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Abstract

The Florida Current marks the beginning of the Gulf Stream at Florida Straits, and plays an important role in climate. Nearly

continuous measurements of Florida Current transport have been made at ˜27N since 1982, but these data are too short to allow

an assessment of possible centennial changes. Here I reconstruct Florida Current transport during 1909-2018 using probabilistic

methods and principles of ocean dynamics applied to available transport measurements and longer coastal sea-level data. The

Florida Current transport very likely (probability P=0.93) has weakened since the 1920s, such that modern measurements made

within Florida Straits since 1982 likely (P=0.87) portray the transport in a reduced state. The weakest decadally averaged

transport during the last 110 y probably (P=0.74) took place sometime in the last two decades. Weakening of Florida Current

transport is consistent with a hypothesized steady reduction of the deep Atlantic meridional overturning circulation during the

past century.
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Weakening of the Gulf Stream at Florida Straits over the1

past century inferred from coastal sea-level data2

Christopher G. Piecuch1
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The Florida Current marks the beginning of the Gulf Stream at Florida Straits, and plays5

an important role in climate. Nearly continuous measurements of Florida Current transport6

have been made at ∼ 27◦N since 1982, but these data are too short to allow an assessment of7

possible centennial changes. Here I reconstruct Florida Current transport during 1909–20188

using probabilistic methods and principles of ocean dynamics applied to available transport9

measurements and longer coastal sea-level data. The Florida Current transport very likely10

(probability P = 0.93) has weakened since the 1920s, such that modern measurements made11

within Florida Straits since 1982 likely (P = 0.87) portray the transport in a reduced state.12

The weakest decadally averaged transport during the last 110 y probably (P = 0.74) took13

place sometime in the last two decades. Weakening of Florida Current transport is consistent14

with a hypothesized steady reduction of the deep Atlantic meridional overturning circulation15

during the past century.16

Swiftly flowing north through the narrow, shallow Florida Straits, the Florida Current marks17

the headwaters of the Gulf Stream1–4 (Figure 1). Together with the weaker Antilles Current5, the18

Florida Current forms the major western boundary current in the subtropical North Atlantic Ocean19

at 27◦N, providing closure to the wind-driven interior gyre circulation6, 7, and acting as a vital limb20
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of the Atlantic meridional overturning circulation8. Due to its transport of heat and other tracers,21

the Florida Current plays an important role in climate9, 10.22

The integrated volume transport of the Florida Current (hereafter Florida Current transport)23

has been monitored nearly continuously at ∼ 27◦N since 1982 by means of abandoned submarine24

telephone cables between West Palm Beach and Grand Bahama Island1–4 (Figure 1). Before then,25

observations were made occasionally as part of short hydrographic cruises or brief field campaigns,26

each measuring a different component of the flow at a different location. Earlier observations11, 12
27

only measured the near-surface transports, but missed transports at depth. Later full-depth transport28

measurements13–16 were made variously between Florida and Havana, Cay Sal Bank, the Cat Cays,29

or Bimini, capturing flow through Yucatán Channel, but omitting flows through Nicholas, Santaren,30

or Northwest Providence Channels, all of which contribute to the transport at 27◦N (Figure 1). Such31

disparities make it difficult to produce a stable instrumental estimate of Florida Current transport32

through time. Without such a coherent, longterm estimate, it has been unclear whether the Florida33

Current has undergone multidecadal- or longer-timescale change. Meinen et al.2 concluded that34

the extant data, “provide no evidence for a longterm trend in the Florida Current transport,” during35

1964–2009. However, it remains unclear whether a trend would emerge in a longer, more complete36

transport history.37

Questions of possible longterm changes in Florida Current transport bear on hypotheses that38

the Atlantic meridional overturning circulation is weakening or has weakened. Proxy indicators,39

including surface and subsurface ocean temperatures at subpolar latitudes and sortable silts from40
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sediment cores off Cape Hatteras, suggest that the deep return flow of the meridional overturning41

circulation weakened either continuously during the twentieth century or earlier at the end of the42

Little Ice Age17–19. Yet, uncertainties in the proxies and their relationship to overturning render the43

robustness of these suggestions unclear. Models simulate that, under climate change, a slowing of44

the deep overturning circulation is balanced by a weakening surface western boundary current20, 21.45

A determination of whether the Florida Current transport changed over the past century would thus46

serve as a test of both model simulations and hypotheses of a reduced deep overturning.47

Previous authors reasoned that sea level from coastal tide gauges is informative of changes48

in Florida Current transport12, 14, 22, 23. These arguments are predicated on the notion of geostrophic49

balance—on timescales longer than a day, the northward flow through Florida Straits imparts an50

eastward acceleration owing to the Coriolis force that is counteracted by a pressure gradient across51

the Florida Straits, which manifests as a sea-level difference that can be observed by tide gauges on52

opposite sides of the Florida Current. However, circulation inferences based on tide gauges need to53

be made cautiously. Tide gauges measure the distance between the sea surface and Earth’s crust at54

the coast. So, they observe not only large-scale ocean dynamics, but also coastally trapped signals24
55

and isostatic geophysical phenomena, including changes in the planet’s gravity field and rotation56

vector, and viscoelastic deformation of the solid Earth25. Tide-gauge data are also heterogeneously57

distributed in space and time. Long, continuous records are available at some southeastern USA58

and Caribbean sites far afield of the submarine cable at 27◦N, but extant records from tide gauges59

close to the cable’s endpoints near West Palm Beach and Grand Bahama are short, incomplete, and60

largely not overlapping with one another26.61
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To overcome these challenges, I use probabilistic data assimilation27, 28 to estimate annual62

Florida Current transport at 27◦N over the past 110 y (see Methods). The estimate is based on 1,39063

y of annual coastal sea level from 46 tide gauges26 in the southeastern USA and Caribbean during64

1909–2018 (Figure 1a) and 37 y of annual Florida Current transport from cable measurements1–4
65

since 1982 (Figure 2a). Sea level is represented as a process with spatial correlation and temporal66

memory. The Florida Current transport is related to the difference in sea level across Florida Straits67

through geostrophy, but account is also taken of non-oceanographic and ageostrophic impacts on68

sea level and transport. The data are cast as corrupt, imperfect versions of the processes. Bayes’69

rule is used to invert the model equations, and solutions are generated using numerical methods.70

The model equations are coupled, sharing information across space, time, and processes, allowing71

data gaps to be filled and unobserved processes to be estimated. The solution is fully probabilistic,72

and comprises thousands of ensemble members, each an equally likely history of transport that is73

consistent with the data and model equations. This allows the calculation of subtle spatiotemporal74

statistics, for example, the probability density function of the magnitude or timing of the minimum75

or maximum decadally averaged transport value during the study period (see Methods). Residual76

analyses and synthetic data experiments demonstrate the appropriateness of the algorithm and show77

that it accurately estimates the quantities of interest given the data (cf. Supplementary Information).78

Weakening of the Florida Current79

The probabilistic Florida Current transport reconstruction is summarized in Figure 2a. The 110-y80

mean transport is 32.6± 1.4 Sv (Supplementary Figure 1a), which is likely (probability P = 0.87)81
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larger than the mean over 1982–2018 (31.8± 0.1 Sv). This implies that the cable data1–4 probably82

represent the Florida Current in a reduced state of transport. Unless otherwise stated, ± values are83

95% posterior credible intervals estimated from the Bayesian model. Estimated uncertainties since84

1982 are comparatively small, and essentially reflect instrumental errors on the cable data, which85

place strong observational constraints on the process. Before then, cable data are unavailable, and86

the inference is largely constrained by tide gauge data, which have a more uncertain relationship87

to the transport and are sparser earlier in time, resulting in larger errors that grow into the past.88

Superimposed on the mean are interannual-to-decadal fluctuations in transport (Figure 2a).89

The standard deviation of annual transports is 1.3 Sv (posterior median estimate). A 3.3 ± 1.1 Sv90

weakening from 1997–1998 to 1999–2000, when there was a gap in cable measurements and low91

transports were seen upstream in Yucatán Channel29, was followed by a 2.5±1.1 Sv strengthening92

from 1999–2000 to 2001–2002 (Supplementary Figure 1c). Decadal-average transport was likely93

(P ≥ 0.79) greater than the longterm average during 1922–1932 (33.6 ± 2.8 Sv) and 1956–196694

(33.0±1.7 Sv), but less than average in 1946–1956 (32.2±2.0 Sv) and 1986–1996 (31.7±0.2 Sv)95

(Supplementary Figure 1d). A wavelet coherence analysis demonstrates that transport fluctuations96

can be related to major modes of surface climate variation (Supplementary Figure 2). The transport97

is probably (P > 68%) coherent with the North Atlantic Oscillation30 at 2–8-y periods centered98

between the late 1970s and early 2000s, consistent with past studies of cable data1, 31; coherence is99

also found at 2–4-y periods around 1960 and 8-y periods between the late 1930s and early 1950s,100

which have not been previously reported, and possibly result from changes in subtropical wind101

curl mediated by planetary waves31. Transport is also likely (P > 0.68) coherent with Atlantic102

5



Multidecadal Variability32 at 2–16-y periods centered on the mid 1990s and 16-y periods from the103

late 1940s to early 2000s. The weaker coherence earlier in time could reflect nonstationarity in the104

relationship between transport and climate, or the growth in transport uncertainties into the past.105

Changes are also apparent on the longest timescales. The transport trend during 1909–2018 is106

−1.7±3.7 Sv century−1, which overlaps zero, but implies that transport likely (P = 0.82) declined107

(Supplementary Figure 1b). This inference of a longterm weakening is qualitatively insensitive to108

the selection of time period. Computing differences between all pairs of decadal averages, I find109

most (67%) instances are such that transport probably (P > 0.68) declined from one decade to110

another (Figure 3). For example, it is very likely (P = 0.93) transport weakened from 1920–1930111

(2.1 ± 2.9 Sv), and extremely likely (P = 0.96) that it declined from 1970–1980 (1.2 ± 1.2 Sv)112

to the present more than expected from a stationary red-noise process. Indeed, if the transport was113

stationary, extrema would be uniformly likely to occur at any point over a given time period, while114

in the presence of a longterm decline, the maximum transport would be more likely to occur at the115

beginning and the minimum transport at the end of the period. Consistent with the latter case, the116

minimum decadal-average transport (31.1±1.0 Sv) likely (P = 0.74) started sometime after 2002,117

and the maximum decadal average (34.1±2.5 Sv) likely (P = 0.70) ended some year before 1936118

(Figure 2b). Timing of the extrema cannot be explained in terms of fluctuations about a stationary119

mean. After subtracting the longterm trend (Supplementary Figure 1b), I find that it would have120

been unlikely (P = 0.18) that the minimum transport would have started after 2002, and chances121

would have been lower (P = 0.38) that the maximum would have ended before 1936 (Figure 2c).122
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Relation Between Florida Current Transport and Sea-Level Difference Across Florida Straits123

