by Cases 3a and 1, 692 

while Case 2 yields the worst result. However, the computed variances of breakthrough curves 693 

are typically smaller with apparent bias for all model cases in comparison to the observed ones, 694 
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indicating under predictions of temporal spreading of the plume using the estimated K and Ss 695 

tomograms. This may be attributed to the loss of heterogeneity details when using municipal 696 

well data for large-scale site characterization. Even with geostatistical inversions, heterogeneity 697 

details of hydraulic parameters (K and Ss) can only be revealed where there are sufficient 698 

hydraulic head data. These results emphasize again that solute transport is strongly impacted by 699 

the heterogeneity of hydraulic parameters (K and Ss). Detailed characterization of subsurface 700 

heterogeneity at finer scales is suggested for solute transport investigations. 701 

7. Conclusions 702 

In this study, a synthetic 3D multi-aquifer/aquitard system that mimics the Mannheim East 703 

wellfield is characterized using HT-based approaches through the interpretation of long-term 704 

water-supply pumping/injection records (municipal well data). In particular, pumping/injection 705 

rate records from 13 water-supply wells and simulated hydraulic head observations at 28 706 

monitoring locations are interpreted to map subsurface heterogeneities in hydraulic conductivity 707 

(K) and specific storage (Ss). To investigate the performance of different modeling approaches 708 

and the effect of data selection on inverse modeling, the synthetic system is successively 709 

characterized using four groundwater models (effective parameter model, geological model, and 710 

two geostatistical models with different prior information) through the interpretation of five 711 

datasets consisting of different time durations and periods within a given year. The estimated K 712 

and Ss tomograms from all investigated models are then applied to predict municipal well data 713 

with the existing water-supply wells and independent pumping test data from additional water-714 

supply wells for model validation. Additional model runs are performed to investigate the ability 715 

of estimated K and Ss tomograms in predicting solute transport in subsurface conditions for a 716 
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stronger form of validation of HT results. Our study results in the following findings and 717 

conclusions: 718 

1. Results from all investigated models reveal that HT analysis of long-term 719 

pumping/injection and water-level records is feasible and yields reliable K and Ss 720 

estimates where hydraulic data are available. In comparison to traditional subsurface 721 

characterization with dedicated pumping tests, the utilization of such data is able to reveal 722 

large-scale heterogeneities of hydraulic parameters and yield K and Ss estimates 723 

representative of aquifer properties during existing pumping/injection event, while 724 

reducing cost and time requirements for site characterization.  725 

2. To avoid the effect of uncertain initial conditions on inverse modeling when using long-726 

term records for site heterogeneity characterization, pumping/injection records prior to 727 

the observation data are accounted for during model calibration. In this study, 728 

pumping/injection records 180 days prior to the observation data were used; however, the 729 

appropriate duration is dependent on site specific conditions. To minimize the effect of 730 

uncertain initial conditions, while maintaining computational efficiency for inverse 731 

modeling, preliminary characterization of well hydrographs at the study site is suggested 732 

to select an appropriate length of prior pumping/injection records. 733 

3. The calibration of the effective parameter model yields K and Ss estimates that are more 734 

representative to the effective hydraulic parameters of the upper layers, where most 735 

monitoring wells are screened with sufficient hydraulic head data. The utilization of these 736 

values yields significantly biased predictions of hydraulic head variations at monitoring 737 

wells, implying the importance of considering heterogeneity for subsurface 738 

characterization. With well identified geological layers and well estimated initial 739 
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hydraulic parameters, the calibrated geological model is found able to provide relatively 740 

adequate predictions of drawdown variations. However, additional hydraulic data at 741 

different geological layers are still required to obtain reliable estimates of hydraulic 742 

parameters for each hydrostratigraphic unit. 743 

4. Stratigraphy information is verified to be of critical importance for large-scale 744 

heterogeneity characterization, in which hydraulic data are typically sparsely located with 745 

