### Outsized contribution of the semi-arid ecosystems to interannual variability in North American ecosystems

Brendan Byrne<sup>1,1</sup>, Junjie Liu<sup>2,2</sup>, A. Anthony Bloom<sup>3,3</sup>, Kevin W. Bowman<sup>4,4</sup>, Zachary Butterfield<sup>5</sup>, Joanna Joiner<sup>6</sup>, Trevor F. Keenan<sup>7</sup>, Gretchen Keppel-Aleks<sup>8</sup>, Nicholas Cody Parazoo<sup>2</sup>, and Yi YIN<sup>9</sup>

<sup>1</sup>Jet Propulsion Lab
<sup>2</sup>Jet Propulsion Laboratory
<sup>3</sup>Jet Propulsion Laboratory, California Institute of Technology
<sup>4</sup>Jet Propulsion Lab (NASA)
<sup>5</sup>University of Michigan, Ann Arbor
<sup>6</sup>NASA GSFC
<sup>7</sup>Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
<sup>8</sup>University of Michigan-Ann Arbor
<sup>9</sup>California Institute of Technology

November 30, 2022

#### Abstract

Across temperate North America, interannual variability (IAV) in gross primary production (GPP) and net ecosystem exchange (NEE), and their relationship with environmental drivers, are poorly understood. Here, we examine IAV in GPP and NEE and their relationship to environmental drivers using two state-of-the-science flux products: NEE constrained by surface and space-based atmospheric CO2 measurements over 2010–2015 and satellite up-scaled GPP from FluxSat over 2001-2017. We show that the arid western half of temperate North America provides a larger contribution to IAV in GPP (104% of east) and NEE (127% of east) than the eastern half, in spite of smaller magnitude of annual mean GPP and NEE. This occurs because anomalies in western ecosystems are temporally coherent across the growing season leading to an amplification of GPP and NEE. In contrast, IAV in GPP and NEE in eastern ecosystems are dominated by seasonal compensation effects, associated with opposite responses to temperature anomalies in spring and summer. Terrestrial biosphere models in the MsTMIP ensemble generally capture these differences between eastern and western temperate North America, although there is considerable spread between models.

# Contrasting regional carbon cycle responses to seasonal climate anomalies across the east-west divide of temperate North America

## B. Byrne<sup>1</sup>, J. Liu<sup>1,2</sup>, A. A. Bloom<sup>1</sup>, K. W. Bowman<sup>1</sup>, Z. Butterfield<sup>3</sup>, J. Joiner<sup>4</sup>, T. F. Keenan<sup>5,6</sup>, G. Keppel-Aleks<sup>3</sup>, N. C. Parazoo<sup>1</sup>, and Y. Yin<sup>2</sup>

| 6  | <sup>1</sup> Jet Propulsion Laboratory, California Institute of Technology, CA, USA                               |
|----|-------------------------------------------------------------------------------------------------------------------|
| 7  | <sup>2</sup> Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA |
| 8  | <sup>3</sup> Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI,     |
| 9  | USA                                                                                                               |
| 10 | <sup>4</sup> Goddard Space Flight Center, Greenbelt, MD 20771, USA                                                |
| 11 | <sup>5</sup> Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California,  |
| 12 | USA                                                                                                               |
| 13 | <sup>6</sup> Department of Environmental Science, Policy and Management, University of California, Berkeley,      |
| 14 | Berkeley, California, USA                                                                                         |

| <ul> <li>GPP and NEE IAV in western temperate North America is characterized by amplification, with enhance uptake in cooler-wetter conditions.</li> <li>GPP and NEE IAV in eastern temperate North America is characterized by compensating anomalies between spring and summer.</li> <li>The MsTMIP models generally capture these east-west differences in NEE and</li> </ul> |    |                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------|
| <ul> <li>GPP and NEE IAV in eastern temperate North America is characterized by compensating anomalies between spring and summer.</li> </ul>                                                                                                                                                                                                                                     | 16 | • GPP and NEE IAV in western temperate North America is characterized by am- |
| <sup>19</sup> pensating anomalies between spring and summer.                                                                                                                                                                                                                                                                                                                     | 17 | plification, with enhance uptake in cooler-wetter conditions.                |
| 1 0 1 0                                                                                                                                                                                                                                                                                                                                                                          | 18 | • GPP and NEE IAV in eastern temperate North America is characterized by com |
| • The MsTMIP models generally capture these east-west differences in NEE and                                                                                                                                                                                                                                                                                                     | 19 | pensating anomalies between spring and summer.                               |
|                                                                                                                                                                                                                                                                                                                                                                                  | 20 | • The MsTMIP models generally capture these east-west differences in NEE and |

GPP IAV.

Key Points:

4 5

15

21

Corresponding author: Brendan Byrne, brendan.k.byrne@jpl.nasa.gov

#### 22 Abstract

Across temperate North America, interannual variability (IAV) in gross primary produc-23 tion (GPP) and net ecosystem exchange (NEE), and their relationship with environmen-24 tal drivers, are poorly understood. Here, we examine IAV in GPP and NEE and their 25 relationship to environmental drivers using two state-of-the-science flux products: NEE 26 constrained by surface and space-based atmospheric  $CO_2$  measurements over 2010–2015 27 and satellite up-scaled GPP from FluxSat over 2001–2017. We show that the arid west-28 ern half of temperate North America provides a larger contribution to IAV in GPP (104%)29 of east) and NEE (127% of east) than the eastern half, in spite of smaller magnitude of 30 annual mean GPP and NEE. This occurs because anomalies in western ecosystems are 31 temporally coherent across the growing season leading to an amplification of GPP and 32 NEE. In contrast, IAV in GPP and NEE in eastern ecosystems are dominated by sea-33 sonal compensation effects, associated with opposite responses to temperature anoma-34 lies in spring and summer. Terrestrial biosphere models in the MsTMIP ensemble gen-35 erally capture these differences between eastern and western temperate North America, 36 although there is considerable spread between models. 37

#### 38 1 Introduction

Interannual variations (IAV) in climate are a major driver of IAV in gross primary 39 productivity (GPP) and net ecosystem exchange (NEE). Understanding the relationship 40 between ecosystems and climate variability is important for predicting the response of 41 ecosystems to climate variability, such as droughts and heatwaves, as well as the response 42 of ecosystems to climate change (Cox et al., 2013; Baldocchi, Ryu, & Keenan, 2016; Niu 43 et al., 2017). However, the mechanisms underlying the responses of ecosystems to cli-44 mate variability are still not well understood, and vary between ecosystems (Niu et al., 45 2017; Baldocchi et al., 2018). 46

<sup>47</sup> A long standing challenge in carbon cycle science has been to study IAV in GPP <sup>48</sup> and NEE on large sub-continental spatial scales ( $\sim$ 1,000s km). Estimating fluxes on these <sup>49</sup> scales from "bottom-up" estimates of ecosystem function based of site level experiments <sup>50</sup> is challenging due to spatial heterogeneity. Conversely, top-down estimates of NEE ob-<sup>51</sup> tained through observations of atmospheric CO<sub>2</sub> have generally only provided constraints <sup>52</sup> on CO<sub>2</sub> fluxes on the largest (continental-to-global) scales, due to sparsity of observa-<sup>53</sup> tions.

Recently, space-based measurements of column-averaged dry-air mole fractions of 54  $CO_2$  ( $X_{CO_2}$ ) have allowed for much expanded observational of coverage, leading to top-55 down NEE constraints on smaller spatial scales (Guerlet et al., 2013; Ishizawa et al., 2016; 56 J. Liu et al., 2017, 2018; Bowman et al., 2017; Byrne et al., 2017, 2019, 2020). Further-57 more, advances in remote sensing techniques have allowed for more reliable GPP esti-58 mates from space from solar induced fluorescence (SIF) measurements (Frankenberg et 59 al., 2011; Joiner et al., 2011; Parazoo et al., 2014; Yang et al., 2015; Sun et al., 2017; Byrne 60 et al., 2018) and up-scaled flux tower GPP estimates using MODIS observations (Jung 61 et al., 2020; Joiner et al., 2018). 62

In this study, we examine the ability of two novel  $CO_2$  flux constraints to recover 63 IAV in GPP and NEE on sub-continental scales within temperate North America. We 64 employ state-of-the-science observationally-constrained GPP and NEE products for ex-65 amining IAV. The FluxSat GPP product (Joiner et al., 2018) is based on an MODIS re-66 mote sensing calibrated against global eddy covariance flux measurements, and has been 67 found to produce more realistic IAV in GPP when compared to FLUXNET sites rela-68 tive to other upscaled GPP products (Joiner et al., 2018). The flux inversion NEE prod-69 uct used here is reported in Byrne et al. (2020). This product is derived from a global 70  $CO_2$  flux inversions, and is unique in that it assimilates both surface- and space-based 71

CO<sub>2</sub> measurements, providing increased observational constraints relative to single dataset
 NEE flux inversion products.

For this analysis we focus on temperate North America, which we have chosen for 74 two reasons. First, temperate North America is comparatively well sampled by both eddy 75 covariance sites (which are used to calibrate FluxSat GPP estimates) and surface-based 76  $CO_2$  measurements (which are assimilated in the NEE flux inversions). Second, temper-77 ate North America has a substantial east–west gradient in moisture. Much of western 78 temperate North America (particularly the southwest) is characterized by moisture lim-79 80 ited ecosystems, while the east is less moisture limited and has many forest and cropland ecosystems. These different ecosystems types likely have differences in their responses 81 to climate variability. 82

Globally, moisture limited ecosystems have been shown to play an out-sized role 83 in internnual variability (IAV) of the atmospheric CO<sub>2</sub> growth rate (Poulter et al., 2014; 84 Ahlström et al., 2015; Huang et al., 2016; Z. Fu et al., 2017), relative to what would be 85 expected given their productivity. The reason that these ecosystem experience such large 86 IAV in  $CO_2$  net uptake is thought to be linked to moisture availability (Huang et al., 87 2016). In these ecosystems, negative GPP anomalies are driven by warm-dry conditions 88 and positive GPP anomalies are driven by cool-wet conditions (Ahlström et al., 2015). 89 In turn, NEE anomalies in these ecosystems are strongly associated with variations in 90 GPP (Ahlström et al., 2015). Consistent with these large scale analyses, site level ob-91 servations of moisture limited ecosystems in southwestern North America have shown 92 strong sensitivity to water availability for GPP and NEE (Biederman et al., 2016, 2018). 93 Still, the relative impact of these ecosystems on temperate North American carbon fluxes 94 is not well characterized. 95

IAV in eastern temperate North American ecosystems has been shown to have sea-96 sonally compensating effects, defined as temporally anti-correlated anomalies during a 97 growing season. For example, a number of studies have found that enhanced GPP early 98 in the growing season is associated with reduced GPP later in the growing season over 99 mid-latitude cropland and forest ecosystems (Buermann et al., 2013; Wolf et al., 2016; 100 Buermann et al., 2018; Butterfield et al., 2020). There are several possible mechanisms 101 for explaining seasonal compensation effects. Enhanced spring GPP is associated with 102 warmer spring temperatures (Angert et al., 2005; Wolf et al., 2016). Warmer temper-103 atures early in the growing season result in increased evapotranspiration leading to re-104 duced soil moisture later in the growing season, which adversely impacts productivity 105 (Parida & Buermann, 2014; Wolf et al., 2016; Z. Liu et al., 2020). Direct phenological 106 mechanisms may also contribute to seasonal compensation effects, as the timing of spring 107 budburst and autumn senescence has been found to be correlated on the scale of indi-108 vidual organisms and the landscape (Y. S. Fu et al., 2014; Keenan & Richardson, 2015). 109 The impact of seasonal compensation effects on annual GPP anomalies has been stud-110 ied across northern forests and croplands using upscaled FLUXNET GPP (Buermann 111 et al., 2013), Normalized difference vegetation index (NDVI) (Buermann et al., 2018) and 112 SIF (Butterfield et al., 2020), while seasonal compensation in NEE has been examined 113 for the 2011 Texas-Mexico drought (J. Liu et al., 2018), 2012 temperate North Amer-114 ica drought (Wolf et al., 2016; J. Liu et al., 2018), and 2018 MidWest floods (Yin et al., 115 2020). However, the implications of seasonal compensation effects on variability in the 116 carbon balance across multiple years over temperate North America have not yet been 117 examined. 118

Using the 6 years of NEE estimates from Byrne et al. (2020) in combination with 17 years (2001–2017) GPP from FluxSat, we examine the importance of seasonal compensation effects in GPP and NEE across North America. First, we characterize the extent to which seasonal compensation effects impact growing season GPP and NEE anomalies across North America, and their dependence on temperature and moisture anomalies. Then, we examine the relative contribution of eastern and western North America to the mean seasonal cycle and IAV of GPP and NEE for temperate North America as
 a whole, and compare our data-driven estimates to modelled fluxes from the Multi-scale
 Synthesis and Terrestrial Model Intercomparison Project (MsTMIP).