In addition to transport (Figure 2a), the Bayesian algorithm also solves for the regression coefficient124

between the transport and sea-level difference across Florida Straits (see Methods). The estimated125

change in transport per unit change in sea-level difference is 0.21± 0.11 Sv cm−1 (Supplementary126

Figure 3a). Geostrophy allows interpretation of this value in terms of an effective depth describing127

the vertical scale over which velocity variations decay in amplitude from the surface to the bottom128

within Florida Straits33, 34. Following Little et al.34, I multiply by the ratio of the Coriolis parameter129

over gravity (∼ 7×10−6 s m−1 at 27◦N), obtaining an effective depth of 144±74 m. This estimate is130

consistent with the vertical structure of northward currents observed via shipboard acoustic doppler131

current profiler aboard the R/V Walton Smith during 70 cruises across Florida Straits at 27◦N over132

2001–2018. At the longitude of the core of the current, the average meridional velocity taken over133

all cruises decays almost linearly in the vertical from ∼ 1.2 m s−1 near the surface to ∼ 0.9 m s−1
134

and∼ 0.6 m s−1 at 200- and 400-m depth, respectively (Figure 4a). Computing standard deviations135

in meridional velocity over cruises, I find that flow-variation amplitudes decay more exponentially136

with depth, decreasing rapidly from ∼ 0.6 m s−1 near the surface to ∼ 0.3 m s−1 and ∼ 0.2 m s−1
137

at 200- and 400-m depth, respectively (Figure 4b). Similar vertical structures of mean and variable138

meridional currents were reported based on earlier observations made during 1982–1984 as part of139

the Subtropical Atlantic Climate Studies Program35.140

I have assumed that the regression coefficient between sea level and transport is time invariant141

(see Methods). To test whether this assumption is reasonable, I compute coherence and admittance142
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between sea level and transport output from an ocean reanalysis product36 spanning 1871–2010.143

Considering interannual to multidecadal periods, I find that transports and sea-level differences are144

coherent across all accessible timescales, such that the admittance amplitude (transfer function) is145

qualitatively insensitive to frequency band, and that the change in transport per a unit change in the146

sea-level difference is similar for interannual and multidecadal periods (Supplementary Figure 4).147

Importantly, I also find that the Bayesian algorithm successfully estimates the correct regression148

coefficient between the two quantities in a synthetic data experiment based on this ocean reanalysis149

product (see Supplementary Information). These findings suggest that assuming a constant-in-time150

relationship between transport and sea-level difference is reasonable, and that my model correctly151

estimates the relationship between the two quantities given the available data.152

Distinguishing Dynamic and Static Sea-Level Differences Across Florida Straits153

The meaningfulness of the transport estimate hinges on the model’s ability to identify and separate154

dynamic and static components of the sea-level difference across the Florida Straits. The posterior155

solution for the 110-y trend in sea-level difference across the Florida Straits (Grand Bahama minus156

West Palm Beach) is −0.2 ± 1.0 mm y−1 (Supplementary Figure 3b). This trend results from the157

competing influences of a dynamic trend in sea-level difference of −0.9± 2.2 mm y−1 and a static158

trend of 0.7± 2.3 mm y−1 (Supplementary Figure 3b), which I interpret respectively as indicating159

differential trends in sea-surface height and vertical land motion across Florida Straits.160

Several lines of independent observational evidence corroborate these model inferences based161
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on data from tide gauges and submarine cables. The Global Positioning System (GPS) provides an162

instrumental means for measuring vertical land motion. Version 6a of the dataset from Université163

de la Rochelle37 provides continuous GPS records from three locations in southeastern Florida and164

two Bahamas locations (Supplementary Figure 5; Supplementary Table 1). Computing the average165

vertical velocity for the two Bahamas sites, and doing the same over the three sites in southeastern166

Florida, I determine after taking the difference that sea level is statically rising 1.0 ± 1.3 mm y−1
167

faster in the Bahamas than along southeastern Florida owing to differential land subsidence, where168

the ± value is twice the estimated standard error, assuming that the standard errors provided with169

the data are independent (Supplementary Table 1). This rate is consistent with the static trend in170

the sea-level difference across Florida Straits determined by the Bayesian model.171

Proxy records of sea level are informative of background rates of change unrelated to ocean172

dynamics. I consider recent standardized compilations of Holocene sea-level index points from the173

Caribbean and southeastern USA derived from coral reefs, mangrove peats, and other indicators38, 39.174

To estimate present-day rates of background change unrelated to circulation and climate, I consider175

only the locations in the databases that have at least three sea-level index points with best-estimate176

ages between 2,000 and 150 y before present. This criterion is satisfied by two sites in southeastern177

Florida and one site in the Bahamas (Supplementary Figure 5; Supplementary Table 2). Taking the178

difference between the linear trend fit to the index points from the Bahamas site and the average179

of the trends fit to the data at the two southeastern Florida locations, I estimate that sea level rose180

0.6±0.6 mm y−1 more rapidly in the Bahamas relative to southeastern Florida in the pre-industrial181

Common Era (Supplementary Table 2), where the ± value is twice the standard error furnished by182
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ordinary least squares applied to the best estimates of proxy age and sea level. Interpreted in terms183

of differential land motion, this sea-level trend difference revealed by proxy data suggests that the184

difference in rates of vertical land motion between the Bahamas and southeastern Florida observed185

by GPS is, at least partly, due to background geological effects (e.g., glacial isostatic adjustment).186

Modern radar altimeters have observed sea-surface height over nearly the global ocean since187

1993. Once adjusted for static effects, altimeter data can be interpreted in terms of surface currents.188

I consider time series of along-track sea-surface height processed by the Centre of Topography of189

the Oceans and the Hydrosphere40 at the altimeter data points closest to Settlement Point on Grand190

Bahama Island and Virginia Key in southeastern Florida (Supplementary Figure 5). Differencing191

the two altimetric time series and fitting a linear trend, I determine that the average rate of change192

in the sea-surface-height difference across Florida Straits over 1993–2017 was−2.2±3.0 mm y−1
193

(Supplementary Figure 6), where the ± value is twice the standard error estimated accounting for194

residual autocorrelation using repeated simulations with surrogate data41. This rate from altimetry,195

while reflecting a relatively short period, basically agrees in sign and magnitude with the dynamic196

trend in sea-level difference across Florida Straits inferred by the Bayesian model. Note that, while197

it is closer to the western end of the submarine cable than Virginia Key, the West Palm Beach gauge198

is not considered in this exercise based on altimetry data; given the geometry of the satellite tracks,199

the closest altimeter data point to the latter gauge is ∼ 50 km offshore, east of the Florida Current200

core (cf. Figure 4; Supplementary Figure 5), and does not reflect sea level at the western boundary.201
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Relation to Wind Stress and the Interior Gyre202

Assuming no changes in Bering Straits throughflow or evaporation and precipitation over the basin,203

weakening of the Florida Current transport must have been balanced by changes in the interior gyre204

or overturning transports at 27◦N. To explore possible changes in the gyre, I calculate geostrophic205

Sverdrup streamfunction6 using wind-stress curl from two reanalyses of the twentieth century42, 43.206

Both yield a climatological southward transport of∼ −23 Sv at 27◦N over 1900–2010 (Figure 5a),207

consistent with basic expectations44. However, the two reanalyses give conflicting trend estimates,208

with one42 yielding a weaker northward trend of 1.9± 2.0 Sv century−1, and the other43 a stronger209

southward trend of−4.2±1.3 Sv century−1 across 27◦N (Figure 5b) where the± values are formal210

estimates of the 95% confidence interval adjusted for residual autocorrelations41. Discrepancies are211

apparent broadly over the subtropics, with one reanalysis product43 suggesting spin-up of the gyre,212

and the other42 spin-down. These results are unaffected if ageostrophic Ekman transports are also213

included in the calculation (Figure 5b).214

Relation to the Deep Overturning215

The longterm weakening of the Florida Current found here is comparable to the slowing of the deep216

overturning circulation hypothesized to have occurred over the past century17–19. These hypotheses217

are partly based on the facts that models consistently show strong correlation between overturning218

streamfunction and sea-surface temperature in the North Atlantic subpolar gyre on decadal and219

longer timescales17, 18, 45, 46, and that observations show a “warming hole” over the subpolar gyre,220
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where sea-surface temperatures have recently fallen by 0.3–0.9◦C century−1 relative to the global221

average43, 47, 48 (Figure 6).222

To test whether the inferred weakening of the Florida Current, observed surface cooling over223

the subpolar gyre, and hypothesized slowdown of the deep overturning are all physically consistent224

with one another, I consider a simple ocean heat budget for the North Atlantic poleward of 27◦N225

(see Supplementary Information). I assume that decreasing ocean heat transport across 27◦N due226

to the combined weakening of the Florida Current and deep overturning is largely balanced by227

increasing surface turbulent (sensible and latent) heat gain across the northern North Atlantic due228

to the cooling sea-surface temperatures49. Ignoring local heat storage, the sea-surface-temperature229

change per unit change in transport is a function of the background mean sea-surface temperature,230

vertical temperature stratification, and surface wind speed over the study region, along with the area231

across which surface cooling takes place (see Supplementary Information). Choosing reasonable232

parameter ranges, I derive a rough, first-principles estimate of 0.3–0.6◦C Sv−1. This is similar to233

values of 0.2–0.5◦C Sv−1 found independently by dividing the observed sea-surface-temperature234

trends across the subpolar gyre (Figure 6) by the posterior median estimate of the trend in Florida235

Current transport over the past century (Supplementary Figure 1b). These numbers agree with a236

range of 0.2–0.6◦C Sv−1 published based on regression analyses of sea-surface temperature and237

overturning streamfunction from climate models17, 18, 45, 46.238
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Conclusions239

Lack of knowledge about decadal and longer trends in ocean currents has been a key observational240

uncertainty related to climate change. I used Bayesian data analysis27, 28 to assimilate data from241

submarine cables and tide gauges and to infer the evolution of the Florida Current transport at242

27◦N during 1909–2018. I found that Florida Current transport probably declined over the last 110243

y, such that modern submarine cable data likely represent transport in a relatively reduced state,244

and that the weakest decadal transport since the turn of the twentieth century probably occurred in245

the last two decades. Results are consistent with observed cooling across the subpolar sea surface246

and suggestions of a continuous decline in the deep overturning circulation over the past century,247

and lend support to model predictions that a reduction of the deep overturning cell under climate248

change is mirrored by a slowdown of the surface western boundary current.249

Future studies should identify what caused the weakening of Florida Current transport, and250

constrain whether changes in upper mid-ocean transports also took place. While systematic issues251

with current reanalyses preclude conclusive results, possible longterm changes in the wind-driven252

gyre circulation cannot be ruled out. Likewise, a recent data analysis5 determined that the Antilles253

Current is highly variable on interannual and shorter timescales over 2005–2015, but that current’s254

behavior across decadal and longer timescales is unclear. Future efforts should also build upon this255

