Implications of Precipitation Particle Properties for Improved Understanding of Ice-Nucleating Particles in West Texas

Cheyanne Amadita Rodriguez¹, Hemanth Sandeep Vepuri², and Naruki Hiranuma¹

¹Dept. of Life, Earth and Environmental Sciences, West Texas A&M University, Canyon, TX 79016, USA

²Dept. of Life, Earth and Environmental Sciences, West Texas A&M University, Canyon, TX 79016, USA;

November 24, 2022

Abstract

This study was conducted to assess precipitation particle properties, including ice-nucleating particle (INP) concentration (L[^]-1 Air), in West Texas, where the semi-arid climate prevails and typically <40 inches of rainfall coincides per year. Further, the West Texas region is dominated by deep convective clouds, where INPs play a crucial role in hallstorm and thunderstorm processes (e.g., Li et al., 2017; Rosenfeld et al., 2008). In this study, we looked into major precipitation events observed throughout the year in 2018 and 2019 in the Texas Panhandle area. More specifically, to characterize immersion freezing efficiency (T > -25 degree C) of our precipitation samples, we used a cold-stage instrument called West Texas Cryogenic Refrigerator Applied to freezing Test (WT-CRAFT) system (Hiranuma et al., 2019). Additionally, a disdrometer is used to look into the relationship between INP concentration, intensity and size of precipitation particles. An indigenously developed Internet of Things (IoT) air quality sensors were also used to compare ambient air quality (i.e., particulate matter concentrations) and meteorological conditions to the measured INP concentrations. Overall, the study's preliminary results show a reasonable correlation between INP concentration and precipitation properties (i.e., intensity). We also find a high ice nucleation efficiency at higher temperatures (i.e., T > -15 degree C), which can be attributed to the biological INPs from local agricultural sources. The results also suggest that INPs play an important role in the precipitation particle size. These findings may be important in artificially varying the severity of the precipitation by varying the INP concentration in the West Texas region.

Implications of Precipitation Particle Properties for Improved Understanding of Ice-Nucleating Particles in West Texas

¹Department of Life, Earth, and Environmental Science, West Texas A&M University (WTAMU), Canyon, TX, ²Department of Environmental Toxicology, Texas Tech University, Lubbock, TX

Goals & Background

- This study was conducted to assess precipitation particle properties; i.e., ice-nucleating particle (INP) propensity and bio-speciation.
- ✤ In this study, we looked into the 44 precipitation events observed in West Texas **throughout the year** in 2018-2019.
- The West Texas region is dominated by the semi-arid climate and deep convective clouds where INPs play a crucial role in storm formation processes (e.g., Li et al., 2017; Rosenfeld et al., 2008).
- ✤ INPs provide seeding-surfaces for water vapor and liquid water to deposit or condense on, enabling the emergence of ice crystals in the atmosphere through heterogeneous freezing (e.g., Vali et al., 2015).
- Ice crystal growth occurs in clouds (where supercooled water and ice coexist) through the Bergeron Process, in which ambient vapor pressure falls between saturated vapor pressure over water and lower saturated vapor pressure over ice (Bergeron, 1935), eventually precipitating to the ground often as hail particles in West Texas (Fig. 1).

Precipitation Measurements

- * The **OTT Parsivel**² (Particle Size Velocity 2) sensor is a modern laser **disdrometer** (λ = 780 nm) that measures the size and number of hydrometeors in 0.062 - 24.5 mm with 32 diameter bins (*Tokay et al.,* 2014).
- Precipitation particles pass through the laser beam off a portion of the beam, reducing the output voltage - this determines the particle size.
- A disdrometer is used to look into the relationship between INP concentration and size of precipitation particles.
- Shown in Fig. 2 are how we deployed our disdrometer on the roof-top of the 50 ft building, where we conducted our precipitation sampling activities, and measured annual data.

Paul Engler College of Agriculture and Natural Sciences Dept. of Life, Earth and Environmental Sciences Discover Real-World Experience

References

Cheyanne Rodriguez¹, Sandeep H. Vepuri¹, Greg Mayer², and Naruki Hiranuma¹ (nhiranuma@wtamu.edu)

Precipitation Samples

- All 44 precipitation samples were collected by placing sterilized polypropylene tubes on an elevated platform on the roof of the Natural Science Building (NSB). The rooftop is completely exposed to the ambient air without any canopies.
- After some amount was accumulated, the sampling tubes were capped and refrigerated at 4 °C until the drop freeze assay measurement and metagenomics
- analyses would commence following Petters and Wright (2015).