This paper is organized as follows. Section 2 describes the data sets used in this 128 study and Sec. 3 describes the methods. Section 4 describes the results: We first describe 129 the dominant modes of IAV recovered the FluxSat GPP and flux inversion NEE (Sec 4.1), 130 then examine the consistency of these results with independent  $CO_2$  flux estimates (Sec. 4.2). 131 Sec. 4.3 examines the relationship between IAV in ecosystem  $CO_2$  fluxes with IAV in en-132 133 vironmental variables, and Sec. 4.4 examines the implication of east-west differences in IAV for the North American carbon cycle and the ability of the MsTMIP ensemble to 134 reproduce these differences. Section 5 provides a discussion of the results found in this 135 study, with Sec. 5.1 discussing possible mechanisms explaining east-west differences in 136 IAV and Sec. 5.2 presenting the implications for the temperate North American carbon 137 sink. Finally, Sec. 6 presents the conclusions. 138

#### 139 **2 Data**

We utilize a number of CO<sub>2</sub> flux datasets to examine IAV in GPP and NEE over temperate North America, as-well as environmental data to examine the relationship between CO<sub>2</sub> fluxes and climate variability. Table 2 give a list of datasets used in this study, with some additional details provided in this section and in the supplementary materials.

145

#### 2.1 GPP and related products

To examine IAV in GPP we employ the FluxSat GPP product. We also examine the robustness of these results through comparison with Global Ozone Monitoring Experiment-2 (GOME-2) SIF, Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI and FLUXCOM upscaled GPP estimates.

FluxSat version 1 (Joiner et al., 2018) estimates GPP based primarily on Nadir BRDF-150 Adjusted Reflectances (NBAR) from the MODerate-resolution Imaging Spectroradiome-151 ter (MODIS) MYD43D product (Schaaf et al., 2002) that uses data from MODIS instru-152 ments on National Aeronautics and Space Administration (NASA) Aqua and Terra satel-153 lites. The GPP estimates are calibrated with the FLUXNET 2015 GPP derived from 154 eddy covariance flux measurements at Tier 1 sites (Baldocchi et al., 2001). The data set 155 also employs SIF from the Global Ozone Monitoring Experiment 2 (GOME-2) on the 156 EUMETSAT MetOp-A satellite to identify regions of high productivity crops. FluxSat 157 was evaluated by comparison with independent flux measurements (i.e., not used in the 158 training) and compared very well both in terms of IAV and site-to-site variability. 159

For comparison with SIF, we use the GOME-2 version 28 (V28) 740 nm terrestrial SIF data (Joiner et al., 2013, 2016). SIF is the emission of radiation by chlorophyll during photosynthesis and thus provides a proxy for GPP (Papageorgiou & Govindjee, 2007). A "daily correction" is performed to estimate daily average SIF from the instantaneous measurements.

We examine MODIS NDVI over the peirod 2001–2015. We downloaded MODIS/Terra Monthly Vegetation Indices Global 1x1 degree V005 (MODVI) dataset from Earthdata (https://earthdata.nasa.gov). The global monthly gridded MODIS vegetation indices product is derived from the standard 0.05 CMG MODIS Terra Vegetation Indices Monthly product MOD13C2 (Huete et al., 2002) collection-5.

FLUXCOM RS+METEO products are generated using upscaling approaches based on machine learning methods that integrate FLUXNET site level observations, satellite remote sensing, and meteorological data (Jung et al., 2017, 2020; Tramontana et al., 2016) **Table 1.** Table of datasets used in this study. Time period indicates time range examined in this study. The spatial resolution of the datasets are given for gridded data and the vegetation type if given for FLUXNET sites. All gridded data sets are regridded from the listed spatial resolution to  $4^{\circ} \times 5^{\circ}$  by area-weighting.

| Dataset                                          | Time period                                                                                                 | Spatial resolution<br>/ Vegetation type                                                                                                                                | Reference                                                                                               |  |  |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| GPP and related products (Sec. 2.1)              |                                                                                                             |                                                                                                                                                                        |                                                                                                         |  |  |
| FluxSat<br>GOME-2 SIF<br>NDVI<br>FLUXCOM         | $\begin{array}{c c} 2001-2017\\ 2007-2015\\ 2001-2015\\ 2000-2013 \end{array}$                              | $\begin{array}{c} 0.5^{\circ} \times 0.5^{\circ} \\ 0.5^{\circ} \times 0.5^{\circ} \\ 1.0^{\circ} \times 1.0^{\circ} \\ 0.5^{\circ} \times 0.5^{\circ} \end{array}$    | Joiner et al. (2018)<br>Joiner et al. (2016)<br>Huete et al. (2002)<br>Tramontana et al. (2016)         |  |  |
|                                                  | Flux                                                                                                        | inversion NEE (Sec. $2.2$ )                                                                                                                                            |                                                                                                         |  |  |
| Byrne et al.<br>CT2017<br>CT-L<br>CAMS           | 2010–2015<br>2000–2016<br>2007–2015<br>2000–2018                                                            | $\begin{array}{c} 4.0^{\circ} \times 5.0^{\circ} \\ 1.0^{\circ} \times 1.0^{\circ} \\ 1.0^{\circ} \times 1.0^{\circ} \\ 1.875^{\circ} \times 3.75^{\circ} \end{array}$ | Byrne et al. (2020)<br>Peters et al. (2007)<br>Hu et al. (2019)<br>Chevallier et al. (2010)             |  |  |
|                                                  | Mod                                                                                                         | el $CO_2$ fluxes (Sec. 2.3)                                                                                                                                            |                                                                                                         |  |  |
| MsTMIP                                           | 1980-2010                                                                                                   | $0.5^{\circ} 	imes 0.5^{\circ}$                                                                                                                                        | Huntzinger et al. (2016)                                                                                |  |  |
|                                                  | Enviro                                                                                                      | onmental Data (Sec. 2.4)                                                                                                                                               |                                                                                                         |  |  |
| Soil Temperature<br>ESA CCI<br>GPCP<br>GRACE TWS | $\begin{array}{c} 2001 - 2017 \\ 2001 - 2017 \\ 2001 - 2017 \\ 2010 - 2014 \end{array}$                     | $50 \text{ km} \times 50 \text{ km}$ $0.25^{\circ} \times 0.25^{\circ}$ $2.5^{\circ} \times 2.5^{\circ}$ $1.0^{\circ} \times 1.0^{\circ}$                              | Reichle et al. (2017)<br>Y. Y. Liu et al. (2011, 2012)<br>Adler et al. (2003)<br>Tapley et al. (2004)   |  |  |
|                                                  |                                                                                                             | FLUXNET sites                                                                                                                                                          |                                                                                                         |  |  |
| US-ARM<br>US-Blo<br>US-GLE<br>US-Los             | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                      | Croplands<br>Evergreen Needleleaf Forests<br>Evergreen Needleleaf Forests<br>Permanent Wetlands                                                                        | Biraud et al. (2016)<br>Goldstein (2016)<br>Massman (2016)<br>Desai (2016c)                             |  |  |
| US-MMS<br>US-Ne1<br>US-Ne2<br>US-Ne3             | $\begin{array}{r} 1999-2014\\ 2002-2013\\ 2002-2013\\ 2002-2013\\ \end{array}$                              | Deciduous Broadleaf Forests<br>Croplands<br>Croplands<br>Croplands                                                                                                     | Novick and Phillips (2016)<br>Suyker (2016a)<br>Suyker (2016b)<br>Suyker (2016c)                        |  |  |
| US-NR1<br>US-PFa<br>US-SRG<br>US-SRM             | $1999-2014 \\1996-2014 \\2008-2014 \\2004-2014$                                                             | Evergreen Needleleaf Forests<br>Mixed Forests<br>Grasslands<br>Woody Savannas                                                                                          | Blanken et al. (2016)<br>Desai (2016a)<br>Scott (2016d)<br>Scott (2016a)                                |  |  |
| US-Ton<br>US-UMB<br>US-UMd<br>US-Var             | $\begin{array}{c} 2001\text{-}2014 \\ 2000\text{-}2014 \\ 2007\text{-}2014 \\ 2000\text{-}2014 \end{array}$ | Woody Savannas<br>Deciduous Broadleaf Forests<br>Deciduous Broadleaf Forests<br>Grasslands                                                                             | Baldocchi and Ma (2016)<br>Gough et al. (2016a)<br>Gough et al. (2016b)<br>Baldocchi, Ma, and Xu (2016) |  |  |
| US-WCr<br>US-Whs<br>US-Wkg                       | 1999–2006, 2010–2014<br>2007–2014<br>2004–2014                                                              | Deciduous Broadleaf Forests<br>Open Shrublands<br>Grasslands                                                                                                           | Desai (2016b)<br>Scott (2016c)<br>Scott (2016b)                                                         |  |  |

to generate gridded  $0.5^{\circ} \times 0.5^{\circ}$  daily CO<sub>2</sub> flux estimates. Up-scaled GPP is calculated using three different machine learning algorithms: random forests (RF), multivariate regression splines (MARS), and an artificial neural network (ANN). In this study we examine RF GPP, MARS GPP and ANN GPP regridded to  $4^{\circ} \times 5^{\circ}$  and monthly values.

#### 2.2 Flux inversion NEE

177

To examine IAV in NEE we employ the combined "GOSAT+surface+TCCON" of Byrne et al. (2020). This product is unique in that it assimilates both surface- and space-based CO<sub>2</sub> measurements, providing increased observational constraints relative to other top-down NEE flux inversion products. We examine the robustness of these results through comparison with three independent CO<sub>2</sub> flux inversion products assimilating only flask and in situ CO<sub>2</sub> observations: CarbonTracker 2017 (CT2017) (Peters et al. (2007), with updates documented at

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/), CarbonTracker Lagrange (CT-L) (Hu et al., 2019), and Copernicus Atmosphere Monitoring Service (CAMS) greenhouse
gases inversion v18r3 (Chevallier et al., 2005, 2010; Chevallier, 2013; Remaud et al., 2018),
downloaded from https://atmosphere.copernicus.eu/. Detailed descriptions of these flux
inversions are provided in the supplementary materials (Text S1.)