Bayesian modeling framework to incorporate altimetric observations, GPS data, and proxy records256

to better constrain the inference and reduce uncertainty.257
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Methods408

Observational data used in the Bayesian model I use annual relative sea level from 46 tide409

gauges in the southeastern USA (19 records), Caribbean Islands (20 records), southeastern Central410

America (5 records), and northern South America (2 records) during 1909–2018 (Figure 1a; Sup-411

plementary Figure 7; Supplementary Table 3). Data were downloaded from the Permanent Service412

for Mean Sea Level (PSMSL) Revised Local Reference (RLR) database26 on 4 February 2019.413

The study period is the longest interval such that, for each year, data is available from at least one414

southeastern USA tide gauge and at least one gauge in the Caribbean Islands, southeastern Central415

America, or northern South America. Over the study period, each tide gauge returns on average416

∼ 30 y of data, but some have as few as ∼ 10 y of data, whereas others have as many as ∼ 100 y.417

The time series together constitute 1,390 y of data over the study period (∼ 27% completeness).418

I also use Florida Current transport from submarine telephone cables at 27◦N between West419

Palm Beach and Grand Bahama (Figure 1b)1–4. Using electromagnetic theory, changes in the flow420

can be estimated from voltages induced across the cable due to the transport of charged particles421

by the variable current3. The original cable spanned from Jupiter Inlet to Settlement Point, giving422

measurements from 18 March 1982 to 22 October 1998; observations resumed on 19 June 2000423

based on a cable running from West Palm Beach to Eight Mile Rock (Figure 1b). Transports are424

provided by the National Oceanic and Atmospheric Administration (NOAA) at 1-day intervals, but425

the data have an effective sampling rate of 3 days, due to low-pass filtering applied to the original426

observations. I use annual averages of the daily data (Figure 2a). Given a standard error of 1.7 Sv427
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on the daily values4, I estimate standard errors on the annual averages of 0.30–0.35 Sv, depending428

on data availability in any given year, consistent with values computed by Garcia and Meinen4.429

Bayesian framework430

I apply a hierarchical dynamical spatiotemporal model27, 28, 51, 52 to the submarine-cable data and431

tide-gauge records to infer annual changes in Florida Current transport and coastal sea level. The432

model comprises three levels: a process level describing how the quantities of interest relate to433

one another, and vary in space and time; a data level specifying how the imperfect available data434

correspond to the quantities of interest; and a parameter level placing prior constraints on the un-435

certain parameters in the process and data levels. My model builds on the Bayesian algorithm of436

Piecuch et al.53, who studied the origin of spatial variation in sea-level trends on the east coast of437

the USA during 1900–2017. Here I develop new equations to consider an expanded geographic re-438

gion, incorporate the submarine-cable data, and represent the relationship between Florida Current439

transport and the difference in coastal sea level across the Florida Straits. See the Supplementary440

Information for residual analyses and synthetic data experiments that establish the appropriate-441

ness of the model given the data, and exemplify its ability to accurately estimate the quantities of442

interest given the available incomplete, noisy, biased data.443

Process level444
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Coastal sea level Coastal relative sea level is a process with spatiotemporal covariance54, 55. As445

in Piecuch et al.53, I model sea level, ηk = [η1,k, . . . , ηN,k]T, at steps k ∈ {1, . . . , K} and sites446

n ∈ {1, . . . , N}, as the sum of a spatially correlated autoregressive process of order 1 and a large-447

scale spatial field of linear temporal trends,448

ηk − btk = r
(
ηk−1 − btk−1

)
+ ek. (1)

In Eq. (1), tk is the time at step k, r is the lag-1 autocorrelation coefficient, b is the spatial449

vector of temporal trends, and ek is an innovation sequence driving the autoregressive process.450

Supplementary Table 4 describes all of the model parameters. I set
∑K

k=1 tk = 0 to represent ηk as451

anomalies from a time mean. The trend vector b is modeled as a random normal field with spatial452

structure, b ∼ N (µ1N ,Π), such that µ is the spatial mean, 1X is a X × 1 column vector of ones,453

and,454

Πij = π2 exp (−λ |si − sj|) . (2)

Here π2 is the partial sill, λ is the inverse range, and |si − sj| is distance between target sites si and455

sj . The symbol ∼ means “is distributed as” and N (p, q) is the multivariate normal distribution456

with mean vector p and covariance matrix q.457

I cast ek as a temporally independent, identically distributed (iid), but spatially correlated458

vector with zero mean, ek ∼ N (0N ,Σ), where 0X is a X × 1 column vector of zeros, and,459

Σij = (cij)σ
2 exp (−φ |si − sj|) . (3)

Here σ2 is the partial sill and φ is the inverse range. Matrix element cij = 1 if locations si and460

sj are either both on the southeastern USA or both along the Caribbean, Central America, or461
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South America. Otherwise, cij = 0. That is, sea level covaries within, but not between, these re-462

gions. This spatial covariance structure is motivated by previous analyses of tide-gauge records and463

satellite-altimetry data. Thompson and Mitchum56 applied clustering methods to low-pass-filtered464

tide-gauge records during 1952–2001, finding that the Caribbean Sea (which in their analysis com-465

prised Cuba, Puerto Rico, and Colombia) formed one cluster of coherent sea-level variation, and466

the southeastern USA (from Florida to North Carolina) formed another cluster. Zhao and Johns57
467

determined that Florida Current transports over 1993–2011 were positively correlated with sea-468

surface height over the Caribbean Sea (including the Bahamas) and along southeastern Central469

America, but negatively correlated with sea-surface height on the southeastern USA coast on in-470

terannual timescales.471

Florida Current transport For periods longer than a day, the momentum balance across Florida472

Straights will be nearly geostrophic. Assuming that subsurface pressure signals are vertically473

coherent33, 34, variations in Florida Current transport should therefore be correlated with changes474

in the sea-level difference across Florida Straits. Based on this reasoning, I assume that the re-475

lationship between annual Florida Current transport, T = [T1, . . . , TK ]T, and coastal sea level,476

η = [η1, . . . ,ηK ], at times t = [t1, . . . , tK ]T can be written as,477

T = T1K + ρηT∆ + αt+w. (4)

Here T is the time-mean transport and ρ is a scalar coefficient representing the change in transport478

per unit change in sea-level difference across the Florida Straits. I assume that ρ is a constant,479

and does not vary with time period or frequency band. While it might appear simplistic, this480
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assumption is justified based on admittance and coherence analysis applied to output from an ocean481

general circulation model (see Supplementary Information). The N × 1 vector ∆ is a differencing482

operator, such that ∆i = 1 if site i is Settlement Point (the tide gauge nearest to the eastern end of483

the submarine cable in the Bahamas), ∆i = −1 if site i is West Palm Beach (the closest tide gauge484

to the western end of the cable in southeastern Florida), and zero otherwise. Hence, ρηT∆ is the485

sea-level difference across Florida Straits converted into units of a transport.486

The remaining terms in Eq. (4) account for other effects unrelated to large-scale geostrophic487

ocean dynamics. The scalar α represents an apparent trend in T , included to correct for longterm488

static sea-level changes unrelated to ocean dynamics, for example, due to glacial static adjustment25.489

That is, bT∆ is the difference in sea-level trends across Florida Straits, resulting from both dynamic490

processes and static effects. Hence, in Eq. (4), bT∆ + α/ρ represents the dynamic component of491

the difference in sea-level trends across Florida Current, and−α/ρ constitutes the static component492

of the trend in sea-level differences across the Florida Straits (Supplementary Figure S3). Satellite493

altimetry, GPS data, and proxy sea-level index points support this interpretation of Eq. (4) (cf. the494

Main Text). I also include w = [w1, . . . , wK ]T, which is modeled as iid uncorrelated white noise,495

wk ∼ N (0, ω2), with variance ω2, to parameterize the response to local atmospheric or terrestrial496

forcing, such as river runoff, air pressure, or wind stress across Florida Straits.497
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Data level498

Tide-gauge records Following Piecuch et al.53, I represent annual data from tide gauges, zk =499

[z1,k, . . . , zMk,k]T, at Mk ≤ N locations at time step k, as corrupted (incomplete, noisy, biased)500

versions of the underlying ηk process,501

zk = Hkηk + dk + Fk (atk + `) . (5)

Here dk is a random error sequence, which is modeled as a spatially and temporally uncorrelated502

normal field, dk ∼ N (0Mk
, δ2IMk

), with variance δ2. A vector of location-specific offsets ` are503

imposed and represented as a spatially uncorrelated Gaussian field, ` ∼ N (ν1M , τ
2IM), with504

mean ν, variance τ 2, and where M is the number of tide gauges, such that N ≥ M ≥ Mk ∀k.505

Purely local error trends in the data a are also modeled as a random normal field without spatial506

correlation, a ∼ N (0M , γ
2IM), with variance γ2. Finally, Hk and Fk are selection matrices, filled507

with zeros and ones, which pick out ηk, a, or ` values at the observation sites for time tk.508

Submarine-cable measurements I assume that L annual data values from the submarine cable,509

x = [x1, . . . , xL]T, are available and represent imperfect (incomplete and noisy) versions of the510

underlying T process,511

x = GT + u. (6)

Here G is a L × K selection matrix, picking out years when cable data are available, and u =512

[u1, . . . , uL]T is a zero-mean random data error sequence, ul ∼ N (0, ξ2l ), where the ξ2l are set513
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equal to the corresponding submarine-cable data standard error variances mentioned above and514

computed based on the availability of data in any given year.515

Parameter level To close the model, priors are placed on the parameters in the process- and516

data-level equations. Similar to Piecuch et al.53, I use proper, mostly conjugate prior forms. Prior517

forms and hyperparameter values are given in Supplementary Table 5. The selection of the hyper-518

parameter values follows the basic logic in Piecuch et al.53. My philosophy is to employ diffuse519

and uninformative priors. To quantify the importance of priors relative to the data, after I compute520

the posterior solutions (see immediately below), I compare widths of the 95% credible intervals521

from the posterior and prior probability distribution functions for each parameter (Supplementary522

Table 6). If prior and posterior credible intervals have similar widths, then the posterior solutions523

are largely determined by the prior assumptions. If posterior credible intervals are much narrower524

than the prior credible intervals, then the posterior solutions are mostly constrained by the obser-525

vations. Almost universally, the 95% posterior credible intervals are much narrower than the 95%526

prior credible intervals (Supplementary Table 6), implying that posterior inference is drawn pre-527

dominantly from the information content of the observations, and not overly influenced by prior528

beliefs encoded into the model.529
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Drawing samples from the posterior distribution Given the model equations, I use Bayes’530

rule, and assume that the posterior probability distribution function takes the form,531

p (η,T ,Θ|Z,x) ∝ p (Z,x|η,T ,Θ)× p (η,T |Θ)× p (Θ) (7)

= p (η0)× p
(
T
)
× p (r)× p

(
σ2
)
× p (φ)× p (µ)× p

(
π2
)

× p (λ)× p
(
δ2
)
× p (ν)× p

(
τ 2
)
× p

(
γ2
)
× p (ρ)× p (α)

× p
(
ω2
)
× p

(
b|µ, π2, λ

)
× p

(
`|ν, τ 2

)
× p

(
a|γ2

)
× p (x|T )

× p
(
T |η, ρ, α, ω2, T

)
×

K∏
k=1

[
p
(
zk|ηk,a, `, δ

2
)
× p

(
ηk|ηk−1, b, r, σ

2, φ
)]

In Eq. (7), Z is the structure of all tide-gauge data points, p is used to represent probability distribu-532

tion function, | is conditionality, ∝ is proportionality, and Θ
.