limited number of monitoring wells. The geostatistical inversion of hydraulic head data 746 

only, is able to reveal heterogeneity details where head data are concentrated; however, 747 

the overall smooth patterns and poor predictions of independent pumping test data cause 748 

the estimated K and Ss tomograms to fail to represent site specific heterogeneities. After 749 

incorporating the geological data as prior information, the geostatistical model reveals 750 

greater detail of subsurface heterogeneity and yields K and Ss tomograms comparable to 751 

the “true” fields. The estimated K and Ss tomograms provide adequate predictions of not 752 

only the municipal well data with the existing water-supply wells, but also independent 753 

pumping test data from additional pumping wells, implying that these estimated hydraulic 754 

parameter fields can be used to guide the construction of new water-supply wells. 755 

5. The effect of data selection on inverse modeling is investigated by manually selecting 756 

different datasets, on the basis of duration and period for model calibration. Based on the 757 

comparison results, continuous data points with large water-level variations are suggested 758 

to be incorporated for large-scale heterogeneity characterization using the geostatistical 759 

model with geological information. However, new approaches need to be developed for 760 

big data synthesis and intelligent data selection for inverse modeling. 761 
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6. Synthetic conservative solute transport simulations conducted with various estimated 762 

hydraulic parameter fields (effective parameter model, geological model, and 763 

geostatistical models with different prior information) reveal that solute migration is 764 

strongly impacted by the heterogeneity of hydraulic parameters (K and Ss). Although the 765 

calibrated geological model is able to provide adequate predictions of head variations at 766 

monitoring wells, it yields poor predictions of contaminant transport due to the neglect of 767 

intralayer heterogeneities and poor estimation of K and Ss values at the source layer 768 

where hydraulic head data are few for model calibration. On the other hand, the 769 

geostatistical inversion of the municipal well data incorporated with geological 770 

information yields K and Ss tomograms that can provide adequate predictions of not only 771 

drawdown variations at monitoring wells but also solute transport in subsurface 772 

conditions, indicating the superior application of this approach for large-scale 773 

heterogeneity characterization using the long-term water-supply pumping/injection 774 

records. 775 

The numerical experiments presented in this study provide a general framework for large-776 

scale heterogeneity characterization using HT through the interpretation of long-term 777 

pumping/injection and water-level records. Groundwater variations in this study are considered 778 

to be induced by only pumping/injection operations, while ignoring the influence from other 779 

complexities (e.g., precipitation, evapotranspiration, surface water/groundwater interaction, long-780 

term decline of groundwater levels due to dewatering operations, and etc.) which might be very 781 

important for long simulation periods. When applying this concept and technique to field 782 

problems with actual municipal well data, a more sophisticated groundwater model with well 783 

characterized sources of groundwater variations should be developed. 784 



Confidential manuscript submitted to Water Resources Research 

  785 



Confidential manuscript submitted to Water Resources Research 

Acknowledgements 786 

This research was supported by a grant from the Region of Waterloo to the University of 787 

Waterloo. Additional support for Ning Luo was provided by the Discovery grant from the 788 

Natural Sciences & Engineering Research Council of Canada (NSERC) awarded to Walter 789 

Illman. The authors thank Tammy Middleton from the Region of Waterloo for her assistance in 790 

accessing data used in this study. The data utilized in this paper can be found in the 791 

Supplementary Information section graphically and the corresponding values are available from 792 

the link 10.5281/zenodo.3723880. 793 

References 794 

Alexander, M., Berg, S.J., Illman, W.A. (2011), Field Study of Hydrogeologic Characterization Methods in 795 
a Heterogeneous Aquifer. Ground Water, 49(3): 365-382. DOI:10.1111/j.1745-796 
6584.2010.00729.x 797 

Aquanty (2019), HydroGeoSphere: A three-dimensional numerical model describing fully-integrated 798 
subsurface and surface flow and solute transport.  799 