The NEE fluxes of Byrne et al. (2020) are produced from a flux inversion analy-190 ses spanning 2010-2015. The flux inversions assimilate  $CO_2$  measurements from the Green-191 house Gases Observing Satellite (GOSAT), Total Carbon Column Observing Network 192 (TCCON), and the surface in situ and flask measurements network concurrently. Four 193 dimensional variational (4-DVar) assimilation was implemented to estimate 14-day scal-194 ing factors for prior NEE and ocean fluxes at  $4^{\circ} \times 5^{\circ}$  spatial resolution using the Green-195 house gas framework - Flux model (GHGF-Flux). The optimized fluxes are taken to be 196 the average of three flux inversions that employ different prior NEE fluxes and errors. 197 These three flux inversions employ prior fluxes from the simple biosphere model (SiB3), 198 the Carnegie-Ames-Stanford Approach (CASA) model, or FLUXCOM. Posterior NEE 199 fluxes are aggregated to monthly mean values for this analysis. A detailed description 200 of the experimental set up and evaluation of the fluxes can be found in Byrne et al. (2020). 201 We also contrast the posterior IAV of the "GOSAT+surface+TCCON" ensemble of in-202 versions with the flux inversions assimilating only surface-based flask and in situ meansure-203 ments, refered to as "surface-only". These data were downloaded from https://cmsflux.jpl.nasa.gov/. 204

#### 2.3 MsTMIP models

205

216

MsTMIP is a model inter-comparison experiment conducted by the temperate North 206 American Carbon Program (Huntzinger et al., 2013; Wei et al., 2014). The project is designed to provide a consistent and unified modeling framework in order to isolate, inter-208 pret, and address differences in process parameterizations among TBMs. In this anal-209 ysis, we examine the modelled NEE (defined here as MsTMIP NEP $\times$ -1) and GPP from 210 the MsTMIP Version 1 SG3 simulation, in which the models are driven by CRU+NCEP 211 reanalysis on a global  $0.5^{\circ} \times 0.5^{\circ}$  spatial grid with time-varying land-use history and 212 atmospheric  $CO_2$ , but with nitrogen deposition kept constant. We examine modeled fluxes 213 over the period 1980–2010. These data were downloaded from the ORNL DAAC (Huntzinger 214 et al., 2016). 215

#### 2.4 Environmental data

Anomalies in  $CO_2$  fluxes are compared with anomalies in environmental variables that are expected to drive carbon cycle anomalies. In particular, we focus our analysis on the relationship between anomalies in  $CO_2$  fluxes with anomalies in soil temperature and soil moisture. Soil temperatures are from the MERRA-2 (Reichle et al., 2011, 2017; Gelaro et al., 2017) reanalysis. We average the soil temperature over levels 1–3 (TSOIL1,TSOIL2,and TSOIL3), which reaches a depth of 0.73 m. These data were downloaded from the Goddard Earth Sciences Data and Information Services Center at monthly temporal resolution and  $4^{\circ} \times 5^{\circ}$  spatial resolution (regridded from model horizontal resolution of ~50 km).

The ESA CCI combined surface soil moisture product (Y. Y. Liu et al., 2011, 2012) 226 was downloaded from https://www.esa-soilmoisture-cci.org/. We use the combined ac-227 tive and passive soil moisture product. Additional datasets are used for supplemental 228 analysis of the relationship between carbon fluxes and moisture stress. We obtained pre-229 cipitation estimates from the Global Precipitation Climatology Project (GPCP) Monthly 230 Analysis Product. We use GPCP Version 2.3 Combined Precipitation Dataset (Adler 231 et al., 2003). We also use RL06 monthly mass grids of terrestrial water storage (TWS) 232 anomalies derived from the Gravity Recovery and Climate Experiment (GRACE) mis-233 sion (Tapley et al., 2004; Flechtner et al., 2014; Landerer & Swenson, 2012). 234

235 **2.5 FLUXNET** 

The FLUXNET network consists of a number of towers across the globe measur-236 ing trace gas concentrations and micro-meteorological variables. From these data, the 237 eddy covariance method is applied to estimate fluxes of energy and trace gases between 238 the surface and atmosphere. In this study, we utilize monthly GPP and NEE estimates 239 from a number of FLUXNET2015 sites (Pastorello et al., 2020). For GPP estimates we 240 average together the nightime and daytime partitioning estimates. In this study, we ex-241 amine FLUXNET sites over temperate North America with six or more full years of ob-242 servations. This includes the following sites: ARM Southern Great Plains site- Lamont 243 (US-ARM), Blodgett Forest (US-Blo), Glacier Lakes Ecosystem Experiments Site (US-244 GLE), Lost Creek (US-Los), Morgan Monrow State Forest (US-MMS), Mead - irrigated 245 continuous maize site (US-Ne1), Mead - irrigated maize-soybean rotation site (US-Ne2), 246 Mead - rainfed maize-soybean rotation site (US-Ne3), Niwot Ridge Forest (US-NR1), Park 247 Falls (US-PFa), Santa Rita Grassland (US-SRG), Sanata Rita Mesquite (US-SRM), Tonzi 248 Ranch (US-Ton), University of Michigan Biological Station (US-UMB), University of Michi-249 gan Biological Disturbance (US-UMd), Vaira Ranch- Ione (US-Var), Willow Creek (US-250 WCr), Walnut Gulch Lucky Hills Shrub (US-Whs) and Walnut Gulch Kendall Grass-251 lands (US-Wkg). These data were obtained from https://fluxnet.org. 252

#### 253 3 Methods

263

We focus our analysis on quantifying the relative contribution of amplification and 254 compensation to IAV in NEE and GPP over temperate North America. First, we de-255 fine how anomalies are calculated (Sec. 3.1), then we introduce two metrics for quanti-256 fying amplification and compensation in IAV (Sec. 3.2). We also show that taking the 257 ratio of the magnitude of compensation to the magnitude of amplification provides a met-258 ric of the relative contribution of each quantity to IAV. Finally, we introduce how sin-259 gular value decomposition (SVD) can be employed to extract the dominant modes of IAV 260 between years (Sec. 3.3), which can then be compared with the metrics of amplification 261 and compensation. 262

#### 3.1 Definition of anomalies

Anomalies are denoted with a " $\Delta$ " for all quantities (e.g.,  $\Delta$ NEE). To calculate anomalies, the mean seasonal cycle over a baseline period is removed. The baseline period employed is 2010–2015 for flux inversion NEE, 2003–2014 for GRACE TWS, and 2001–2017 for GPP, soil temperature, soil moisture, and precipitation. In addition, a linear trend is removed for all datasets except the NEE flux inversion (because the flux inversion timeseries is only six-years). Sensitivity tests found that results were not sensitive to the time period chosen for the baseline.

#### 3.2 Quantifying IAV features

We focus our analysis on the seasonal compensation component and amplification component of IAV over the growing season. For NEE, we define the seasonal compensation component (NEE<sub>comp</sub>) and seasonal amplification component (NEE<sub>amp</sub>) as,

$$\Delta \text{NEE}_{\text{comp}} = \Delta \text{NEE}_{\text{Jul}-\text{Aug}-\text{Sep}} - \Delta \text{NEE}_{\text{Apr}-\text{May}-\text{Jun}}, \tag{1}$$

$$\Delta \text{NEE}_{\text{amp}} = \Delta \text{NEE}_{\text{Jul}-\text{Aug}-\text{Sep}} + \Delta \text{NEE}_{\text{Apr}-\text{May}-\text{Jun}}, \qquad (2)$$

where  $\Delta \text{NEE}_{Apr-May-Jun}$  and  $\Delta \text{NEE}_{Jul-Aug-Sep}$  are the mean anomalies across April-275 June and July–September, respectively. A schematic of NEE anomalies leading to pos-276 itive and negative amplification and compensation components are shown in Figure S1. 277 The amplification component indicates a net increase or decrease in carbon uptake over 278 the growing season. For example, if NEE anomalies are positive across the growing sea-279 son (Fig. S1a), this will imply positive amplification and enhanced  $CO_2$  emitted to the 280 atmosphere ( $\Delta NEE_{amp} > 0$ ). The compensation component indicates anti-correlated 281 anomalies between the spring and summer. For example, if NEE anomalies are positive 282 in the spring but negative in the summer (Fig. S1b), this will imply a negative compen-283 sation over the growing season ( $\Delta \text{NEE}_{\text{comp}} < 0$ ). We define compensation and ampli-284 fication for GPP in the same way. 285

We examine the relative magnitudes of these two components by taking the ratio of the mean absolute seasonal compensation component to the mean absolute amplification component. For NEE, this ratio is defined as:

$$NEE_{RATIO} = \frac{\sum_{y=2010}^{2015} |\Delta NEE_{comp}|}{\sum_{y=2010}^{2015} |\Delta NEE_{amp}|}.$$
 (3)

The quantity  $NEE_{BATIO}$  provides a measure of the relative magnitudes of the compen-289 sation and amplification components. An  $NEE_{RATIO}$  of one indicates that the amplifi-290 cation and compensation components are of equal magnitude. If the magnitude of com-291 pensation is generally larger than amplification then the ratio will be larger than one. 292 If amplification dominates then the ratio will be less than one. The motivation for ex-293 amining these components as a ratio is that it removes the dependence of the absolute 294 magnitudes of IAV. In this analysis, we are most interested in examining relative differ-295 ences in this NEE<sub>RATIO</sub> across temperate North America. That is, we aim to determine 296 which regions have a larger component of seasonal compensation relative to the ampli-297 fication component, and what ecological and environmental variables drive spatial struc-298 tures. It should be noted that this metric could result in very large values when the mag-299 nitude of amplification is very small. A similar metric developed by Butterfield et al. (2020) 300 addresses this issue by examining the ratio of the mean anomaly across a number months 301 relative to the mean of the absolute anomaly for each month. However, we feel that  $NEE_{RATIO}$ 302 more directly compares the compensation and amplification components as defined in 303 this study. 304

Note that we split the growing season into the spring (April-May-June) and summer (July-August-September). The spring roughly covers the period from the spring equinox (March 20) to the summer solstice (June 20), while the summer roughly covers the period from the summer solstice to the fall equinox (Sep 22). We note that these definitions are lagged by one month from the meteorological seasons.

310 3.3 Singular value decomposition

We employ SVD to examine the modes of variability in monthly  $\Delta$ NEE and  $\Delta$ GPP between years. SVD is a method to decompose a matrix into a set of singular vectors

and singular values (Golub & Reinsch, 1971), where the singular vectors are a set of or-313 thogonal basis vectors. In plain english, this is a method that performs a linear trans-314 formation to a coordinate system that most simply explains the data within a matrix, 315 with the first singular vector explaining the largest fraction of variability within the ma-316 trix. In this analysis, we perform SVD on  $\Delta$ GPP and  $\Delta$ NEE arranged into month-by-317 year matrices. Thus, the singular vectors give the modes of monthly variability between 318 years in  $\Delta$ GPP and  $\Delta$ NEE. The fraction of overall variance explained by the leading 319 singular vector "i" is then calculated using the expression  $R^2 = s_i^2 / \sum_j s_j^2$ , where  $s_j$ 320 are the singular values. 321

- 322 **4 Results**
- 323 324

#### 4.1 Amplification dominates in the west and compensation dominates in the east

We examine seasonal compensation and amplification in  $\Delta$ GPP and  $\Delta$ NEE over 325 temperate North America in two steps. First, we look at the relative magnitudes of com-326 pensation and amplifications at high spatial resolution  $(4^{\circ} \times 5^{\circ} \text{ grid cells})$ . It is impor-327 tant to emphasize that we do not expect that the CO<sub>2</sub> flux inversions fully recovers NEE 328 IAV at this spatial scale. Instead, we employ this analysis to examine the large-scale spa-329 tial structures of amplification and compensation over temperate North America. Sec-330 ond, we aggregate the NEE and GPP anomalies into large spatial regions and perform 331 SVD analysis to determine the dominant modes of IAV. We then compare the dominant 332 modes of IAV in the data to the amplification and compensation metrics of IAV. 333

Figure 1 shows  $NEE_{RATIO}$  for 2010–2015 and  $GPP_{RATIO}$  for 2001–2017 over sub-334 tropical and temperate North America at  $4^{\circ} \times 5^{\circ}$  spatial resolution (GPP<sub>RATIO</sub> for 2010– 335 2015 is shown in Fig. S2). A ratio of one indicates that the magnitude of the compen-336 sation and amplification components are equal. Larger ratios indicate that the magni-337 tude of the compensation component is larger, while ratios less than one imply the op-338 posite. Spatially, seasonal compensation is most dominant in eastern temperate North 339 America (largest ratios), particularly around the Midwest. In contrast, the amplifica-340 tion component of IAV is most dominant in western temperate North America, partic-341 ularly in the southwest. Figure 1c and 1d show  $NEE_{RATIO}$  and  $GPP_{RATIO}$  as a func-342 tion of the mean Apr-Sep soil moisture and soil temperature for each  $4^{\circ} \times 5^{\circ}$  grid cell. 343 Larger ratios are found to cluster in the wetter areas while smaller ratios are generally 344 found in the drier areas, consistent with the climatological difference between the west 345 and east of temperate North America. 346