= {r, σ2, φ, . . . } is used to represent533

the set of all model parameters. I assume that the observations are conditionally independent,534

provided the process and parameters.535

Draws from the posterior probability distribution function are made as in Piecuch et al.53.536

I use Markov chain Monte Carlo (MCMC) methods, evaluating the full conditional distributions537

for process and parameter values using a Gibbs sampler, but using Metropolis steps for the in-538

verse range parameters. I run 200,000 MCMC iterations, setting initial process values to zero,539

and drawing initial parameter values randomly from the respective prior distribution. To remove540

initialization transients, I discard the first 100,000 iterations as burn in, and then I keep only 1541

out of every 100 of the remaining 100,000 iterations to reduce serial correlation effects between542

draws. Results shown here are based on a 3,000-element chain produced by performing the above543

procedure 3 times and stitching together the resulting 1,000-member chains. Solutions for scalar544
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parameters are summarized in Supplementary Table 6. To evaluate convergence of the solution for545

each parameter, I compute the convergence monitor R̂ of Gelman and Rubin58, which compares546

the variance within and between the 3 different 1,000-member solutions. In each case, R̂ ∼ 1.00547

(Supplementary Table 6), indicating that the solutions have converged.548

Local and global uncertainty measures549

The probabilistic nature of the model solutions allows for the calculation of both pointwise and550

pathwise uncertainty measures59. Pointwise statistics measure probabilities locally. The light blue551

shading in Figure 2a represents the 95% pointwise posterior credible intervals computed from the552

transport solutions at each year of the reconstruction. The interpretation is that, for each year, there553

is a 95% chance that the true transport value falls within this blue shading.554

Pathwise statistics measure probabilities more globally. The dashed blue lines in Figure 2a555

represent the 95% pathwise posterior credible intervals calculated from the transport estimates556

across all years of the reconstruction. These values are computed by widening the 95% pointwise557

posterior credible intervals until 95% of modeled transport time series are captured in their entirety.558

That is, there is a 95% chance that the full time series of transport does not stray outside the bounds559

of these pathwise credible intervals.560

Other examples of pathwise statistics include values quoted in the text for the minimum561

and maximum decadal-average transports and the corresponding histograms of their timing shown562

Figure 2b, 2c. For each of the 3,000 ensemble members comprising the posterior solution, I smooth563
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the transport time series using an 11-point boxcar window, and then identify the minimum and564

maximum transport values along with the times at which they occurred. These values vary from565

one ensemble member to the next, and so performing this procedure for each ensemble member566

allows me to populate histograms for the transport extrema and their occurrence times.567

Hypothesis testing568

In addition to generating posterior solutions for transport and sea level, the Bayesian model pro-569

vides data-constrained estimates of the various model parameters (e.g., Supplementary Table 6).570

This allows for rigorous hypothesis testing through simulation experiments. For example, in Fig-571

ure 3, I show the change in decadal-average Florida Current transport between all possible pairs of572

decades, and indicate the probability that such changes would have occurred given a stationary red-573

noise process with the same autocorrelation and variance characteristics. As a specific instance, I574

state that decadally averaged transport declined by 1.2 ± 1.2 Sv from 1970–1980 to the present,575

and that this decline is extremely likely (probability P = 0.96) more than would be expected from576

stationary red noise. This conclusion was determined as follows. First, I use the posterior trans-577

port solutions to compute a histogram of transport averaged over 2008–2018 minus the transport578

averaged over 1970–1980. Next, I use the posterior solutions for the scalar model parameters as579

the basis for the simulation of a parallel set of 3,000 synthetic transport time series following Eqs.580

(1) and (4) but with the trends (b and α) set to zero. Then, I populate histograms of the difference581

between decadally averaged synthetic transport between 1970–1980 and 2008–2018. Finally, I582

compute what fraction of the original posterior transport solutions shows more of a decline than is583
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shown by the stationary synthetic transport process, which, in this example case, is 0.96.584
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Figure 1 Florida Current and study region. a, Gray squares (circles) are locations of tide604

gauges in the southeastern USA (Caribbean). Shading is mean ocean surface current605

speed (m s−1) from surface-drifter data50. Red box is area shown in (b). b, Details of606

Florida Straits. Shading is ocean depth (m). Bold (light oblique) font indicates ocean607

channels (land locations) mentioned in the text. Thick red lines are locations of submarine608

cable measurements. Thin purple lines are locations of in situ measurements from past609

studies13–16.610

Figure 2 Florida Current transport. a, Blue shows posterior median (thick line), 95%611

pointwise (light shading) and pathwise (dash dot) credible intervals, and two arbitrary612

ensemble members (thin lines) from the probabilistic Florida Current transport solution.613

Orange shows annual transport from raw submarine cable data plus and minus twice614

the standard error2. b, Histograms of modeled probabilities that the minimum (blue) and615

maximum (orange) decadal average transport occurred centered on a given year. c, As616

in (b) but histograms were calculated after having removed the corresponding longterm617

trend. See Methods for discussion of statistics and uncertainty measures.618

Figure 3 Weakening of Florida Current transport over different periods. Shading shows619

posterior median estimates of the change in decadal-average Florida Current transport620

between all pairs of decades (Sv). Negative values indicate that transport fell from the621

start to the end decade. Stippling indicates that it is as likely as not (0.33 < P < 0.67)622

that transport rose or fell. White (black) contours encircle periods when it is very likely623
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(P > 0.90) that transport weakened (strengthened) from the start to the end decade624

more than expected from a stationary red noise process (see Methods for discussion of625

calculations of significance).626

Figure 4 Structure of the Florida Current within Florida Straits. a, Mean northward627

velocities (m s−1) through Florida Straits from shipboard acoustic doppler current profiler628

data from 70 research cruises of the R/V Walton Smith between 2001–2018. Values are629

computed by interpolating all data between 26.9◦N and 27.1◦N from a given cruise onto a630

common grid, and then averaging over all cruises. For a value to be shown at a longitude631

and depth, data must have been available from at least 14 cruises. b, As in (a) but showing632

the standard deviation in meridional velocities (m s−1) across cruises.633

Figure 5 Changes in wind-stress curl and gyre circulation. a, Thick lines are time-mean634

geostrophic Sverdrup streamfunction6 computed from wind-stress curl from NOAA 20CR42
635

and ERA 20C43 reanalyses over 1900–2010 as a function of latitude in the North Atlantic.636

Thin lines are the same, but also incorporate the ageostrophic Ekman transport integrated637

across the basin. b, Median estimates (thick lines) and formal 95% confidence intervals638

(colored shading) of the trend in Sverdrup streamfunction versus latitude during 1900–639

2010 from the two reanalyses. Thin and dashed lines represent median estimates and640

confidence intervals, respectively, with Ekman transports included.641

Figure 6 Changes in sea-surface temperature. Shaded values are sea-surface tempera-642

ture trends (◦C century−1) since 1909 averaged over three products: ERA-20C43, HadISST47,643
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and Kaplan48. Stippling indicates that the magnitude of the average trend is less than 2.35644

(the P = 0.95-value of the inverse t-distribution for 3 degrees of freedom) times the sam-645

ple standard deviation computed across the three different products at a given grid cell,646

and is meant as a rough indicator of where values are not significant.647

42



Supplementary Information for “Weakening of the Gulf1

Stream at Florida Straits over the past century inferred2

from coastal sea-level data”3

Christopher G. Piecuch1
4

1Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA5

S1 Heat budget6

Previous studies interpret a “warming hole” over the subpolar North Atlantic Ocean, where surface7

temperatures have cooled relative to the global mean over the past century (Figure 6), in terms of a8

slowing deep Atlantic meridional overturning circulation1–3. These interpretations are partly based9

on regression analyses of climate-model output, which suggest that, for every 1-Sv decline in the10

deep overturning, subpolar sea-surface temperatures cool by 0.2–0.6◦C1, 2, 4, 5.11

To assess whether observed cooling of the subpolar-Atlantic sea surface and hypothesized12

slowdown of the deep overturning circulation are consistent with my independent determination of13

a weakening Florida Current transport, I formulate simple ocean heat budget. The control volume14

is taken to be the full-depth Atlantic Ocean north of 27◦N. I ignore transports through Bering15

Strait, and changes in evaporation minus precipitation over the basin. I also assume that, on these16

space- and timescales, local heat storage is negligible to leading order (see below). Thus, the heat17

budget is a balance between heat transport divergence due to weakening of the Florida Current and18
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deep overturning circulation at 27◦N, and turbulent ocean heat gain at the surface due to cooling19

sea-surface temperatures in the subpolar region.20

Following Marshall et al.6, the volume-integrated ocean heat transport divergence Qmoc can21

be written as,22

Qmoc
.

= −ρoco∆T
z
Ψ, (S1)

where ρo = 1029 kg m−3 is ocean water density, co = 3994 J kg−1 ◦C−1 is seawater’s specific heat23

capacity, Ψ is the overturning streamfunction, and ∆T
z

is the temperature difference between the24

warm waters in Florida Straits and cool waters below ∼ 1000 m over the open Atlantic Ocean.25

The area-integrated turbulent heat gain at the surface Qsurf is expressed,26

Qsurf
.

= A (QE +QH) , (S2)

where A is the ocean surface area over which the heat gain occurs, and QE and QH are latent and27

sensible heat fluxes, respectively. After Large and Yeager7, the turbulent heat fluxes are written as,28

QE
.

= ΛvρaCE [q (zq)− qsat (SST )]
∣∣∆~U

∣∣, (S3)

and,29

QH
.

= ρacaCH [θ (zθ)− SST ]
∣∣∆~U

∣∣, (S4)

where Λv = 2.5 × 106 J kg−1 is the latent heat of vaporization, ρo = 1.22 kg m−3 is near-surface30

density of air, ca = 1000.5 J kg−1 ◦C−1 is the specific heat capacity of air,CH
.

= 0.018
√
CD (where31

CD is the drag coefficient), CE
.

= 0.0346
√
CD, q (zq) and θ (zθ) are potential air temperature and32
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specific humidity, respectively,
∣∣∆~U

∣∣ is surface wind speed, SST is sea-surface temperature, and,33

qsat
.