Bajc, A.F. & Shirota, J. (2007), Three-dimensional mapping of surficial deposits in the Regional 800 
Municipality of Waterloo, southwestern Ontario. Groundwater Resources Study 3, Ontario 801 
Geological Survey.  802 

Berg, S.J. & Illman, W.A. (2011a), Capturing aquifer heterogeneity: Comparison of approaches through 803 
controlled sandbox experiments. Water Resour. Res., 47(9). DOI:10.1029/2011WR010429 804 

Berg, S.J. & Illman, W.A. (2011b), Three-dimensional transient hydraulic tomography in a highly 805 
heterogeneous glaciofluvial aquifer-aquitard system. Water Resour. Res., 47(10). 806 
DOI:10.1029/2011WR010616 807 

Bohling, G.C., Zhan, X., Butler, J.J., Zheng, L. (2002), Steady shape analysis of tomographic pumping tests 808 
for characterization of aquifer heterogeneities. Water Resour. Res., 38(12). 809 
DOI:10.1029/2001wr001176 810 

Bohling, G.C., Butler, J.J., Zhan, X., Knoll, M.D. (2007), A field assessment of the value of steady shape 811 
hydraulic tomography for characterization of aquifer heterogeneities. Water Resour. Res., 43(5). 812 
DOI:10.1029/2006wr004932 813 

Burnett, R.D. & Frind, E.O. (1987), Simulation of contaminant transport in three dimensions: 2. 814 
Dimensionality effects. Water Resources Research, 23(4): 695-705. 815 
DOI:10.1029/WR023i004p00695 816 

Doherty, J. (Ed.) (2005), PEST Model-Independent Parameter Estimation User Manual, fifth ed. 817 
Watermark Numer. Comput., Brisbane, Australia.  818 

Gelhar, L.W. (1993), Stochastic subsurface hydrology. Englewood Cliffs, N.J.: Prentice-Hall.  819 
Gottlieb, J. & Dietrich, P. (1995), Identification of the permeability distribution in soil by hydraulic 820 

tomography. Inverse Probl, 11: 353-360.  821 



Confidential manuscript submitted to Water Resources Research 

Illman, W.A., Liu, X., Craig, A. (2007), Steady-state hydraulic tomography in a laboratory aquifer with 822 
deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity 823 
tomograms. J. Hydrol., 341(3–4): 222-234. DOI:http://dx.doi.org/10.1016/j.jhydrol.2007.05.011 824 

Illman, W.A., Liu, X., Takeuchi, S., Yeh, T.-C.J., Ando, K., Saegusa, H. (2009), Hydraulic tomography in 825 
fractured granite: Mizunami Underground Research site, Japan. Water Resour. Res., 45(1). 826 
DOI:10.1029/2007WR006715 827 

Illman, W.A., Zhu, J., Craig, A.J., Yin, D. (2010), Comparison of aquifer characterization approaches 828 
through steady state groundwater model validation: A controlled laboratory sandbox study. 829 
Water Resour. Res., 46(4): n/a-n/a. DOI:10.1029/2009WR007745 830 

Illman, W.A., Berg, S.J., Yeh, T.C.J. (2012), Comparison of approaches for predicting solute transport: 831 
Sandbox experiments. Ground Water, 50(3): 421-431.  832 

Illman, W.A., Berg, S.J., Zhao, Z. (2015), Should hydraulic tomography data be interpreted using 833 
geostatistical inverse modeling? A laboratory sandbox investigation. Water Resour. Res., 51(5): 834 
3219-3237. DOI:10.1002/2014WR016552 835 

Karrow, P.F. (1993), Quaternary Geology, Stratford-Conestogo Area. Report 283, Ontario Geological 836 
Survey.  837 

Kuhlman, K.L., Hinnell, A.C., Mishra, P.K., Yeh, T.-C.J. (2008), Basin-Scale Transmissivity and Storativity 838 
Estimation Using Hydraulic Tomography. Groundwater, 46(5): 706-715. DOI:10.1111/j.1745-839 
6584.2008.00455.x 840 