To further examine differences in IAV between eastern and western temperate North 347 America, we aggregate gridcells into western and eastern regions (Fig. 2a). We then per-348 form SVD on matrices of monthly  $\Delta NEE$  and  $\Delta GPP$  (with months as the rows and years 349 as columns) over these two regions. This analysis allows us to compute basis vectors that 350 explain modes of variability in monthly  $\Delta NEE$  and  $\Delta GPP$  between years. The first and 351 second basis vectors, which explain the majority of variability in  $\Delta NEE$  and  $\Delta GPP$  are 352 shown in Fig. 2. In the west, the first basis vector shows amplification structure (with 353 correlated anomalies between spring and summer) for both GPP and NEE. Furthermore, 354 this first basis explains the majority of variability in NEE and GPP between years, as 355 the first singular value explains 66% and 76% of the variance for GPP and NEE, respec-356 tively (Fig. 2). Conversely, the eastern region is dominated by seasonal compensation 357 in GPP and NEE. The first singular vector has a compensation shape, where positive 358 anomalies in the spring are associated with negative anomalies in the summer. This mode 359 of variability explains the majority of year-to-year variability for GPP (59%) and about 360 half of the variability for NEE (47%) (Fig. 2). Thus, these aggregated regions are gen-361 erally reflective of the IAV seen at the grid cell level, showing amplification is dominant 362 in the west and compensation is dominant in the east. We further examine the robust-363

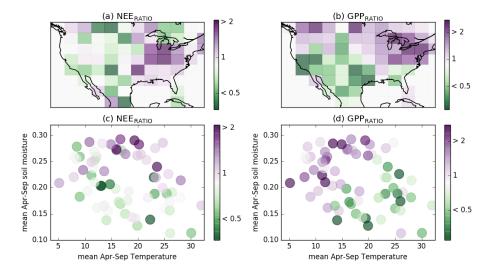



Figure 1. Relative magnitudes of seasonal compensation and amplification. (a) NEE<sub>RATIO</sub> over 2010–2015 and (b) GPP<sub>RATIO</sub> over 2001–2017 at  $4^{\circ} \times 5^{\circ}$ . (c) NEE<sub>RATIO</sub> and (d) GPP<sub>RATIO</sub> plotted as a function of Apr-Sep mean soil temperature (K) and soil moisture (m<sup>3</sup> m<sup>-3</sup>).

ness of the NEE SVD analysis by performing the SVD analysis on each of the three individual inversions from Byrne et al. (2020) (Figure S3). We find consistent results, where the first singular vector is amplification-like in the west (explaining 59-83% of the variance) and compensation-like in the east (explaining 37-47% of the variance).

368

#### 4.2 East-west NEE differences seen in multiple data sets

The NEE fluxes employed in this study only cover a six-year period, thus is it possible that the results found here are specific to this period and are not generalizable across time. In this section, we compare the relative magnitudes of amplifications and compensation in NEE for several flux inversions and for FLUXNET eddy covariance sites, which cover a variety of time periods.

The NEE fluxes used in this analysis are unique, in that they incorporate  $CO_2$  ob-374 servational constraints of space-based  $X_{CO_2}$  from the Greenhouse Gases Observing Satel-375 lite (GOSAT), surface-based  $X_{CO_2}$  measurements from the total column carbon observ-376 ing network (TCCON), and  $CO_2$  measurements from the network of flask and in situ sites. 377 This type of inversion is temporally limited due the fact that GOSAT was launched in 378 2019. Byrne et al. (2020) argue that this combined flux inversion (referred to as "GOSAT+surface+TCCON") 379 provides improved  $CO_2$  flux estimates relative to flux inversions that only assimilate flask 380 and in situ measurements (referred to as "surface-only"). Therefore, we may expect that 381 flask and in situ CO<sub>2</sub> flux inversions may not separate IAV between eastern and west-382 ern temperate North America as distinctly. Nevertheless, we examine whether similar 383 east-west differences are seen for a series of in situ and flask flux inversions. 384

Figure 3 shows the mean magnitude of the amplification components, compensation components, and NEE<sub>RATIO</sub> for a set of flux inversions and FLUXNET sites. The set of GOSAT+surface+TCCON fluxes inversions from Byrne et al. (2020) (three inversion set-ups and ensemble mean) show distinct differences between eastern and western temperate North America. The surface-only flux inversions also show differences between eastern and western temperate North America, but differences are reduced and scatter

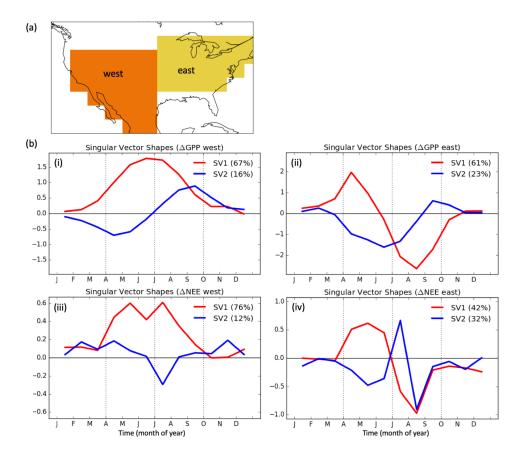



Figure 2. (a) The spatial extent of western (orange) and eastern (yellow) regions of temperate North America. (b) First and second singular vectors resulting from the decomposition of the IAV in GPP over 2001–2017 for the (i) western and (ii) eastern regions of temperate North America, and of the IAV in NEE over 2010–2015 for the (iii) western and (iv) eastern regions of temperate North America.

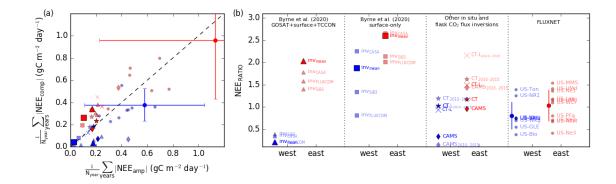



Figure 3. (a) Mean magnitude of NEE compensation versus mean magnitude of NEE amplification across multiple years. (b) NEE<sub>RATIO</sub> over eastern and western temperate North America for (left-to-right) the combined GOSAT+surface+TCCON flux inversions of Byrne et al. (2020), the surface-only flux inversions of Byrne et al. (2020), three independent flux inversions (CT2017, CT-L, and CAMS) that assimilate flask and in situ CO<sub>2</sub> measurements, and FLUXNET sites with 6+ years of data within the eastern and western domains. Partially transparent symbols show values over 2010–2015 and solid colors are for the entire time period examined in this study for a given dataset.

between inversions is increased, suggesting that the lower data density of assimilated observation reduces the ability of the inversion to isolate east-west differences.

Next, we examine a set of independent flask and in situ flux inversions that extend 393 over larger time spans: CarbonTracker version CT2017 covering 2000–2016, CT-L cov-394 ering 2007–2015 (Hu et al., 2019), and CAMS covering 2000–2018. For each flux inver-395 sion, we examine the posterior fluxes over 2010-2015 and over the entire period. We find 396 that all inversions show greater  $NEE_{RATIO}$  in the east than the west. However, we also 397 find that the 2010–2015 period generally shows larger east-west differences. In partic-398 ular, the NEE<sub>RATIO</sub> is increased in the east during 2010-2015, likely due to the temper-399 ate North American drought of 2012 (J. Liu et al., 2018; Wolf et al., 2016). 400

Finally, we examine east-west differences for FLUXNET sites within the two re-401 gions, including sites with six or more full years of data. In the western domain, we in-402 clude US-Blo, US-GLE, US-NR1, US-SRG, US-SRM, US-Ton, US-Var, US-Whs and US-403 Wkg. In the eastern domain, we include US-ARM, US-Los, US-MMS, US-Ne1, US-Ne2, 404 US-Ne3, US-UMd, US-UMB and US-WCr. There is considerable scatter between FLUXNET 405 sites for each of the metrics examined. However, taking the mean and standard devia-406 tion of  $NEE_{RATIO}$  for sites in east and west, we find larger values in the east relative to 407 the west, consistent with the flux inversion. 408

Across the set of NEE estimates examined here, we consistently find that the compensation component of IAV is greater relative to the amplification component in eastern temperate North America. Therefore, we find the results found for the GOSAT+surface+TCCON
NEE fluxes examined in this study are generally supported by independent flux estimates
across different time periods.

Similar analysis is performed for FluxSat GPP, GOME-2 SIF, MODIS NDVI, FLUX-COM GPP, and FLUXNET GPP in the supplementary materials (Fig. S4). We find the remote sensing products show similar east-west differences, with larger GPP<sub>RATIO</sub> in the east. However, both FLUXCOM and FLUXNET GPP do not show substantial east-west differences. In general, FLUXNET sites do not show a coherent response within each region, which is probably at-least partially due to the fact that they are site level obser-



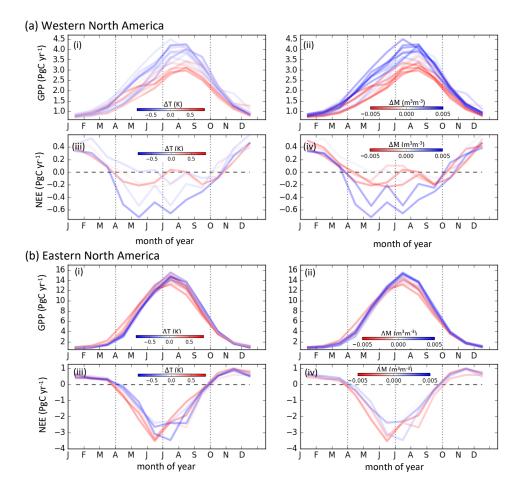
**Figure 4.** Relationship between  $\Delta$ GPP and variations in climate. Coefficient of correlation (R) over 2001-2017 for 4° × 5° grid cells between (a) Apr–Jun  $\Delta$ T and Apr–Jun  $\Delta$ GPP, (b) Apr–Sep  $\Delta$ T and Jul–Sep  $\Delta$ GPP, (c) Apr–Jun  $\Delta$ M and Apr–Jun  $\Delta$ GPP and (d) Apr–Sep  $\Delta$ M and Jul–Sep  $\Delta$ GPP. Hatching shows grid cells for which P < 0.05.

vations rather than a large scale average. In a comparison of IAV in ecosystem productivity by remote sensing and eddy covariance, Butterfield et al. (2020) found that FLUXNET
sites generally showed less coherent patterns in IAV than the large-scale averaged patterns obtained from remote sensing products. FLUXCOM GPP exhibits very weak IAV
across the regions examined here, which may partially explain why it doesn't not show
clear east-west differences.