=
q1

ρa
exp

(
q2

/
SST

)
, (S5)

where q1 = 0.98× 640380 kg m−3 and q2 = −5107.4 K.34

Using Eq. (S5) to linearize Eq. (S3) about a background sea-surface temperature SST gives,35

QE = ΛvρaCE

[
q (zq) +

q2

SST
2

(
SST − SST

)
qsat

(
SST

)] ∣∣∆~U
∣∣. (S6)

Equating Qmoc and Qsurf , making use of Eqs. (S4) and (S6), and solving for SST yields,36

SST =

−ρoco∆T
z
Ψ

A

∣∣∆~U

∣∣ρa − caCHθ (zθ)− ΛvCEq (zq) + ΛvCE
q2
SST

qsat
(
SST

)
ΛvCE

q2

SST
2 qsat

(
SST

)
− caCH

. (S7)

Finally, differentiating with respect to Ψ gives,37

∂SST

∂Ψ
= − ρoco∆T

z

A
∣∣∆~U

∣∣ρa [ΛvCE
q2

SST
2 qsat

(
SST

)
− caCH

] . (S8)

This expression represents the SST change expected for a unit Ψ change under this simple model.38

To compute an estimate of ∂SST
/
∂Ψ, I must choose appropriate values for the remaining39

parameters. I choose A = 6.7 × 1012 m2, which represents the area of the shaded (unhatched)40

subpolar region of cooling shown in Figure 6. Based on a contemporary ocean state estimate8, I41

use CD = 0.0011 so CE = 0.0012 and CH = 0.00061, 6.5–11.5◦C for SST , and 7.5–10.5 m s−1
42

for
∣∣∆~U

∣∣ as reasonable values for the subpolar Atlantic. I also use 10–15◦C as a range for ∆T
z

43

judging from that same ocean state estimate. These parameter choices lead to an estimated range44

for ∂SST
/
∂Ψ of 0.3–0.6◦C Sv−1. This range is consistent with values of 0.2–0.5◦C Sv−1 found45
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by dividing the observed sea-surface-temperature trends across the subpolar gyre (Figure 6) by the46

model’s posterior median estimate of the trend in Florida Current transport during the past century47

(Supplementary Figure 1b). These values also agree with the values of 0.2–0.6◦C Sv−1 published48

based on regression analyses of sea-surface temperature and Atlantic overturning streamfunction49

from climate models1, 2, 4, 5.50

Ignoring local heat storage In the heat budget, I assumed that local heat storage is negligible.51

This assumption is based on a simple scaling argument. Suppose that, in contrast, changes in local52

heat storage are in fact important, and have similar magnitude to the change in ocean heat transport53

divergence. In this case I can consider the quasi-balance between local storage and advection,54

∣∣∣V δ

δt

(
δΘ

δt

) ∣∣∣ ≈ ∣∣∣∆T z δΨ
δt

∣∣∣, (S9)

where δΘ
/
δt is the rate of change in ocean temperature averaged over the control region, V is the55

volume of the control region, and δt is a time increment. That is, δ
(
δΘ
/
δt
)

is the change in local56

ocean heat storage rate required to balance the change in heat transport convergence or divergence57

due to a trend in Ψ over the study period. Rearranging to solve for δ
(
δΘ
/
δt
)

gives,58

∣∣∣δ(δΘ
δt

) ∣∣∣ ≈ ∣∣∣ 1

V
∆T

z δΨ

δt
δt
∣∣∣, (S10)

I take ∆T
z

= 10–15◦C as before, δΨ
/
δt = 1.7 Sv century−1 (the magnitude of the posterior59

median model estimate of the centennial trend in Florida Current transport), and δt = 100 y. Now,60

if V = 6.6–8.7×1016 m3 (the volume of the full-depth North Atlantic north of 27◦N, depending61

on whether marginal seas are included), then δ
(
δΘ
/
δt
)
∼ 0.6–1.2◦C century−1. In other words,62

for a change in the local heat storage rate to be comparable to the change in ocean heat transport63
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divergence, there would need to be a change in centennial temperature trends averaged over the64

full-depth control region of this magnitude. If, instead, I take V = 1.2–1.9×1016 m3 (the volume65

of the top 700 m in the northern North Atlantic), then the required change in centennial temperature66

trends becomes δ
(
δΘ
/
δt
)
∼ 2.8–6.6◦C century−1. Such magnitudes are substantially larger than67

estimated changes in large-scale temperature trends in the Atlantic over the 20th century compared68

to previous centuries9. So, I conclude that local heat storage, while possibly making higher-order69

contributions to the budget, can be neglected in this lowest-order-of-magnitude exercise.70

S2 Residual analysis71

Various residual terms appear in the Bayesian model equations (see Methods). When building72

the algorithm, I made certain assumptions regarding the spatial and temporal structures of these73

residuals. To test whether these assumptions are appropriate given the data, I undertake a residual74

analysis, using the model equations to solve for the sea-level innovations ek, tide-gauge errors dk,75

transport innovations wk, cable-data errors u, tide-gauge error trends a and tide-gauge data bias `.76

I made the assumption that ek, dk, wk, and u behave as iid temporal white noise. If this77

assumption is reasonable, then the posterior solutions should look random in time. However, if78

systematic structure is present, it would mean that this assumption is inappropriate, and that the79

model is misspecified given the data. Time series of posterior ek and dk solutions are shown80

in Supplementary Figure 8a, 8b for an arbitrary target location, while model solutions for wk81

and u are shown in Supplementary Figure 8c, 8d. These time series look random in time, and82
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there are no obvious signs of autocorrelation. The amplitudes of ek, dk, and wk variations are83

consistent with posterior solutions for the respective variance or partial sill parameters σ2, δ2, and84

ω2 (Supplementary Table 6), and the magnitude of fluctuations in u is in keeping with the prior85

error variances placed on the submarine-cable data.86

To be more thorough, I compute sample autocorrelation coefficients directly from the poste-87

rior solutions for ek, dk, wk, and u across all space and time points. I compare those values to the88

autocorrelation coefficients expected theoretically for temporal white noise, given the same num-89

ber of time steps. Supplementary Figure 9 compares the empirical and theoretical autocorrelation90

coefficients for time lags between 1 and 20 y. Values calculated empirically from the posterior91

solutions are consistent with the theoretically expected values. More quantitatively, 96%, 95%,92

93%, and 95% of empirical autocorrelation coefficients computed respectively from ek, dk, wk,93

and u are captured by the theoretical 95% confidence intervals.94

In addition to being random in time, ek and dk are supposed to have spatially invariant95

amplitudes. In Supplementary Figure 10, I map median estimates of standard deviations computed96

empirically from the posterior model solutions of ek and dk at each tide-gauge location. While97

there is some higher-order spatial variation, these values are to lowest order fairly uniform and98

constant in space, and very similar to the posterior estimates of the partial sill σ2 and variance99

parameter δ2 (Supplementary Table 6).100

Motivated by past studies10, 11, I assume that ek is spatially structured, such that there is co-101

variance between sites along the Caribbean, Central America, and South America, and between102
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sites on the southeastern USA, but no covariance between these two broad regions. These as-103

sumptions are reflected in the block structure of the theoretical covariance matrix Σ shown in104

Supplementary Figure 11b computed from the posterior median solution for the partial sill σ2
105

(Supplementary Table 6). This theoretical covariance matrix is very similar to the covariance ma-106

trix determined empirically by comparing all pairs of posterior solutions for ek (Supplementary107

Figure 11a). Indeed, the Pearson correlation coefficient between the two matrices in Supplemen-108

tary Figure 11 is 0.91, and the theoretical covariance matrix explains 82% of the variance in the109

empirical covariance matrix.110

Finally, I consider residual spatial fields of the tide-gauge data biases `− ν1 and error trends111

a. According to the data-level Eq. (5) for the tide gauges, these two vectors should have zero mean,112

no spatial correlation, and spatial variances of τ 2 and γ2, respectively. Supplementary Figure 12113

facilitates an assessment of these assumptions, showing both posterior solutions for `− ν1 and a114

as well as the solutions expected for a zero-mean random process given the posterior solutions for115

τ 2 and γ2 (Supplementary Table 6). Consistent with model assumptions, these vector fields look116

fairly random, scattered about zero. The spatial spread in `− ν1 and a appears consistent with the117

posterior τ 2 and γ2 solutions. Indeed, 95% of the posterior `−ν1 solutions are captured by the 95%118

credible intervals predicted for a zero-mean, spatially uncorrelated Gaussian process with variance119

τ 2, and similarly 95% of posterior solutions for a fall within the 95% credible interval produced120

by simulating a zero-mean random normal field with variance γ2 (Supplementary Figure 12).121

In conclusion, the design of my Bayesian algorithm is supported by residual analysis, which122
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demonstrates that the model structure is appropriate and warranted given the available data.123

S3 Sensitivity of model solutions to input data124

Posterior solutions for Florida Current transports presented in the main text are based on the as-125

similation of submarine cable data over 1982–2018 with specified standard errors of 0.30–0.35 Sv126

(see Methods). To quantify how robust or sensitive the solutions are to the duration of the data127

and the selected standard errors, I perform two additional data assimilation experiments. In the128

first sensitivity experiment, I double the standard errors on the cable data given to the Bayesian129

algorithm during 1982–2018. I refer to this experiment as the “double-error” experiment. For130

clarity, in this section, I call the Bayesian model solution presented in the main text the “baseline”131

experiment. In the second sensitivity experiment, I maintain the original standard errors, but I give132

the Bayesian algorithm cable measurements for the period 2000–2018, withholding data values133

during 1982–1998. (Due to an outage in the observing system, no data are available for 1999.) I134

call this experiment the “half-data” experiment.135

Salient features of the two sensitivity experiments are summarized alongside the baseline ex-136

periment in Supplementary Figure S13. Baseline and double-error solutions are, in many respects,137

very similar. For example, time series of Florida Current transport, transport trend over 1909–2018,138

and regression coefficient between transport and sea-level difference across the Florida Straits from139

these two experiments are nearly the same (cf. blue and orange in Supplementary Figure S13). One140

difference is that the widths of the posterior 95% credible intervals on the transport during 1982–141
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2018 (i.e., the period when transport observations are available) are about twice as large in the142

double-error experiment compared to the baseline experiment (Supplementary Figure S13a). This143

is consistent with the larger standard errors placed on the data in the former experiment. In sum,144

I conclude that model solutions are generally quantitatively insensitive to reasonable alternative145

specifications of the standard error on the cable transport measurements.146

Solutions from the half-data experiment (yellow in Supplementary Figure S13) show simi-147

larities to the other two solutions, but can show larger uncertainty. This is unsurprising, since the148

half-data experiment has fewer data constraints. For example, whereas the posterior 95% credible149

intervals on the 110-y transport trend are −1.7± 3.7 and −1.6± 3.9 Sv century−1 in the baseline150

and double-error experiments, in the half-data experiment it is −2.3± 6.9 Sv century−1. The fact151

that uncertainties from the double-error experiment are smaller than from the half-data experiment152

suggests that having more observations with larger errors is more informative for constraining the153

transport history than having fewer observations that have smaller errors. Importantly, although the154

trend from the half-data experiment is more uncertain in an absolute sense, the sign of the trend is155

similarly determined in all three experiments. I find that 82%, 80%, and 77% of trend solutions in156

the baseline, double-error, and half-data experiments are negative (Supplementary Figure S13b).157

That is, all three experiments suggest that Florida Current transport probably declined over the past158

century. Thus, I reason that the main findings in this study are qualitatively robust to reasonable159

alternative choices for the duration of the transport data assimilated into the Bayesian algorithm.160
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S4 Synthetic data experiments161

In the half-data experiment, ∼ 90% of the observed but withheld Florida Current transport values162

during 1982–1999 fall within the pointwise posterior 95% credible intervals on the transport. This163

suggests that the uncertainties estimated by the Bayesian algorithm are reasonable. To more thor-164

oughly evaluate the meaningfulness of the posterior solutions generated by the Bayesian algorithm,165

I perform a number of synthetic data (or pseudo-proxy) experiments. In these experiments, I take a166

set of known processes and corrupt them to look like the observations, and I then apply the model167

to these corrupted process values. By comparing the posterior solutions to the known (withheld)168

values, I can quantify the accuracy and precision of the error bars furnished by the model (e.g., are169

∼ 95% of the true values actually captured by the posterior 95% credible intervals?).170

First experiment—perfect model I run a perfect model experiment. I choose, from the ensemble171

of posterior model solutions presented in the main text, the array of scalar parameter solutions172 (
T , r, σ2, . . .