Ice Nucleation Experiment

- * We used an offline droplet-freezing assay instrument, the so-called West Texas Cryogenic Refrigerator Applied to Freezing Test (WT-CRAFT) system (Hiranuma et al., 2019), to measure temperature (T)-resolved ice-nucleating particle (INP) concentrations at T > -25 °C with a detection capability of >0.001 per L of air (Fig. 4).
- * 70 solution droplets (3 μL each) placed on a hydrophobic Vaseline layer were analyzed per experiment.
- With a cooling rate of 1 °C min⁻¹, **INP concentration** (n_{INP} ; e.g., DeMott *et al.*, 2017) of super-microliter-sized droplets containing particles from precipitation samples were estimated as a function of T for every 0.5 °C presuming Cloud Water Content of 0.4 g- $H_2O \text{ m}^{-3}$ -Air as described in Petters and Wright (2015).

Annual Ambient Conditions

- An Arduino-based IoT air quality sensor measured different air quality metrics (Fig. 5). A DFRobot PM laser dust sensor is used to obtain the concentration of suspended particulate matter (PM) with size ranges of <1, <2.5 and <10 microns.
- \bullet T and relative humidity (RH) are measured with a precision Bosch BME280 environmental sensor.
- We observed strong diurnal T cycles (not shown), and precipitation occurs when T is dropped - the temperature ingredient (ΔT) is important for precipitation enhancement.

Bergeron, T.: Proc. 5th Assembly U.G.G.I. Lisbon, 2, p156 (1935) DeMott, P. J. et al.: Atmos. Chem. Phys., 17, 11227-11245 (2017) Hiranuma, N. et al.: Atmos. Chem. Phys., 11, 8809–8823 (2011). Hiranuma, N. et al.: Atmos. Chem. Phys., 19, 4823–4849 (2019). Li, R. *et al*.: Sci. Rep., 7, 13826 (2017).

Petters, M. D. & Wright, T.: Geophys. Res. Lett., 42, 8758–8766 (2015). Rosenfeld, D. et al.: Science, 321, 1309–1313 (2008). RTL GENOMICS.: www.rtlgenomics.com/docs/Data_Analysis_Methodology.pdf (2019). Tokay, A. et al.: J. Atmos. Oceanic Technol., 31, 1276–1288 (2014). Vali, G. et al.: Atmos. Chem. Phys., 15, 10263–10270 (2015). Whiteside, C. L. et al.: AMS-2018 Annual Meeting Poster, Abst. ID 332423 (2018).

sample collected at WTAMU.

Figure 1. Hail storm

- intervals of 5 °C).
- 2018 & Figs. 7 & 8).

- nucleation efficiency at temperatures lower than -16.5 °C.
- artificial precipitation in West Texas.

- concentrations in our precipitation samples.

- aerosol-cloud interaction as well as a regional hydrologic cycle.
- hailstorm and thunderstorm in West Texas.

Acknowledgement

N. Hiranuma thanks for the funding support from Killgore Faculty Research Grant (WT19) and the WTAMU's IoT and Research Computing program. N. Hiranuma also acknowledges partial financial support by Higher Education Assistance Fund (HEAF). This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research program (Atmospheric Processes) under Award Number DE-FOA-0001761.

INP & Metagenomics Results

• Shown below in Fig. 6 is our results of n_{INP} time series for all 44 PCPT samples (with T

✤ The high temperature INPs observed at temperatures higher than ~-15 °C may be indicative of biological INPs, presumably deriving from cattle feedlots (Whiteside et al.,

More comprehensive INP source identification in the future would be important.

Figure 6. Time series of INP concentrations in precipitation samples collected in 2018-2019.

* By assessing the size distribution of precipitation particles (Fig. 3), it is notable that giant particles (>10 mm) coincide with severe hail/thunderstorm (i.e., PCPT_NSB_1 and _2). ✤ Our spectra of INPs in severe hail/thunderstorms (Fig. 7) exhibit substantially high ice

Interestingly, these spectra exceed what have been historically observed in previous study (Petters and Wright, 2015). Intense rain properties may be the key of forming

Summary & Outlook

1. More INPs are observed when the intensity of precipitation exceeds 45 mm/h.

2. We observed a reasonable correlation between the severity of precipitation and INP

Seasonal variation of INP concentrations exists - decrease in n_{INP} in winter and spring months. There may be a correlation between local PMs and INPs (to be looked into).

Bacteria composition in severe storms is unique and similar to that observed at the local animal feeding facility, but it is not certain what species are ice nucleation active. More detailed biological analyses (incl. Fungi etc.) have been underway.

Organic composition is predominant in precipitation residuals (>70%, not shown here), which is similar to the composition of local animal feeding dust (Hiranuma et al., 2011).

6. The presence of high T INP and associated hump shape of n_{INP} spectra have been similarly observed for the local animal feeding dust INPs (Whiteside et al., 2018), suggesting a local

. Our findings also suggest that removing INPs from cloud may reduce the intensity of

www.wtamu.edu