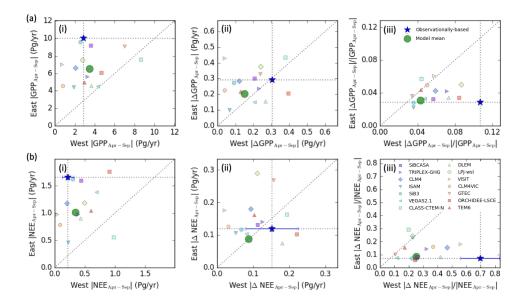
426

#### 4.3 Relationship between flux anomalies and environmental drivers

To a large extent, IAV in the carbon balance of ecosystems is expected to be driven 427 by IAV in temperature and moisture (Berry & Bjorkman, 1980; Smith et al., 2011; Byrne et al., 2019), thus we examine the relationship between  $CO_2$  flux anomalies and anoma-429 lies in soil temperature ( $\Delta T$ ) and soil moisture ( $\Delta M$ ). Figure 4 shows the correlation be-430 tween  $\Delta$ GPP and anomalies in climate variables over 2001–2017. Note that we corre-431 lated Jul-Sep flux anomalies with Apr-Sep climate anomalies to incorporate lagged ef-432 fects of spring climate anomalies on summer carbon cycle anomalies. We find spatial dif-433 ferences in the correlation coefficient between western and eastern temperate North Amer-434 ica. In the west, increased GPP (positive  $\Delta$ GPP) is found to be correlated with cooler 435 (negative  $\Delta T$ ) and wetter (positive  $\Delta M$ ) conditions during both Apr–Jun and Jul–Sep. 436 The temporally coherent relationship between flux anomalies and environmental anoma-437 lies in western temperate North America suggests that cooler-wetter years will lead to 438 an amplification of carbon uptake. In the east, increased GPP is correlated with warmer 439 conditions during Apr–Jun, but cooler and wetter conditions during Jul–Sep. These sea-440 sonal variations in the relationship between flux anomalies and environmental variables 441 suggest that seasonal compensation will occur when climate anomalies persist through-442 out the year. For example, warm years would result in increased uptake during the spring 443 but decreased uptake during the summer. Similar results are found for NEE (Fig. S5) over 2010-2015, although correlations are generally less statistically significant. This is 445 likely partially explained by the shorter time period examined and the inability of the 446 flux inversion to isolate NEE anomalies to  $4^{\circ} \times 5^{\circ}$  spatial grid cells. 447


We now examine the seasonal cycles of GPP and NEE over the western and east-448 ern regions of temperate North America. Figure 5 shows the seasonal cycles of GPP (2001– 449 2017) and NEE (2010-2015) over the western and eastern regions of temperate North 450 America with different years colored by the corresponding Apr-Sep  $\Delta T$  or  $\Delta M$ . An ad-451 ditional plot showing the seasonal compensation and amplification components as a func-452 tion of  $\Delta T$  or  $\Delta M$  is shown in the supplementary materials (Fig. S6). For western tem-453 perate North America, variations in the seasonal cycle of GPP and NEE are dominated 454 by an amplification component over Apr-Sep. Increased GPP and net uptake are asso-455 ciated with cooler and wetter conditions.  $\Delta T$  and  $\Delta M$  are strongly correlated with each 456 other (R = -0.77 for 2001-2017), obscuring which variable has the largest impact on 457 IAV. However, the magnitude of the correlation is slightly larger for  $\Delta M$  as compared 458 with  $\Delta T$  for  $\Delta NEE_{amp}$  (0.91 vs 0.71) and  $\Delta GPP_{amp}$  (0.66 vs 0.63) (Table S1). IAV is 459 generally weaker in eastern temperate North America (relative to the mean seasonal cy-460 cle). Temporal shifts in the seasonal cycle of GPP ( $\Delta GPP_{comp}$ ) and NEE ( $\Delta NEE_{comp}$ ) 461 provide the largest component of IAV. Shifts of GPP and NEE to earlier in the year are 462 associated with positive Apr-Sep  $\Delta T$  (Fig. 5b (i) and (iii)), suggesting that a warm spring 463 drives the shift and persistent warming during summer reduces the productivity and net 464 uptake. Variations in Apr-Sep  $\Delta M$  are more closely tied to an amplification component 465 of  $\Delta$ GPP (R=0.72) and  $\Delta$ NEE (R=0.78) (Table S1). This implies that increased soil 466 moisture is associated with increased GPP but reduced net uptake, suggesting that res-467 piration fluxes increase more than GPP with increased soil moisture. This result is con-468 sistent with Z. Liu et al. (2018), but contradicted (for droughts) by Schwalm et al. (2010). 469 Thus, more research is needed on this topic. 470

471


#### 4.4 Impact of amplification and compensation for net $CO_2$ fluxes

The presence of temporally coherent spring-summer flux anomalies in western tem-472 perate North America acts to increase the annual net flux anomalies. In contrast, anti-473 correlated spring–summer flux anomalies in eastern temperate North America acts to 474 reduce the net annual flux anomalies. Here we examine the relative contribution of east-475 ern and western temperate North America to the mean seasonal cycle and anomalies of 476 GPP and NEE (Figure 6). We find that monthly NEE and GPP fluxes are larger in east-477 ern temperate North America than in western temperate North America  $(7.6 \times \text{larger})$ 478 in east than west for GPP,  $3.5 \times$  for NEE), reflecting a more productive carbon cycle. 479 However, due to seasonal compensating anomalies, annual anomalies in GPP and NEE 480 are larger in the west than the east  $(1.04 \times \text{ larger in west than east for GPP, and } 1.27 \times$ 481 for NEE). Thus, growing season IAV in NEE and GPP is larger in the western temper-482 ate North America, despite a more productive carbon cycle in eastern temperate North 483 America. The impacts of these differences in IAV between these two regions are evident 484 in the timeseries of  $\Delta$ GPP and  $\Delta$ NEE anomalies for the two regions (Fig. S7). Monthly 485 anomalies in western temperate North America are coherent for individual years lead-486 ing to increased annual anomalies, while anomalies in the east show seasonal compen-487 sation, reducing annual net anomalies. 488

We now investigate the ability of the MsTMIP models to recover observationally-489 constrained east-west differences in GPP and NEE over 1980–2010. Modeled fluxes are 490 plotted with the observationally-constrained estimates in Fig 6. The MsTMIP models 491 systematically underestimate the magnitude of Apr-Sep GPP and NEE in eastern tem-492 perate North America relative to FluxSat GPP and inversion NEE, but closely agree with 493 the observationally-constrained fluxes in western temperate North America. The mean 494 magnitudes of Apr-Sep  $\Delta$ GPP and  $\Delta$ NEE are variable between MsTMIP models, but 495 496 are generally smaller than the observationally-based estimates. The model mean gives similar magnitudes of  $\Delta$ GPP and  $\Delta$ NEE in eastern and western temperate North Amer-497 ica, suggesting that the models at-least partially capture increased IAV in western tem-498 perate North America. The ratio of the magnitudes of Apr-Sep IAV to the Apr-Sep mean 499 are shown in Fig. 6iii. The models systematically underestimate this ratio for GPP and 500



**Figure 5.** Seasonal cycles of GPP (2001–2017) and NEE (2010-2015) over eastern and western temperate North America. (a) Seasonal cycles of (i-ii) GPP and (iii-iv) NEE over western temperate North America. (b) Seasonal cycles of (i-ii) GPP and (iii-iv) NEE over eastern temperate North America. Colors indicate the Apr-Sep  $\Delta T$  ((i) and (iii)) or Apr-Sep  $\Delta M$  ((ii) and (iv)).



**Figure 6.** Scatter plots of (a) GPP and (b) NEE fluxes in eastern and western temperate North America. The panels show (i) the magnitude of Apr-Sep mean fluxes, (ii) the magnitude of Apr-Sep mean anomalies, and (iii) the ratio of the anomalies to mean fluxes. The blue star shows the observationally-based estimates from FluxSat GPP and the flux inversion NEE. The error bars on the observationally-constrained NEE estimate show the range in these values between the three flux inversions from (Byrne et al., 2020), note error bars are very small for the east. The large green circle shows the GPP and NEE estimate from the MsTMIP model mean. Small symbols show the GPP and NEE estimates from individual MsTMIP models.

Table 2. Observationally-based and model based sensitivities. Slope and  $\mathbb{R}^2$  values for linear regressions of Apr-Sep  $\Delta$ GPP and  $\Delta$ NEE against Apr-Sep  $\Delta$ T and  $\Delta$ M for FluxSat GPP (2001–2017), inversion NEE (2010–2016), and MsTMIP model mean GPP and NEE (2001–2010). A range is provided for the inversion  $\Delta$ NEE indicating the range for each individual inversion with different prior fluxes. MsTMIP fluxes are examined over 2001–2010 to isolate comparisons to the period when observational datasets are best constrained by observations. Blue bold numbers indicate P<0.05.

|                                    |                                                                                           |                                                      | West                                                            |                         |                                                                                                |                         | Eas | st                       |     |                    |
|------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------|-------------------------|-----|--------------------------|-----|--------------------|
|                                    | Tempera                                                                                   | ature                                                | Soil Moist                                                      | ure                     | Tempera                                                                                        | ature                   |     | Soil Moistu              | ıre |                    |
|                                    | $\left. \begin{array}{c} \text{slope} \\ (\text{PgC } \text{K}^{-1}) \end{array} \right $ | $\mathbb{R}^2$                                       | $\begin{vmatrix} slope \\ (PgC (m^3m^{-3})^{-1}) \end{vmatrix}$ | $\mathbb{R}^2$          | $\left. \begin{array}{c} \mathrm{slope} \\ \mathrm{PgC} \ \mathrm{K}^{-1} \end{array} \right $ | $\mathbb{R}^2$          |     | $(PgC (m^3m^{-3})^{-1})$ | )   | $\mathbb{R}^2$     |
| FluxSat $\Delta$ GPP               | -0.29                                                                                     | 0.44                                                 | 32.6                                                            | 0.89                    | -0.04                                                                                          | 0.03                    |     | 52.2                     |     | 0.09               |
| Model $\Delta GPP$                 | -0.20                                                                                     | 0.55                                                 | 23.4                                                            | 0.91                    | -0.02                                                                                          | 0.02                    |     | 110.6                    |     | 0.45               |
| Inversion $\Delta NEE   (range)  $ | $\begin{array}{c c} 0.13 \\ (0.060.19) \end{array}$                                       | $\begin{array}{c} 0.47 \\ (0.36 - 0.53) \end{array}$ | -10.3<br>(-14.64.6)                                             | $0.49 \\ (0.37 – 0.71)$ | -0.04<br>(-0.03–0.06)                                                                          | $0.19 \\ (0.15 – 0.60)$ |     | 28.6<br>(-53.47–28.0)    | (   | $0.21 \\ 0.10-0.4$ |
| Model $\Delta NEE$                 | 0.11                                                                                      | 0.53                                                 | -10.3                                                           | 0.71                    | 0.06                                                                                           | 0.60                    |     | -53.5                    |     | 0.42               |

NEE in western temperate North America. The MsTMIP models predict that mean mag-501 nitude of Apr-Sep  $\Delta$ GPP is 4% (range of 3–9%) of the Apr-Sep GPP, while FluxSat GPP 502 suggests 11%. Similarly, MsTMIP models predict that mean magnitude of Apr-Sep  $\Delta$ NEE 503 is 25% (range of 11-56%) of the Apr-Sep NEE, while inversion NEE suggests 70%. The 504 MsTMIP model mean GPP gives weaker sensitivity to soil moisture and temperature 505 anomalies than FluxSat GPP, which is found to be about 30% more sensitive (Table 2). 506 Inversion NEE sensitivities are consistent with the MsTMIP model mean NEE, but are 507 also quite uncertain (indicated by the range in sensitivities between individual flux in-508 versions using SiB3, CASA, or FLUXCOM as priors). In eastern temperate North Amer-509 ica, the MsTMIP models suggest greater sensitivity to environmental variables than the 510 observationally-constrained fluxes (Table 2), as previously suggested by Shiga et al. (2018). 511 512

It should be noted that IAV for the MsTMIP ensemble, FluxSat GPP and flux in-513 version NEE are calculated over different baselines. As shown in Sec. 4.2, the magnitude 514 of amplification and compensation does show some sensitivity to the baseline years from 515 which the anomalies are calculated. Therefore, it is possible that some of the difference 516 seen between observationally constrained estimates and the MsTMIP ensemble are due 517 to differences in the baseline. Unfortunately, the time periods of these data sets do not 518 overlap, and we are limited to a six-year period for the NEE estimates from Byrne et 519 al. (2020). Ongoing research is working towards building decadal-scale records of NEE 520 from space-based  $CO_2$  observations (J. Liu et al., 2020). Thus, we expect that future stud-521 ies that will be able to more precisely identify differences in IAV between TBMs and ob-522 servationally constrainted estimates over the same time period. 523

#### 524 5 Discussion

525

#### 5.1 Mechanisms driving IAV

526

#### 5.1.1 Western temperate North America

We find that IAV in western temperate North America is dominated by an amplification component, wherein increased GPP and net uptake are associated with coolerwetter conditions through the entire growing season. This result is consistent with a number of previous studies investigating southwest temperate North America (Zhang et al.,