)
from the ensemble member that minimizes the Mahalanobis distance to the mean173

parameter array. Using these scalar parameter values, I simulate synthetic versions of the sea-174

level and transport processes based on the process-level equations. Using the data-level equations,175

I generate synthetic tide-gauge and submarine-cable data by adding noise, bias, and gaps to the176

simulated processes, as in the real world, and I apply the Bayesian model to these synthetic data.177

Results are summarized in Supplementary Table 7 and Supplementary Figure 14. For 13178

out of the 14 scalar parameters, or ∼ 93%, the true value is captured by the corresponding 95%179

posterior credible interval from the model (Supplementary Table 7). Considering vector fields, I180
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find that 100%, 98%, and 100% of the true values for regional sea-level trends b, tide-gauge biases181

`, and tide-gauge error trends a respectively fall within the corresponding pointwise posterior182

95% credible intervals (not shown). In terms of the processes, 98% of the true sea-level values and183

99% of true transport values fall within the estimated pointwise 95% credible intervals, and the184

true transport time series is entirely encompassed by the pathwise 95% posterior credible intervals185

(e.g., Supplementary Figure 14). Together, these results show that the model performs well, and186

that the posterior credible intervals are meaningful, if slightly conservative, roughly capturing the187

correct fraction of true process and parameter values.188

Second experiment—more realistic case The first synthetic data experiment is informative, show-189

ing that the processes and parameters are identifiable given incomplete, noisy, biased data. It is190

also potentially idealistic, since the model is perfectly specified. The equations governing the191

spatiotemporal evolution of the processes, and the relationship between the observations and the192

processes were known perfectly, and the task was to infer the uncertain values of the processes and193

parameters appearing in those equations. While residual analysis suggests that they are appropri-194

ate given the data, the model equations probably represent a simplification of the complex, myriad195

oceanographic and geophysical processes contributing to changes in sea level and transport, and196

their correspondence to observations in the real world. While some degree of model misspecifica-197

tion is inevitable, the salient question is whether the model is robust to misspecification and still198

provides meaningful posterior estimates.199

So, I perform a second synthetic data experiment. Rather than use the process equations to200
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simulate sea level and transport, I bring together output from more complex physical models. I201

begin with ocean dynamics. I take 110 y of monthly Florida Current transport near 27◦N, and202

sea level from each of the model grid cells nearest to the 46 tide gauges from version 2.2.4 of the203

Simple Ocean Data Assimilation (SODA) product13. This version of SODA represents a solution204

to an ocean general circulation model forced at the surface by an atmospheric reanalysis over the205

period 1871–2010 (I use the past 110 y of output covering from 1901 to 2010). The model has206

moderate spatial resolution, with 40 vertical levels and a native 0.25◦ × 0.40◦ horizontal grid in207

longitude and latitude. A version of the solution, which was interpolated onto a regular 0.5◦× 0.5◦
208

horizontal grid, was downloaded from the Asia-Pacific Data-Research Center (APDRC) of the209

University of Hawai’i School of Ocean and Earth Science and Technology. After downloading I210

removed the monthly time series of global-mean sea level and computed annual means from the211

resulting monthly sea-level values.212

The SODA solution represents a tradeoff between spatial resolution and temporal cover-213

age. Coupled climate models are available that cover a comparable or longer time period14, but214

most publicly available solutions have coarser horizontal resolution (nominally ∼ 1◦ in longitude215

and latitude), and may not faithfully represent the Florida Current and coastal sea level. While216

much higher-resolution ocean models are available15 that more accurately portray the complexity217

of Florida Current transport and coastal sea level, these model runs are typically short, and do not218

span the centennial timescales of primary interest here. Thus, while it has its deficiencies (see219

below), SODA is perhaps one of the best-suited ocean models for my purposes. For example,220

Chepurin et al.16 show that version 2.2.4 of SODA simulates interannual-to-decadal variations in221
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coastal sea level along the eastern USA and parts of the Caribbean reasonably well over 1950–222

2011.223

I superimpose static sea-level effects on the dynamic sea-level fields from SODA. I add a224

yearly time series of global-mean sea level due to ocean warming and thermal expansion over225

1901–2010 from the Version 4 of the Community Climate System Model17 (downloaded from226

the Woods Hole Oceanographic Institution’s Community Storage Server). I also include, at each227

tide-gauge location, an estimate of the trend in relative sea level due to the combined effects of228

ongoing glacial isostatic adjustment from Peltier et al.12 (downloaded from the PSMSL) along with229

twentieth-century melting of mountain glaciers and ice sheets due to Hamlington et al.18 (courtesy230

of S. Adhikari, Jet Propulsion Laboratory). Finally, I add time series of a random-in-time but231

correlated-in-space process with zero mean and temporal variance of ∼ (1 cm)2 to simulate sea-232

level changes due to the inverted barometer effect linked with the North Atlantic Oscillation19.233

I apply the data-level equations to these transport and sea-level values, incorporating noise234

and bias, and imparting data gaps so that the synthetic tide-gauge and submarine-cable data are235

only available when and where the true observations are available. These synthetic datasets are236

subsequently fed into the Bayesian model algorithm. The results of this second synthetic data237

experiment are summarized in Supplementary Table 8 and Supplementary Figure 15. In this case,238

only four scalar parameters (those appearing in the data-level equations) are known perfectly. For239

three out of these four parameters, or 75%, the true value is captured by the 95% posterior credible240

intervals from the model (Supplementary Table 8). For one parameter, δ2, the tide-gauge data error241
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variance, the Bayesian model slightly underestimates the true value. Considering the process time242

series, I find that 81% of the true transport values and 95% of the true sea-level values are captured243

by the pointwise 95% posterior credible intervals produced by the Bayesian model, and that, as in244

the previous experiment, the full time series of the true transport is totally captured by the pathwise245

95% posterior credible interval (Supplementary Figure 15).246

It is worth noting that the posterior solution for α, the apparent trend in the transport process247

Eq. (4), suggests that sea level at Settlement Point on Grand Bahama must have risen 0.2 ± 1.6248

mm y−1 faster than at West Palm Beach near West Palm Beach due to processes unrelated to ocean249

dynamics. This is consistent with the trend difference of ∼ 0.1 mm y−1 I imposed between these250

two sites based on model estimates of GIA and contemporary ice melt12, 18, demonstrating that the251

model succeeds in separating static and dynamic sea-level trends.252

Recall that my Bayesian model assumes that the transfer coefficient ρ between sea level and253

transport is a fixed constant. To test this assumption, I consider in more detail time series of Florida254

Current transport and sea-level difference across Florida Straits from SODA. Transport and sea-255

level difference are highly correlated with one another (Pearson correlation coefficient of ∼ 0.9),256

and a linear regression suggests that transport increases by ∼ 0.9 Sv for every 1-cm increase in257

sea level difference, consistent with a visual inspection of the two time series (Supplementary Fig-258

ure 4a). To study the correspondence as a function of frequency band, I apply admittance and259

coherence analysis to the model output. Transport and sea-level difference are significantly coher-260

ent at all accessible periods from 2- to 32-y (Supplementary Figure 4b), in agreement with basic261
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expectations from geostrophy. Moreover, the transfer function (using sea-level difference as the262

input and transport as the output) is qualitatively insensitive to frequency band, with similar val-263

ues found at interannual and multidecadal timescales (Supplementary Figure 4c). Importantly, the264

Bayesian model posterior estimate for the transfer coefficient ρ is consistent with SODA and over-265

laps the values obtained from the admittance analysis (Supplementary Figure 4c). This suggests266

that it is reasonable to assume that there is a constant transfer coefficient between sea-level differ-267

ence and transport on the timescales of this study, and also that the Bayesian model successfully268

infers the correct transfer-coefficient value.269

Note that the Florida Current transport from SODA is suspicious (Supplementary Figure 15c).270

Mean transport is ∼ 51 Sv, growing from ∼ 42 Sv at the beginning of the period to ∼ 56 Sv at271

the end. This value is ∼ 60% larger than the average value observed by submarine cable since272

1982, and∼ 10 Sv larger than the largest annual transport value inferred at any time in the original273

Bayesian model solution discussed in the main text. The striking increase of ∼ 14 Sv over the274

110-y run is extreme in light of the more subtle trend estimates produced by the original Bayesian275

model solution (cf. Figure 2a; Supplementary Figure 15c). Although it is imperfect, in that it does276

not realistically represent the true evolution of the Florida Current over the past century, SODA is277

nevertheless informative in the present context. For establishing the ability of the Bayesian algo-278

rithm to infer the parameters and processes from imperfect data, I do not require that the SODA279

reproduces observed reality, but rather that it portrays a physically plausible scenario, and that the280

basic “statistics” (e.g., spatiotemporal covariance structure, relationship between state variables,281

etc.) are believable.282
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In sum, I conclude that, even in a more complex setting, my Bayesian model performs rea-283

sonably well, giving uncertainty estimates that roughly capture the correct fraction of true values.284
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Region Site Lon (◦W) Lat (◦N) Duration (years) Rate (mm y−1) Error (mm y−1)
Florida AOML 80.1622 25.7347 6.37 0.42 0.74
Florida CCV6 80.5455 28.4600 6.93 -2.80 0.74
Florida MIA3 80.1602 25.7328 11.00 -0.17 0.80
Bahamas EXU0 75.8734 23.5640 6.50 -1.70 0.74
Bahamas NAS0 77.4623 25.0525 6.51 -2.03 2.42

Table S1: Summary of GPS data from Version 6a of the dataset from Université de la

Rochelle20 used to estimate the difference in static sea-level rate across Florida Straits due to

differential land motion quoted in the main text. Duration is the length of the data record.