Liu, S., Yeh, T.C.J., Gardiner, R. (2002), Effectiveness of hydraulic tomography: Sandbox experiments. 841 
Water Resour. Res., 38(4).  842 

Luo, N., Zhao, Z., Illman, W.A., Berg, S.J. (2017), Comparative study of transient hydraulic tomography 843 
with varying parameterizations and zonations: Laboratory sandbox investigation. Journal of 844 
Hydrology, 554: 758-779. DOI:https://doi.org/10.1016/j.jhydrol.2017.09.045 845 

Ni, C.-F., Yeh, T.-C.J., Chen, J.-S. (2009), Cost-Effective Hydraulic Tomography Surveys for Predicting Flow 846 
and Transport in Heterogeneous Aquifers. Environmental Science & Technology, 43(10): 3720-847 
3727. DOI:10.1021/es8024098 848 

Niwa, M., Takeuchi, R., Onoe, H., Tsuyuguchi, K., Asamori, K., Umeda, K., Sugihara, K. (2012), 849 
Groundwater pressure changes in Central Japan induced by the 2011 off the Pacific coast of 850 
Tohoku Earthquake. Geochemistry, Geophysics, Geosystems, 13(5). DOI:10.1029/2012gc004052 851 

Regional Municipality of Waterloo (2014), Region of Waterloo: hydrogeology & source water - WRAS 852 
database design manual. Regional Municipality of Waterloo, Waterloo, ON. 853 

Rehfeldt, K.R., Boggs, J.M., Gelhar, L.W. (1992), Field study of dispersion in a heterogeneous aquifer: 3. 854 
Geostatistical analysis of hydraulic conductivity. Water Resources Research, 28(12): 3309-3324. 855 
DOI:10.1029/92wr01758 856 

Robin, M., Gutjahr, A., Sudicky, E., Wilson, J. (1993), Cross‐correlated random field generation with the 857 

direct Fourier transform method. Water Resources Research, 29(7): 2385-2397.  858 
Salamon, P., Fernàndez-Garcia, D., Gómez-Hernández, J.J. (2007), Modeling tracer transport at the 859 

MADE site: The importance of heterogeneity. Water Resources Research, 43(8). 860 
DOI:10.1029/2006wr005522 861 

Straface, S., Yeh, T.C., Zhu, J., Troisi, S., Lee, C. (2007), Sequential aquifer tests at a well field, Montalto 862 
Uffugo Scalo, Italy. Water Resour. Res., 43(7).  863 

Sudicky, E.A., Illman, W.A., Goltz, I.K., Adams, J.J., McLaren, R.G. (2010), Heterogeneity in hydraulic 864 
conductivity and its role on the macroscale transport of a solute plume: From measurements to 865 
a practical application of stochastic flow and transport theory. Water Resources Research, 46(1). 866 
DOI:10.1029/2008wr007558 867 

http://dx.doi.org/10.1016/j.jhydrol.2007.05.011
https://doi.org/10.1016/j.jhydrol.2017.09.045


Confidential manuscript submitted to Water Resources Research 

Sun, R., Yeh, T.-C.J., Mao, D., Jin, M., Lu, W., Hao, Y. (2013), A temporal sampling strategy for hydraulic 868 
tomography analysis. Water Resources Research, 49(7): 3881-3896. DOI:10.1002/wrcr.20337 869 

Theis, C.V. (1935), The relation between the lowering of the piezometric surface and the rate and 870 
duration of discharge of a well using groundwater storage. Am. Geophys. Union Trans., 16: 519-871 
524.  872 

Wang, Y.-L., Yeh, T.-C.J., Wen, J.-C., Huang, S.-Y., Zha, Y., Tsai, J.-P., Hao, Y., Liang, Y. (2017), 873 
Characterizing subsurface hydraulic heterogeneity of alluvial fan using riverstage fluctuations. 874 
Journal of Hydrology, 547: 650-663. DOI:https://doi.org/10.1016/j.jhydrol.2017.02.032 875 