2013; Parazoo et al., 2015; Papagiannopoulou et al., 2017; Shiga et al., 2018; Hu et al., 531 2019). Variations in GPP and NEE over this region are likely primarily due to variations 532 in water availability, rather than temperature variability (Papagiannopoulou et al., 2017). 533 Parazoo et al. (2015) have shown that variability in productivity over the Southern US 534 Northern Mexico region is linked to El Nino Southern Oscillation (ENSO) and the North 535 Atlantic Oscillation (NAO), and suggest that year-to-year variability of carbon net up-536 take is associated with precipitation anomalies in this region. We find  $\Delta P$  is strongly cor-537 related with  $\Delta GPP_{amp}$  (R=0.78) and moderately correlated with  $\Delta NEE_{amp}$  (R=-0.47) 538 in western temperate North America (Table S1). This suggests that IAV in western tem-539 perate North America is primarily driven by large scale climate variability. Supporting 540 this result, Hu et al. (2019) found that temperate North American net uptake is corre-541 lated with ENSO phase, which they primarily attributed to variations in water availabil-542 ity. 543

#### 544

#### 5.1.2 Eastern temperate North America

We find that GPP and NEE IAV in eastern temperate North America are dom-545 inated by a seasonal compensation component, where an increase in Apr–Jun is followed 546 by a compensating decrease in Jul–Sep. This is most closely linked to a shift of the sea-547 sonal cycle to earlier in the year with increased temperature. This phenomenon has pre-548 viously been reported for studies of phenology (Y. S. Fu et al., 2014; Keenan & Richard-549 son, 2015), GPP (Buermann et al., 2013, 2018; Parida & Buermann, 2014; Papagiannopoulou 550 et al., 2017; Butterfield et al., 2020) and NEE (Wolf et al., 2016; J. Liu et al., 2018; Shiga 551 et al., 2018; Rödenbeck et al., 2018; Hu et al., 2019). Most studies attribute this phe-552 nomena to land-atmosphere interactions, wherein a warm spring results in drying and 553 drought during the summer (Parida & Buermann, 2014; Wolf et al., 2016). This expla-554 nation is generally consistent with our results for GPP but not for NEE. We find that 555 Apr–Jun  $\Delta$ GPP and  $\Delta$ NEE are correlated with Apr–Jun  $\Delta$ T (R=0.86 for GPP, R=-556 0.95 for NEE) but only Jul–Sep  $\Delta$ GPP is correlated with Jul–Sep  $\Delta$ M (R=0.72 for GPP, 557 R=0.16 for NEE). Furthermore, this mechanism would imply a negative correlation be-558 tween spring  $\Delta T$  and summer  $\Delta M$ , however, Apr–Jun  $\Delta T$  and Jul–Sep  $\Delta M$  are only weakly 559 correlated over eastern temperate North America (R=-0.28). This is true for grid cells 560 with cropland fractions greater than 65% (R=-0.19) and less than 35% (R=-0.28) (see 561 Fig. S8). To some extent, the lack of correlation could be due to errors in the ESA CCI 562 soil moisture product, as somewhat stronger correlations are found between Apr–Jun  $\Delta T$ 563 and Jul–Sep GRACE  $\Delta$ TWS (R=-0.44 for 2003–2014, Table S1). Still, these results sug-564 gests that other factors play a role in seasonal compensation effects. Direct physiolog-565 ical mechanisms linking budburst and senescence, such as leaf structure constraints on 566 longevity (Reich et al., 1992) or programmed cell death (Lam, 2004), may have a sig-567 nificant impact on the length of the growing season (Keenan & Richardson, 2015). How-568 ever, more research is needed to understand the drivers of seasonal compensation effects. 569

570

#### 5.2 Implications for temperate North American carbon sink

The sensitivity of carbon cycle IAV to environmental drivers may provide information on the sensitivity of the carbon cycle to climate change (Cox et al., 2013). Here, we discuss the implications of the relationships between carbon cycle IAV and environmental drivers for the future carbon balance of temperate North America under anthropogenic climate change.

Changes in temperature and the water cycle of temperate North America have been observed and are projected into the future. The annual average temperature of the contiguous US has risen by 0.7–1.0 °C since the start of the 20th century, and is projected to increase by 1.4 °C (RCP4.5) to 1.6 °C (RCP8.5) for 2021–2050 relative to 1976–2005, based on Coupled Model Intercomparison Project 5 (CMIP5) simulations (Vose et al., 2017). Warming is driving a more rapid water cycle (Huntington et al., 2018). This is

projected to cause decreases in soil moisture because increases in evapotranspiration (due 582 to temperature increases) are expected to be larger than precipitation increases (Cook 583 et al., 2015). Predicted warming and drying in western temperate North America (Seager 601 et al., 2007) could have profound effects on the carbon cycle (Schwalm et al., 2012), with increasing temperatures and aridity driving reductions in growing season productivity 586 and carbon uptake. Although, TBMs suggest that carbon loss due to climate change will 587 be partially mitigated by increasing  $CO_2$  (Huntzinger et al., 2018). In eastern temper-588 ate North America, the results of this study suggest that temperature increases will re-589 sult in a shift of the growing season to earlier in the year, with increased uptake during 590 the spring but decreased uptake during the summer. However, the observationally-constrained 591 flux estimates do not show sensitivity of growing season net GPP and NEE to environ-592 mental anomalies, suggesting that eastern temperate North American ecosystems may 593 be more resilient to climate change than simulated by the models. 594

#### 595 6 Conclusions

Observationally-constrained FluxSat GPP and CO<sub>2</sub> flux inversion NEE show that 596 there are substantial differences in IAV between the arid west and wetter east of tem-597 perate North America. In western temperate North America, spring and summer anomalies are found to be correlated, such that IAV is characterized by an amplification of the 599 mean GPP and NEE during the growing season. These western ecosystems are gener-600 ally water limited, such that increased GPP and net uptake are associated with cooler-601 wetter conditions. In eastern temperate North America, spring and summer anomalies 602 are anti-correlated, leading to compensating anomalies over the growing season. Anoma-603 lies in GPP and NEE are closely associated to temperature, with a shift in the seasonal 604 cycle to earlier in the year during warm years, resulting in increased GPP and net up-605 take in Apr–Jun but decreased GPP and net uptake in Jun-Sep. 606

Due to the dominance of amplification in the west and seasonal compensation in 607 the east, western temperate North America contributes more to IAV than the eastern 608 temperate North America in GPP (104% of east) and NEE (127% of east) during the 609 growing season (April-September), despite the fact that the mean growing season fluxes 610 are larger in the east (7.6× for GPP,  $3.5\times$  for NEE). Simulated GPP and NEE from the 611 MsTMIP ensemble generally recover larger IAV in the west relative to the east, although 612 there is considerable spread between models. These results suggest that ecosystems in 613 western temperate North America are sensitive to increases in temperature and aridity 614 expected under climate change, and that reductions in growing season productivity and 615 net uptake could occur under climate change. 616

#### 617 Acknowledgments

BB was supported by an appointment to the NASA Postdoctoral Program at the Jet 618 Propulsion Laboratory, administered by Universities Space Research Association under 619 contract with NASA. JL was supported by the NASA OCO2/3 science team program 620 NNH17ZDA001N-OCO2. JJ was supported by NASA through the Earth Science U.S. 621 Participating Investigator and Making Earth Science Data Records for Use in Research 622 Environments (MEaSUREs) programs. TFK was supported by the NASA Terrestrial 623 Ecology Program IDS Award NNH17AE86I. Resources supporting this work were pro-624 vided by the NASA High-End Computing (HEC) Program through the NASA Advanced 625 Supercomputing (NAS) Division at Ames Research Center. Funding for the Multi-scale 626 synthesis and Terrestrial Model Intercomparison Project (MsTMIP; https://nacp.ornl.gov/MsTMIP.shtml) 627 activity was provided through NASA ROSES Grant #NNX10AG01A. Data management 628 support for preparing, documenting, and distributing model driver and output data was 629 performed by the Modeling and Synthesis Thematic Data Center at Oak Ridge National 630 Laboratory (ORNL; http://nacp.ornl.gov), with funding thorugh NASA ROSES Grant 631 #NNH10AN681. Finalized MsTMIP data products are archived at the ORNL DAAC 632

- (http://daac.ornl.gov). The research was carried out at the Jet Propulsion Laboratory, 633
- California Institute of Technology, under a contract with the National Aeronautics and 634
- Space Administration (80NM0018D004). The eddy covariance sites examined in this study 635
- are supported by the DOE Ameriflux Network Management Project. 636

Posterior NEE fluxes from Byrne et al. (2020) were downloaded from https://cmsflux.jpl.nasa.gov/. 637

- CarbonTracker CT2017 results provided by NOAA ESRL, Boulder, Colorado, USA from 638
- the website at http://carbontracker.noaa.gov. CarbonTracker Lagrange NEE fluxes were 639
- downloaded from https://doi.org/10.15138/3dw1-5c37. CAMS NEE fluxes were obtained 640
- 641 from https://atmosphere.copernicus.eu/. FLUXNET2015 data were obtained from https://fluxnet.org.

#### References 642

664

- Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., ... 643 (2003).The version-2 Global Precipitation Climatology Project others 644 (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 645 4(6), 1147-1167.646
- Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., ... 647 others (2015).The dominant role of semi-arid ecosystems in the trend and 648 variability of the land  $CO_2$  sink. Science, 348(6237), 895-899. 649
- Angert, A., Biraud, S., Bonfils, C., Henning, C., Buermann, W., Pinzon, J., ... 650 Fung, I. (2005).Drier summers cancel out the co2 uptake enhancement in-651 duced by warmer springs. Proceedings of the National Academy of Sciences, 652 102(31), 10823-10827.653
- Baldocchi, D., Chu, H., & Reichstein, M. (2018).Inter-annual variabil-654 ity of net and gross ecosystem carbon fluxes: A review. Agr. For-655 est Meteorol., 249 (Supplement C), 520-533. Retrieved from http:// 656 www.sciencedirect.com/science/article/pii/S0168192317301806 doi: 657 10.1016/j.agrformet.2017.05.015 658
- Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., ... others 659 FLUXNET: A new tool to study the temporal and spatial variability (2001).660 of ecosystem–scale carbon dioxide, water vapor, and energy flux densities. 661 B. Am. Meteorol. Soc., 82(11), 2415–2434. 662
- Baldocchi, D., & Ma, S. (2016). (2001-2014) FLUXNET2015 US-Ton Tonzi Ranch, 663 Dataset. doi: 10.18140/FLX/1440092
- Baldocchi, D., Ma, S., & Xu, L. (2016). (2000-2014) FLUXNET2015 US-Var Vaira 665 Ranch- Ione, Dataset. doi: 10.18140/FLX/1440094 666
- Baldocchi, D., Ryu, Y., & Keenan, T. (2016). Terrestrial carbon cycle variability. 667 F1000Research, 5.668
- Berry, J., & Bjorkman, O. (1980). Photosynthetic response and adaptation to tem-669 perature in higher plants. Ann. Rev. Plant Physio., 31(1), 491–543. 670
- Biederman, J. A., Scott, R. L., Arnone III, J. A., Jasoni, R. L., Litvak, M. E., 671 Moreo, M. T., ... Vivoni, E. R. (2018). Shrubland carbon sink depends upon 672 winter water availability in the warm deserts of north america. Agricultural 673 and Forest Meteorology, 249, 407-419. 674
- Biederman, J. A., Scott, R. L., Goulden, M. L., Vargas, R., Litvak, M. E., Kolb, 675
- T. E., ... Burns, S. P. (2016).Terrestrial carbon balance in a drier world: 676 the effects of water availability in southwestern north america. Global Change 677 Biology, 22(5), 1867-1879.678
- Biraud, S., Fischer, M., Chan, S., & Torn, M. (2016). (2003-2012) FLUXNET2015 679 US-ARM ARM Southern Great Plains site- Lamont, Dataset. doi: 10.18140/ 680 FLX/1440066 681
- Blanken, P. D., Monson, R. K., Burns, S. P., Bowling, D. R., & Turnipseed, A. A. 682 (2016).(1998-2014) FLUXNET2015 US-NR1 Niwot Ridge Forest (LTER 683 NWT1), Dataset. doi: 10.18140/FLX/1440087 684