Error is twice the formal standard error provided with the dataset. Assuming errors are

independent, the average rate across the two Bahamas sites is −1.87± 1.27 mm y−1 and

the average rate across the three southeastern Florida sites is −0.85± 0.44 mm y−1. The

difference between the former and latter average values is −1.02 ± 1.34 mm y−1, which

represents the rate of differential vertical land motion across Florida Straits quoted in the

main text. Multiplying by −1 to convert from the land-motion frame to the sea-level frame

gives the value of 1.0± 1.3 mm y−1 quoted in the main text.
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Region Site Reference Lon (◦W) Lat (◦N) age (y BP) sea level (m)
Florida Florida Bay Love et al.21 80.6 25 1260± 275 −1.34± 1.27

890± 290 −0.83± 1.39
400± 335 −1.00± 1.26

Florida Bear Point Love et al.21 80.3 27.4 1930± 350 −0.93± 1.45
1380± 225 −1.13± 1.45
1120± 215 −0.83± 1.45

Bahamas Acklins Island Khan et al.22 73.9 22.5 1048± 490 −1.64± 1.14
698± 392 −1.23± 1.26
398± 500 −1.08± 1.22
242± 484 −0.97± 1.18

Table S2: Proxy sea-level index points from southeastern Florida and the Bahamas used to

estimate the difference in the rate of late-Holocene sea-level change across Florida Straits

quoted in the main text. Latitudes and longitudes have been rounded to the nearest tenth

of a degree. The “y BP” abbreviation stands for years before present, where present

is 1950. The ± values are twice the standard errors on the age and sea-level values

provided in the given references. Using ordinary least squares to fit a trend line to the

index points at each site, and ignoring age and sea-level uncertainty, I compute trends

of 0.36 ± 0.97, 0.05 ± 0.73 and 0.81 ± 0.22 mm y−1 at Florida Bay, Bear Point, and Ack-

lins Island, respectively, where ± is twice the formal standard error furnished by ordinary

least squares assuming independent data. The average of the two trends from southeast-

ern Florida is thus 0.20 ± 0.61 mm y−1 and so the difference between the Bahamas and

southeastern Florida is 0.6± 0.6, which is the value quoted in the main text.
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No. Location Lon (◦E) Lat (◦N) Timespan (Completeness) Coast
1 Cristóbal −79.9167 9.35 1909–1979 (100%) 904
2 Puerto Limon −83.0333 10 1949–1968 (90%) 906
3 Cartagena −75.55 10.4 1949–1992 (68%) 902
4 Riohacha −72.9167 11.55 1953–1969 (82%) 902
5 Fort-de-France II −61.0632 14.6015 2006–2017 (100%) 912
6 Santo Tomás de Castilla −88.6167 15.7 1965–1980 (75%) 916
7 Puerto Cortes −87.95 15.8333 1948–1968 (100%) 908
8 Puerto Castilla −86.0333 16.0167 1956–1968 (100%) 908
9 Lime Tree Bay −64.7533 17.6933 1986–2015 (80%) 939

10 Port Royal −76.85 17.9333 1955–1969 (100%) 932
11 Magueyes Island −67.045 17.97 1955–2016 (90%) 938
12 Barahona −71.0833 18.2 1955–1969 (67%) 936
13 Charlotte Amalie −64.92 18.335 1976–2016 (61%) 939
14 San Juan −66.115 18.4583 1963–2016 (81%) 938
15 Port-au-Prince −72.35 18.5667 1950–1961 (100%) 934
16 South Sound −81.3833 19.2667 1976–1993 (89%) 931
17 North Sound −81.3167 19.3 1976–1996 (86%) 931
18 Puerto Plata −70.7 19.8167 1950–1969 (70%) 936
19 Cabo Cruz −77.7333 19.8333 1993–2017 (76%) 930
20 Guantanamo Bay −75.1467 19.9067 1938–1971 (85%) 930
21 Gibara −76.125 21.1083 1976–2016 (100%) 930
22 Nuevitas Punta Practico −77.1095 21.5913 1992–2017 (35%) 930
23 Casilda II −79.9917 21.7533 1984–2014 (48%) 930
24 Cabo de San Antonio −84.9 21.9 1973–2017 (60%) 930
25 Isabela de Sagua −80.0167 22.9333 2000–2016 (71%) 930
26 Key West −81.8067 24.555 1913–2018 (97%) 940
27 Vaca Key −81.105 24.7117 1990–2017 (79%) 940
28 Key Colony Beach −81.0167 24.7183 1978–1994 (71%) 940
29 Virginia Key −80.1617 25.73 1995–2017 (87%) 960
30 Miami Beach −80.1317 25.7683 1932–1980 (92%) 960
31 Naples −81.8067 26.1317 1966–2017 (83%) 940
32 West Palm Beach −80.0333 26.6117 1974–2017 (36%) 960
33 Settlement Point −78.9833 26.6833 2005–2015 (82%) 941
34 Settlement Point −78.9967 26.71 1986–2000 (67%) 941
35 Trident Pier −80.5917 28.415 1995–2017 (91%) 960
36 Daytona Beach Shores −80.9633 29.1467 1967–1983 (71%) 960
37 Daytona Beach −81 29.2333 1925–1969 (51%) 960
38 Jacksonville −81.6167 30.35 1954–1967 (100%) 960
39 Mayport −81.4317 30.3933 1929–1999 (99%) 960
40 Mayport −81.4283 30.3983 2001–2017 (94%) 960
41 Fernandina Beach −81.465 30.6717 1909–2018 (78%) 960
42 Fort Pulaski −80.9017 32.0333 1935–2018 (95%) 960
43 Charleston −79.925 32.7817 1922–2018 (100%) 960
44 Springmaid Pier −78.9183 33.655 1978–2017 (60%) 960
45 Myrtle Beach −78.885 33.6833 1958–1977 (55%) 960
46 Wilmington −77.9533 34.2267 1936–2018 (95%) 960

Table S3: Descriptions of tide-gauge sea-level records used in this study. “Completeness” is

the percentage of timespan during which data are available. “Coast” number is the code

used by the PSMSL to indicate the country and coastline of measurement.
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Parameter Description

η0 Sea-level initial condition

ηk Sea-level values at time tk

T Transport time-mean value

Tk Transport value at time tk

b Spatial vector of regional trends in sea level

a Spatial vector of local trends in sea level

` Spatial vector of tide-gauge biases

r AR(1) coefficient of sea level

µ Mean value of regional trends in sea level

ν Mean value of tide-gauge biases

ρ Transport change per unit sea-level difference

α Transport trend correction

π2 Partial sill of regional trends in sea level

σ2 Partial sill of sea-level innovations

δ2 Tide-gauge error variance

τ 2 Spatial variance in observational biases

γ2 Variance of local trends in sea level

ω2 Variance of transport noise correction

φ Inverse range of sea-level innovations

λ Inverse range of regional trends in sea level

Table S4: Descriptions of model processes and parameters.
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Parameter Prior Distribution Hyperparameter Values

η0 N
(
η̃η0

1, ζ̃2
η0

I
)

η̃η0
= −0.2 m , ζ̃2

η0
= (7.6× 10−2 m)2

T N
(
η̃T , ζ̃

2
T

)
η̃T = 32 Sv , ζ̃2

T
= (5.2 Sv)2

r U (ũr, ṽ
2
r) ũr = 0.0 , ṽ2

r = 1.0

µ N
(
η̃µ, ζ̃

2
µ

)
η̃µ = 3.4× 10−3 m y−1 , ζ̃2

µ = (2.7× 10−2 m y−1)2

ν N
(
η̃ν , ζ̃

2
ν

)
η̃ν = 7.0 m , ζ̃2

ν = (0.6 m)2

ρ N
(
η̃ρ, ζ̃

2
ρ

)
η̃ρ = 0.0 Sv m−1 , ζ̃2

ρ = (190 Sv m−1)2

α N
(
η̃α, ζ̃

2
α

)
η̃α = 0.0 Sv y−1 , ζ̃2

α = (0.3 Sv y−1)2

π2 IG
(
ξ̃π2 , χ̃2

π2

)
ξ̃π2 = 0.5 , χ̃2

π2 = (1.9× 10−3 m y−1)2

σ2 IG
(
ξ̃σ2 , χ̃2

σ2

)
ξ̃σ2 = 0.5 , χ̃2

σ2 = (1.8× 10−2 m)2

δ2 IG
(
ξ̃δ2 , χ̃

2
δ2

)
ξ̃δ2 = 0.5 , χ̃2

δ2 = (7.1× 10−3 m)2

τ 2 IG
(
ξ̃τ2 , χ̃

2
τ2

)
ξ̃τ2 = 0.5 , χ̃2

τ2 = (8.5× 10−2 m)2

γ2 IG
(
ξ̃γ2 , χ̃

2
γ2

)
ξ̃γ2 = 0.5 , χ̃2

γ2 = (7.1× 10−4 m y−1)2

ω2 IG
(
ξ̃ω2 , χ̃2

ω2

)
ξ̃ω2 = 0.5 , χ̃2

ω2 = (0.7 Sv)2

φ LN
(
η̃φ, ζ̃

2
φ

)
η̃φ = −7.0 log km−1 , ζ̃2

φ = (2.2 log km−1)2

λ LN
(
η̃λ, ζ̃

2
λ

)
η̃λ = −6.9 log km−1 , ζ̃2

λ = (0.4 log km−1)2

Table S5: Prior distributions and hyperparameters. Hyperparameters are denoted with

tildes to distinguish them from the other (uncertain) model parameters. The scripts are:

N normal (or multivariate normal) distribution with mean η̃ and variance ζ̃2; U uniform

distribution with lower bound ũ and upper bound ṽ; IG inverse-gamma distribution with

shape ξ and scale χ; LN log-normal distribution with “mean” η̃ and “variance” ζ̃2.
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Parameter Units R̂ Median Value 95% CI Width Ratio

T Sv 1.001 32.6317 [31.2047, 34.0538] 0.13837

α Sv y−1 1.0007 −0.013584 [−0.054013, 0.0293] 0.085205

r — 1.0066 0.55246 [0.47413, 0.63057] 0.16441

µ (×103) m y−1 1.0007 2.6671 [1.1105, 4.2612] 0.028929

ν m 0.99976 6.9845 [6.9619, 7.0065] 0.018982

ρ Sv m−1 0.9996 21.3501 [10.4544, 32.4271] 0.029465

π2 (×106) (m y−1)2 1.0001 (1.1673)2 [(0.75971)2, (1.9104)2] 0.00056614

σ2 (×106) m2 1.0019 (26.2588)2 [(24.4292)2, (28.3339)2] 0.00024641

δ2 (×106) m2 0.99995 (8.3539)2 [(7.3177)2, (9.4754)2] 0.00037666

τ 2 (×106) m2 0.99973 (66.9832)2 [(54.0808)2, (85.3079)2] 0.00040194

γ2 (×106) (m y−1)2 0.99995 (0.6992)2 [(0.40244)2, (1.1171)2] 0.00090338

ω2 Sv2 0.9997 (0.708)2 [(0.4832)2, (1.0033)2] 0.00058865

φ (×103) km−1 1.0025 0.68742 [0.52277, 0.87158] 0.0040641

λ (×103) km−1 1.0005 0.8429 [0.43847, 1.6407] 0.80349

Table S6: Summary of posterior solutions for scalar parameters. The symbol R̂ is a con-

vergence monitor of Gelman and Rubin23, such that values near 1 indicate convergence.