Xiang, J., Yeh, T.-C.J., Lee, C.-H., Hsu, K.-C., Wen, J.-C. (2009), A simultaneous successive linear estimator 876 
and a guide for hydraulic tomography analysis. Water Resour. Res., 45(2). 877 
DOI:10.1029/2008WR007180 878 

Yeh, T.-C.J. & Lee, C.-H. (2007), Time to Change the Way We Collect and Analyze Data for Aquifer 879 
Characterization. Groundwater, 45(2): 116-118. DOI:10.1111/j.1745-6584.2006.00292.x 880 

Yeh, T.-C.J., Lee, C.-H., Hsu, K.-C., Illman, W.A., Barrash, W., Cai, X., Daniels, J., Sudicky, E., Wan, L., Li, G., 881 
Winter, C.L. (2008), A view toward the future of subsurface characterization: CAT scanning 882 
groundwater basins. Water Resources Research, 44(3). DOI:10.1029/2007wr006375 883 

Yeh, T.-C.J., Xiang, J., Suribhatla, R.M., Hsu, K.-C., Lee, C.-H., Wen, J.-C. (2009), River stage tomography: A 884 
new approach for characterizing groundwater basins. Water Resources Research, 45(5). 885 
DOI:10.1029/2008wr007233 886 

Yeh, T.C.J. & Liu, S. (2000), Hydraulic tomography: Development of a new aquifer test method. Water 887 
Resour. Res., 36(8): 2095-2105. DOI:10.1029/2000wr900114 888 

Yu, D., Yang, J., Shi, L., Zhang, Q., Huang, K., Fang, Y., Zha, Y. (2019), On the uncertainty of initial 889 
condition and initialization approaches in variably saturated flow modeling. Hydrology and Earth 890 
System Sciences, 23(7): 2897-2914.  891 

Zha, Y., Yeh, T.C.J., Illman, W.A., Tanaka, T., Bruines, P., Onoe, H., Saegusa, H., Mao, D., Takeuchi, S., 892 

Wen, J.C. (2016), An Application of Hydraulic Tomography to a Large‐Scale Fractured Granite 893 

Site, Mizunami, Japan. Ground Water, 54(6): 793-804.  894 
Zha, Y., Yeh, T.-C.J., Illman, W.A., Mok, C.M.W., Tso, C.-H.M., Carrera, B.A., Wang, Y.-L. (2019), 895 

Exploitation of pump-and-treat remediation systems for characterization of hydraulic 896 
heterogeneity. Journal of Hydrology, 573: 324-340. 897 
DOI:https://doi.org/10.1016/j.jhydrol.2019.03.089 898 

Zhao, Z., Illman, W.A., Yeh, T.-C.J., Berg, S.J., Mao, D. (2015), Validation of hydraulic tomography in an 899 
unconfined aquifer: A controlled sandbox study. Water Resour. Res., 51(6): 4137-4155. 900 
DOI:10.1002/2015WR016910 901 

Zhao, Z., Illman, W.A., Berg, S.J. (2016), On the importance of geological data for hydraulic tomography 902 
analysis: laboratory sandbox study. J. Hydrol. DOI:10.1016/j.jhydrol.2016.08.061 903 

Zhao, Z. & Illman, W.A. (2017), On the Importance of Geological Data for Three-dimensional Steady-904 
State Hydraulic Tomography Analysis at a Highly Heterogeneous Aquifer-Aquitard System. J. 905 
Hydrol.  906 

Zhu, J. & Yeh, T.-C.J. (2005), Characterization of aquifer heterogeneity using transient hydraulic 907 
tomography. Water Resour. Res., 41(7). DOI:10.1029/2004WR003790 908 

 909 

https://doi.org/10.1016/j.jhydrol.2017.02.032
https://doi.org/10.1016/j.jhydrol.2019.03.089