| 685 | Bowman, K., Liu, J., Bloom, A., Parazoo, N., Lee, M., Jiang, Z., others (2017).                 |
|-----|-------------------------------------------------------------------------------------------------|
| 686 | Global and Brazilian carbon response to El Niño Modoki 2011–2010. Earth                         |
| 687 | and Space Sci., $4(10)$ , 637–660. doi: 10.1002/2016EA000204                                    |
| 688 | Buermann, W., Bikash, P. R., Jung, M., Burn, D. H., & Reichstein, M. (2013).                    |
| 689 | Earlier springs decrease peak summer productivity in north american boreal                      |
| 690 | forests. Environmental Research Letters, $\mathcal{S}(2)$ , 024027.                             |
| 691 | Buermann, W., Forkel, M., O'Sullivan, M., Sitch, S., Friedlingstein, P., Haverd, V.,            |
| 692 | others (2018). Widespread seasonal compensation effects of spring warming                       |
| 693 | on northern plant productivity. <i>Nature</i> , 562(7725), 110.                                 |
| 694 | Butterfield, Z., Buermann, W., & Keppel-Aleks, G. (2020). Satellite observations re-            |
| 695 | veal seasonal redistribution of northern ecosystem productivity in response to                  |
| 696 | interannual climate variability. Remote Sensing of Environment, 242, 111755.                    |
| 697 | Byrne, B., Jones, D. B. A., Strong, K., Polavarapu, S. M., Harper, A. B., Baker,                |
| 698 | D. F., & Maksyutov, S. (2019). On what scales can gosat flux inversions                         |
| 699 | constrain anomalies in terrestrial ecosystems? Atmos. Chem. Phys., $19(20)$ ,                   |
| 700 | 13017-13035. Retrieved from https://www.atmos-chem-phys.net/19/13017/                           |
| 701 | <b>2019</b> / doi: 10.5194/acp-19-13017-2019                                                    |
| 702 | Byrne, B., Jones, D. B. A., Strong, K., Zeng, ZC., Deng, F., & Liu, J. (2017). Sen-             |
| 703 | sitivity of $CO_2$ surface flux constraints to observational coverage. J. Geophys.              |
| 704 | ResAtmos, 112(12), 6672–6694. doi: 10.1002/2016JD026164                                         |
| 705 | Byrne, B., Liu, J., Lee, M., Baker, I. T., Bowman, K. W., Deutscher, N. M.,                     |
| 706 | Wunch, D. $(2020)$ . Improved constraints on northern extratropical CO <sub>2</sub>             |
| 707 | fluxes obtained by combining surface-based and space-based atmospheric $\mathrm{CO}_2$          |
| 708 | measurements. Journal of Geophysical Research: Atmospheres, 125. doi:                           |
| 709 | 10.1029/2019JD032029                                                                            |
| 710 | Byrne, B., Wunch, D., Jones, D., Strong, K., Deng, F., Baker, I., others (2018).                |
| 711 | Evaluating GPP and respiration estimates over northern midlatitude ecosys-                      |
| 712 | tems using solar-induced fluorescence and atmospheric $\rm CO_2$ measurements.                  |
| 713 | Journal of Geophysical Research: Biogeosciences, 123(9), 2976–2997.                             |
| 714 | Chevallier, F. (2013). On the parallelization of atmospheric inversions of co <sub>2</sub> sur- |
| 715 | face fluxes within a variational framework. Geoscientific Model Development,                    |
| 716 | 6(3), 783-790. Retrieved from https://gmd.copernicus.org/articles/6/                            |
| 717 | 783/2013/ doi: 10.5194/gmd-6-783-2013                                                           |
| 718 | Chevallier, F., Ciais, P., Conway, T., Aalto, T., Anderson, B., Bousquet, P.,                   |
| 719 | Worthy, D. $(2010)$ . CO <sub>2</sub> surface fluxes at grid point scale estimated from a       |
| 720 | global 21 year reanalysis of atmospheric measurements. Journal of Geophysical                   |
| 721 | Research: Atmospheres, $115(D21)$ .                                                             |
| 722 | Chevallier, F., Fisher, M., Peylin, P., Serrar, S., Bousquet, P., Bréon, FM.,                   |
| 723 | Ciais, P. $(2005)$ . Inferring CO <sub>2</sub> sources and sinks from satellite observations:   |
| 724 | Method and application to TOVS data. Journal of Geophysical Research:                           |
| 725 | Atmospheres, 110 (D24).                                                                         |
| 726 | Cook, B. I., Ault, T. R., & Smerdon, J. E. (2015). Unprecedented 21st century                   |
| 727 | drought risk in the american southwest and central plains. Science Advances,                    |
| 728 | 1(1), e1400082.                                                                                 |
| 729 | Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C., Jones,              |
| 730 | C. D., & Luke, C. M. (2013). Sensitivity of tropical carbon to climate change                   |
| 731 | constrained by carbon dioxide variability. Nature, $494(7437)$ , $341-344$ .                    |
| 732 | Desai, A. (2016a). (1995-2014) FLUXNET2015 US-PFa Park Falls/WLEF,                              |
| 733 | Dataset. doi: 10.18140/FLX/1440089                                                              |
| 734 | Desai, A. (2016b). (1999-2014) FLUXNET2015 US-WCr Willow Creek, Dataset.                        |
| 735 | doi: 10.18140/FLX/1440095                                                                       |
| 736 | Desai, A. (2016c). (2000-2014) FLUXNET2015 US-Los Lost Creek, Dataset. doi: 10                  |
| 737 | .18140/FLX/1440076                                                                              |
| 738 | Flechtner, F., Morton, P., Watkins, M., & Webb, F. (2014). Status of the grace                  |
| 739 | follow-on mission. In <i>Gravity, geoid and height systems</i> (pp. 117–121).                   |

| 740 | Springer.                                                                               |
|-----|-----------------------------------------------------------------------------------------|
| 741 | Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, JE.,      |
| 742 | others (2011). New global observations of the terrestrial carbon cycle                  |
| 743 | from GOSAT: Patterns of plant fluorescence with gross primary productivity.             |
| 744 | Geophys. Res. Lett., 38(17706). doi: 10.1029/2011GL048738                               |
| 745 | Fu, Y. S., Campioli, M., Vitasse, Y., De Boeck, H. J., Van den Berge, J., AbdEl-        |
| 746 | gawad, H., Janssens, I. A. (2014). Variation in leaf flushing date influ-               |
| 747 | ences autumnal senescence and next year's flushing date in two temperate tree           |
| 748 | species. Proceedings of the National Academy of Sciences, 111(20), 7355–7360.           |
| 749 | Fu, Z., Dong, J., Zhou, Y., Stoy, P. C., & Niu, S. (2017). Long term trend and inter-   |
| 750 | annual variability of land carbon uptake - the attribution and processes. Envi-         |
| 751 | ronmental Research Letters, 12(1), 014018.                                              |
| 752 | Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,             |
| 753 | others (2017). The modern-era retrospective analysis for research and applica-          |
| 754 | tions, version 2 (MERRA-2). J. Climate, 30(14), 5419–5454.                              |
| 755 | Goldstein, A. H. (2016). ((1997-2007) FLUXNET2015 US-Blo Blodgett Forest,               |
| 756 | Dataset. doi: 10.18140/FLX/1440068                                                      |
| 757 | Golub, G. H., & Reinsch, C. (1971). Singular value decomposition and least squares      |
| 758 | solutions. In <i>Linear algebra</i> (pp. 134–151). Springer.                            |
| 759 | Gough, C., Bohrer, G., & Curtis, P. (2016a). (2000-2014) FLUXNET2015 US-UMB             |
| 760 | Univ. of Mich. Biological Station, Dataset. doi: 10.18140/FLX/1440093                   |
| 761 | Gough, C., Bohrer, G., & Curtis, P. (2016b). (2007-2014) FLUXNET2015 US-UMd             |
| 762 | UMBS Disturbance, Dataset. doi: 10.18140/FLX/1440101                                    |
| 763 | Guerlet, S., Basu, S., Butz, A., Krol, M., Hahne, P., Houweling, S., Aben, I.           |
| 764 | (2013). Reduced carbon uptake during the 2010 Northern Hemisphere summer                |
| 765 | from GOSAT. Geophys. Res. Lett., $40(10)$ , 2378–2383.                                  |
| 766 | Hu, L., Andrews, A. E., Thoning, K. W., Sweeney, C., Miller, J. B., Michalak,           |
| 767 | A. M., others (2019). Enhanced north american carbon uptake associ-                     |
| 768 | ated with el niño. Science advances, 5(6), eaaw0076.                                    |
| 769 | Huang, L., He, B., Chen, A., Wang, H., Liu, J., Lű, A., & Chen, Z. (2016). Drought      |
| 770 | dominates the interannual variability in global terrestrial net primary produc-         |
| 771 | tion by controlling semi-arid ecosystems. Scientific reports, 6, 24639.                 |
| 772 | Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002).   |
| 773 | Overview of the radiometric and biophysical performance of the modis vegeta-            |
| 774 | tion indices. Remote sensing of environment, 83(1-2), 195–213.                          |
| 775 | Huntington, T. G., Weiskel, P. K., Wolock, D. M., & McCabe, G. J. (2018). A new         |
| 776 | indicator framework for quantifying the intensity of the terrestrial water cycle.       |
| 777 | Journal of hydrology, 559, 361–372.                                                     |
| 778 | Huntzinger, D. N., Chatterjee, A., et al. (2018). Chapter 19: Future of the north       |
| 779 | american carbon cycle. Second State of the Carbon Cycle Report (SOCCR2):                |
| 780 | A Sustained Assessment Report. US Global Change Research Program, Wash-                 |
| 781 | ington, DC, USA, 760–809.                                                               |
| 782 | Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei,        |
| 783 | Y., Zhu, Q. (2013). The north american carbon program multi-scale                       |
| 784 | synthesis and terrestrial model intercomparison project – part 1: Overview              |
| 785 | and experimental design. Geoscientific Model Development, 6(6), 2121–2133.              |
| 786 | Retrieved from https://www.geosci-model-dev.net/6/2121/2013/ doi:                       |
| 787 | 10.5194/gmd-6-2121-2013                                                                 |
| 788 | Huntzinger, D. N., Schwalm, C., Wei, Y., Cook, R., Michalak, A., Schaefer, K.,          |
| 789 | others (2016). Nacp mstmip: Global 0.5-deg terrestrial biosphere model outputs          |
| 790 | (version 1) in standard format, data set. ORNL DAAC, Oak Ridge, Tennessee,              |
| 791 | USA. doi: 10.3334/ORNLDAAC/1225                                                         |
| 792 | Ishizawa, M., Mabuchi, K., Shirai, T., Inoue, M., Morino, I., Uchino, O.,               |
| 793 | Maksyutov, S. (2016). Inter-annual variability of summertime $CO_2$ exchange            |
| 794 | in Northern Eurasia inferred from GOSAT XCO <sub>2</sub> . Environ. Res. Lett., 11(10), |
|     |                                                                                         |