Median Value and 95% credible interval (CI) are computed from the ensemble of posterior

model solutions. The Width Ratio is defined as ratio of the width of the posterior 95% CI

to the prior 95% CI width.
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Parameter Units Truth Median Value 95% CI

T Sv 32.8942 32.0523 [30.9524, 33.0873]

α Sv y−1 −0.018899 −0.023436 [−0.059135, 0.0090315]

r — 0.54595 0.53247 [0.46355, 0.60654]

µ (×103) m y−1 2.977 3.1574 [1.2438, 5.1438]

ν m 6.9876 6.9947 [6.9739, 7.0165]

ρ Sv m−1 23.5497 20.974 [14.9067, 27.6991]

π2 (×106) (m y−1)2 (1.078)2 (1.4473)2 [(0.94505)2, (2.2444)2]

σ2 (×106) m2 (26.443)2 (25.5557)2 [(23.6732)2, (27.7207)2]

δ2 (×106) m2 (8.7092)2 (9.2437)2 [(8.3297)2, (10.1856)2]

τ 2 (×106) m2 (67.1828)2 (66.178)2 [(54.0051)2, (83.3185)2]

γ2 (×106) (m y−1)2 (0.64645)2 (0.80521)2 [(0.54918)2, (1.1481)2]

ω2 Sv2 (0.77083)2 (0.34671)2 [(0.23695)2, (0.51894)2]

φ (×103) km−1 0.63572 0.60636 [0.46714, 0.78344]

λ (×103) km−1 0.79168 0.83584 [0.44534, 1.6007]

Table S7: Summary of first synthetic data experiment. Comparison between the true (with-

held) parameter values and the posterior model estimates.

25



Parameter Units True Value Median Value 95% CI

ν m 6.9876 6.9707 [6.9506, 6.9918]

δ2 (×106) m2 (8.7092)2 (7.2674)2 [(6.4296)2, (8.1361)2]

τ 2 (×106) m2 (67.1828)2 (62.0712)2 [(50.8668)2, (78.9978)2]

γ2 (×106) (m y−1)2 (0.64645)2 (0.80316)2 [(0.55894)2, (1.1291)2]

Table S8: Summary of second synthetic data experiment. Comparison between the true

(withheld) parameter values and the posterior model estimates.
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335

Figure S1 Some aspects of the posterior solution. a, Blue (orange) is the histogram of336

the mean of the transport T in units of Sv over the 1909–2018 study period (1982–2018).337

b, Histogram of the transport trend ρbT∆ + α over 1909–2018 (Sv century−1). c, Blue338

(orange) is the histogram of the change in transport T in units of Sv between 1997/1998339

to 1999/2000 (1999/2000 to 2001/2002). d, Histograms of decadally averaged transport340

T in units of Sv: blue 1922–1932; orange 1956–1966; yellow 1946–1956; and purple341

1986–1996. See Supplementary Table 4 for descriptions of symbols.342
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343

Figure S2 Wavelet coherences. Magnitude squared wavelet coherence between Florida344

Current transport T and a, North Atlantic Oscillation and b, Atlantic Multidecadal Variabil-345

ity. Values are computed as follows. For each ensemble member, the wavelet coherence346

is computed between the transport solution and the climate index. For the same ensemble347

member, two random time series are generated, which have identical Fourier amplitudes348

to the transport solution and climate index, but randomized phases, and the wavelet co-349

herence between the random time series is computed. Shaded colors represent medians350

of the set of wavelet-coherence values computed between all transport solutions and351

the given climate index. Black contouring indicates where 68% of wavelet coherences352

computed between transport solutions and the climate index exceed the value calculated353

between the pairs of random time series.354
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355

Figure S3 More aspects of the posterior solution. a, Histogram of posterior solutions for356

the regression coefficient ρ (Sv cm−1) between sea-level difference across Florida Straits357

and Florida Current transport. b, Histogram of posterior solutions for the total (blue), static358

(orange), and dynamic (yellow) trends in sea-level difference across Florida Straits, which359

are computed respectively as bT∆, −α/ρ, and bT∆ + α/ρ (mm y−1) (cf. Methods). See360

Supplementary Table 4 for descriptions of symbols.361
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362

Figure S4 Sea level and transport from SODA. a, Blue (orange) is the annual time se-363

ries of sea-level difference across Florida Straits between Grand Bahama and West Palm364

Beach (Florida Current transport) during 1871–2010 from the SODA ocean model solu-365

tion. Note that both time series have been detrended. b, Black line is magnitude-squared366

coherence between sea-level difference and transport the first 128 y of the SODA model367

solution (1871–1998). All values are statistically significant at the 95% confidence level368

based on comparison against calculations with synthetic time series. c, Black line is am-369

plitude of the transfer function from an admittance calculation using sea-level difference370

as the input and transport as the output. Gray shading is the 95% posterior credible in-371

terval on the transfer coefficient ρ from a synthetic data experiment based on the SODA372

model solution (see Supplementary Information). Admittance and coherence calculations373

are based on Welch’s method using a window length of 32 and 50% overlap.374
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375

Figure S5 Locations of ancillary observational assets. Shaded squares are tide-gauge376

locations (blue is Settlement Point; orange is Virginia Key; yellow is West Palm Beach).377

Shaded circles are the along-track satellite-altimeter data points that are nearest the cor-378

responding tide gauge. Light gray criss-crossing marks ascending and descending al-379

timeter tracks. Green + symbols denote locations of GPS stations (cf. Supplementary380

Table 1). Purple × symbols are the locations of proxy sea-level indicators (cf. Supple-381

mentary Table 2).382

31



383

Figure S6 Altimetric sea-surface height. Monthly time series of anomalous sea-surface384

height from satellite altimetry near a, Settlement Point, Bahamas, b, Virginia Key, Florida,385

and c, the difference between the two time series. Values shown here are calculated by386

bin averaging the raw 1-Hz data provided by Birol et al.24 by year and month. A mean387

seasonal cycle (annual and semi-annual harmonics) has been removed in each case.388

See Supplementary Figure S5 for the locations of the time series.389
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390

Figure S7 Characteristics of tide-gauge data. a, Record length of tide-gauge records391

(number of y between the first and last measurements made during the study period).392

Yellower (bluer) colors indicate longer (shorter) records. b, Record completeness (per-393

centage of y during the record length for which annual data are available). Yellower (bluer)394

colors indicate more (less) complete records. c, Number of tide gauges returning annual395

sea-level data during the course of the study period.396
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397

Figure S8 Examples of residual time series. Posterior median (solid lines) and pointwise398

95% credible intervals (light shading) of the sea-level a, process innovations ek and b,399

data errors dk at the San Juan (Puerto Rico) tide gauge. Posterior median (solid lines)400

and pointwise 95% credible intervals (light shading) of the transport c, noise sequence wk401

and d, data errors uk.402
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403

Figure S9 Autocorrelation of the residuals. Posterior medians (solid black) and pointwise404

95% credible intervals (gray shading) of the sample autocorrelation coefficient computed405

empirically from posterior solutions for the a, sea-level process innovations ek, b, sea-406

level data errors dk, c, transport noise sequence wk, and d, transport data errors uk. Solid407

and dashed blue lines are the mean ± twice the standard error on the autocorrelation408

coefficients expected theoretically from white noise with the same temporal degrees of409

freedom.410
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411

Figure S10 Amplitude of sea-level residual time series. Median values of the standard412

deviation (m) computed from posterior solutions for the sea-level a, process innovations413

ek and b, data errors dk at all tide-gauge locations.414
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415

Figure S11 Spatial covariance of sea-level process innovations. Covariance (m2) between416

all pairs of sea-level process innovations ek computed a, empirically based on posterior417

solutions for ek and a, theoretically using posterior solutions for σ2 (Supplementary Ta-418

ble 6) and the assumed covariance structure Eq. (2). The “tide-gauge number” along x-419

and y-axes refer to the values given in the leftmost column in Supplementary Table 3.420
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421

Figure S12 Spatial structure of tide-gauge residual vectors. Posterior medians (black422

dots) and pointwise 95% credible intervals (black lines) for the tide-gauge a, data-bias423

anomalies ` − ν1 (m) and b, error trends a (mm y−1). Also shown are the means (solid424

blue) and 95% credible intervals on these fields estimated from their assumed functional425

forms and posterior solutions for the respective variance parameters τ 2 and γ2 (Supple-426

mentary Table 6).427
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428

Figure S13 Sensitivity of Bayesian model solution to input transport data. Summary of429

results from sensitivity experiments using different forms of the Florida Cable transport430

data. a, Time series of transport (thick lines are posterior medians; thin lines bound431

the posterior 95% pointwise credible intervals). b, Histograms of the 110-y trend (1909–432

2018) in Florida Current transport. c, Regression coefficient between sea-level difference433

across Florida Straits and Florida Current transport. Blue values are from the “baseline”434

model experiment discussed in the main text. Orange values are based on an “double435

error” experiment wherein the standard errors on the transport data during 1982–2018436

are doubled. Yellow values are based on a “half data” experiment where the algorithm437

is only given the cable data during the period 2000–2018 and the 1982–1998 values are438

withheld. (There is no transport data value for 1999 due to a 20-month outage in the cable439

observations.)440
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441

Figure S14 Examples of results from first synthetic data experiment. Synthetic observa-442

tions (red), true values (black), and posterior medians (thick blue), pointwise (blue shad-443

ing) and pathwise (dashed blue) 95% credible intervals, and an arbitrary ensemble mem-444

ber (thin blue) of a, sea level at the Port-au-Prince (Haiti) tide gauge, a, sea level at the445

Key West (USA) tide gauge, and c, Florida Current transport.446
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447

Figure S15 Examples of results from second synthetic data experiment. Synthetic ob-448

servations (red), true values (black), and posterior medians (thick blue), pointwise (blue449

shading) and pathwise (dashed blue) 95% credible intervals, and an arbitrary ensemble450

member (thin blue) of a, sea level at the Port-au-Prince (Haiti) tide gauge, a, sea level at451

the Key West (USA) tide gauge, and c, Florida Current transport.452
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