| 795 | 105001.                                                                                                             |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 796 | Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A., Middleton, E.,                                     |
| 797 | Frankenberg, C. (2013). Global monitoring of terrestrial chlorophyll fluores-                                       |
| 798 | cence from moderate spectral resolution near-infrared satellite measurements:                                       |
| 799 | Methodology, simulations, and application to GOME-2. Atmos. Meas. Tech.,                                            |
| 800 | 6(2), 2803-2823. doi: 10.5194/amt-6-2803-2013                                                                       |
| 801 | Joiner, J., Yoshida, Y., Guanter, L., & Middleton, E. M. (2016). New meth-                                          |
| 802 | ods for the retrieval of chlorophyll red fluorescence from hyperspectral                                            |
| 803 | satellite instruments: simulations and application to GOME-2 and SCIA-                                              |
| 804 | MACHY. Atmos. Meas. Tech., 9(8), 3939–3967. Retrieved from https://                                                 |
| 805 | www.atmos-meas-tech.net/9/3939/2016/ doi: $10.5194/amt$ -9-3939-2016                                                |
| 806 | Joiner, J., Yoshida, Y., Vasilkov, A., Middleton, E., et al. (2011). First observations                             |
| 807 | of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeo-                                     |
| 808 | $sciences, \ 8(3), \ 637-651.$                                                                                      |
| 809 | Joiner, J., Yoshida, Y., Zhang, Y., Duveiller, G., Jung, M., Lyapustin, A.,                                         |
| 810 | Tucker, C. (2018). Estimation of terrestrial global gross primary produc-                                           |
| 811 | tion (GPP) with satellite data-driven models and eddy covariance flux data.                                         |
| 812 | Remote Sensing, $10(9)$ , 1346.                                                                                     |
| 813 | Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., Ahlström, A.,                                 |
| 814 | $\dots$ others (2017). Compensatory water effects link yearly global land CO <sub>2</sub> sink                      |
| 815 | changes to temperature. Nature, $541(7638)$ , $516-520$ .                                                           |
| 816 | Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S.,                                  |
| 817 | Reichstein, M. (2020). Scaling carbon fluxes from eddy covariance sites to                                          |
| 818 | globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences,                                            |
| 819 | 17(5), 1343-1365. Retrieved from https://www.biogeosciences.net/17/                                                 |
| 820 | <b>1343/2020/</b> doi: 10.5194/bg-17-1343-2020                                                                      |
| 821 | Keenan, T. F., & Richardson, A. D. (2015). The timing of autumn senescence is                                       |
| 822 | affected by the timing of spring phenology: implications for predictive models.                                     |
| 823 | Global change biology, $21(7)$ , $2634-2641$ .                                                                      |
| 824 | Lam, E. (2004). Controlled cell death, plant survival and development. Nature Re-                                   |
| 825 | views Molecular Cell Biology, 5(4), 305.                                                                            |
| 826 | Landerer, F. W., & Swenson, S. (2012). Accuracy of scaled grace terrestrial water                                   |
| 827 | storage estimates. Water resources research, $48(4)$ .                                                              |
| 828 | Liu, J., Baskarran, L., Bowman, K., Schimel, D., Bloom, A. A., Parazoo, N. C.,                                      |
| 829 | Wofsy, S. (2020). Carbon monitoring system flux net biosphere exchange 2020                                         |
| 830 | (cms-flux nbe 2020). Earth System Science Data Discussions, 2020, 1–53.                                             |
| 831 | Retrieved from https://essd.copernicus.org/preprints/essd-2020-123/                                                 |
| 832 | doi: $10.5194/essd-2020-123$                                                                                        |
| 833 | Liu, J., Bowman, K., Parazoo, N. C., Bloom, A. A., Wunch, D., Jiang, Z.,                                            |
| 834 | Schimel, D. (2018). Detecting drought impact on terrestrial biosphere carbon                                        |
| 835 | fluxes over contiguous us with satellite observations. Environmental Research                                       |
| 836 | Letters, 13(9), 095003.                                                                                             |
| 837 | Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M.,                                         |
| 838 | Eldering, A. (2017). Contrasting carbon cycle responses of the tropical                                             |
| 839 | continents to the 2015–2016 el niño. Science, 358 (6360). Retrieved from                                            |
| 840 | http://science.sciencemag.org/content/358/6360/eaam5690 doi:                                                        |
| 841 | 10.1126/science.aam5690                                                                                             |
| 842 | Liu, Y. Y., Dorigo, W. A., Parinussa, R., de Jeu, R. A., Wagner, W., McCabe,                                        |
| 843 | M. F., Van Dijk, A. (2012). Trend-preserving blending of passive and ac-                                            |
| 844 | tive microwave soil moisture retrievals. <i>Remote Sens. Environ.</i> , 123, 280–297.                               |
| 845 | Liu, Y. Y., Parinussa, R., Dorigo, W. A., De Jeu, R. A., Wagner, W., Van Dijk, A.,                                  |
| 846 | Evans, J. (2011). Developing an improved soil moisture dataset by blend-                                            |
| 847 | ing passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. $S_{c} = t_{c}^{5}(2) + 425 + 426$ |
| 848 | Sc., 15(2), 425-436.                                                                                                |
| 849 | Liu, Z., Ballantyne, A. P., Poulter, B., Anderegg, W. R., Li, W., Bastos, A., & Ciais,                              |

| 850 | P. (2018). Precipitation thresholds regulate net carbon exchange at the conti-            |
|-----|-------------------------------------------------------------------------------------------|
| 851 | nental scale. Nature communications, $9(1)$ , 3596.                                       |
| 852 | Liu, Z., Kimball, J. S., Parazoo, N. C., Ballantyne, A. P., Wang, W. J., Madani, N.,      |
| 853 | Euskirchen, E. S. (2020). Increased high-latitude photosynthetic carbon                   |
| 854 | gain offset by respiration carbon loss during an anomalous warm winter to                 |
| 855 | spring transition. Global Change Biology, $26(2)$ , $682-696$ .                           |
| 856 | Massman, B. (2016). (2004-2014) FLUXNET2015 US-GLE GLEES, Dataset. doi:                   |
| 857 | 10.18140/FLX/1440069                                                                      |
| 858 | Niu, S., Fu, Z., Luo, Y., Stoy, P. C., Keenan, T. F., Poulter, B., others (2017).         |
| 859 | Interannual variability of ecosystem carbon exchange: From observation to                 |
| 860 | prediction. Global ecology and biogeography, 26(11), 1225–1237.                           |
| 861 | Novick, K., & Phillips, R. (2016). (1999-2014) FLUXNET2015 US-MMS Morgan                  |
| 862 | Monroe State Forest, Dataset. doi: 10.18140/FLX/1440083                                   |
| 863 | Papageorgiou, G. C., & Govindjee. (2007). Chlorophyll a fluorescence: a signature of      |
| 864 | photosynthesis (Vol. 19). Springer Science & Business Media.                              |
| 865 | Papagiannopoulou, C., Miralles, D., Dorigo, W. A., Verhoest, N., Depoorter, M., &         |
| 866 | Waegeman, W. (2017). Vegetation anomalies caused by antecedent precipita-                 |
| 867 | tion in most of the world. Environmental Research Letters, 12(7), 074016.                 |
| 868 | Parazoo, N. C., Barnes, E., Worden, J., Harper, A. B., Bowman, K. B., Franken-            |
| 869 | berg, C., Keenan, T. F. (2015). Influence of enso and the nao on terrestrial              |
| 870 | carbon uptake in the texas-northern mexico region. Global Biogeochemical                  |
| 871 | Cycles, 29(8), 1247-1265.                                                                 |
| 872 | Parazoo, N. C., Bowman, K., Fisher, J. B., Frankenberg, C., Jones, D., Cescatti,          |
| 873 | A., Montagnani, L. (2014). Terrestrial gross primary production inferred                  |
| 874 | from satellite fluorescence and vegetation models. <i>Glob. Change Biol.</i> , $20(10)$ , |
| 875 | 3103–3121.                                                                                |
| 876 | Parida, B. R., & Buermann, W. (2014). Increasing summer drying in north american          |
| 877 | ecosystems in response to longer nonfrozen periods. <i>Geophysical Research Let-</i>      |
| 878 | ters, 41(15), 5476-5483.                                                                  |
| 879 | Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, YW.,           |
| 880 | Papale, D. (2020, July). The FLUXNET2015 dataset and the ONE-                             |
| 881 | Flux processing pipeline for eddy covariance data. $Scientific Data, 7(1),$               |
| 882 | 225. Retrieved from https://doi.org/10.1038/s41597-020-0534-3 doi:                        |
| 883 | 10.1038/s41597-020-0534-3                                                                 |
| 884 | Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie,         |
| 885 | K., others (2007). An atmospheric perspective on North American carbon                    |
| 886 | dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci., 104 (48), 18925–                 |
| 887 | 18930. doi: 10.1073/pnas.0708986104                                                       |
| 888 | Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., others              |
| 889 | (2014). Contribution of semi-arid ecosystems to interannual variability of                |
| 890 | the global carbon cycle. Nature, $509(7502)$ , 600.                                       |
| 891 | Reich, P. B., Walters, M., & Ellsworth, D. (1992). Leaf life-span in relation to leaf,    |
| 892 | plant, and stand characteristics among diverse ecosystems. <i>Ecological mono</i> -       |
| 893 | graphs, $62(3)$ , $365-392$ .                                                             |
| 894 | Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P., Koster, R. D.,      |
| 895 | & De Lannoy, G. J. (2017). Assessment of MERRA-2 land surface hydrology                   |
| 896 | estimates. J. Climate, $30(8)$ , 2937–2960.                                               |
| 897 | Reichle, R. H., Koster, R. D., De Lannoy, G. J., Forman, B. A., Liu, Q., Mahanama,        |
| 898 | S. P., & Touré, A. (2011). Assessment and enhancement of MERRA land                       |
| 899 | surface hydrology estimates. J. Climate, 24 (24), 6322–6338.                              |
| 900 | Remaud, M., Chevallier, F., Cozic, A., Lin, X., & Bousquet, P. (2018). On the im-         |
| 901 | pact of recent developments of the Imdz atmospheric general circulation model             |
| 902 | on the simulation of $CO_2$ transport. Geoscientific Model Development, $11(11)$ ,        |
| 903 | 4489-4513. Retrieved from https://gmd.copernicus.org/articles/11/                         |
| 904 | 4489/2018/ doi: 10.5194/gmd-11-4489-2018                                                  |
|     |                                                                                           |

Rödenbeck, C., Zaehle, S., Keeling, R., & Heimann, M. (2018).How does the 905 terrestrial carbon exchange respond to inter-annual climatic variations? A 906 quantification based on atmospheric  $CO_2$  data. Biogeosciences, 15(8), 2481-907 2498.Retrieved from https://www.biogeosciences.net/15/2481/2018/ 908 doi: 10.5194/bg-15-2481-2018 909 Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., ... others 910 (2002).First operational brdf, albedo nadir reflectance products from modis. 911 Remote sensing of Environment, 83(1-2), 135-148. 912 Schwalm, C. R., Williams, C. A., Schaefer, K., Arneth, A., Bonal, D., Buchmann, 913 N., ... others (2010). Assimilation exceeds respiration sensitivity to drought: 914 A fluxnet synthesis. Global Change Biology, 16(2), 657–670. 915 Schwalm, C. R., Williams, C. A., Schaefer, K., Baldocchi, D., Black, T. A., Gold-916 stein, A. H., ... others (2012). Reduction in carbon uptake during turn of the 917 century drought in western north america. Nature Geoscience, 5(8), 551. 918 (2016a). (2004-2014) FLUXNET2015 US-SRM Santa Rita Mesquite, Scott, R. 919 Dataset. doi: 10.18140/FLX/1440090 920 (2016b). Scott, R. (2004-2014) FLUXNET2015 US-Wkg Walnut Gulch Kendall 921 Grasslands, Dataset. doi: 10.18140/FLX/1440096 922 Scott, R. (2016c). (2007-2014) FLUXNET2015 US-Whs Walnut Gulch Lucky Hills 923 Shrub, Dataset. doi: 10.18140/FLX/1440097 924 (2016d).(2008-2014) FLUXNET2015 US-SRG Santa Rita Grassland, Scott, R. 925 Dataset. doi: 10.18140/FLX/1440114 926 Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., ... others (2007).927 Model projections of an imminent transition to a more arid climate in south-928 western north america. *Science*, 316(5828), 1181–1184. 929 Shiga, Y. P., Michalak, A. M., Fang, Y., Schaefer, K., Andrews, A. E., Huntzinger, 930 D. H., ... Wei, Y. (2018). Forests dominate the interannual variability of the 931 north american carbon sink. Environmental Research Letters, 13(8), 084015. 932 Retrieved from http://stacks.iop.org/1748-9326/13/i=8/a=084015 doi: 933 10.1088/1748-9326/aad505934 Smith, T. E. L., Wooster, M. J., Tattaris, M., & Griffith, D. W. T. (2011).935 Absolute accuracy and sensitivity analysis of op-ftir retrievals of  $co_2$ ,  $ch_4$ 936 and co over concentrations representative of "clean air" and "polluted 937 plumes". Atmos. Meas. Tech., 4(1), 97–116. Retrieved from https:// 938 www.atmos-meas-tech.net/4/97/2011/ doi: 10.5194/amt-4-97-2011 939 Sun, Y., Frankenberg, C., Wood, J. D., Schimel, D., Jung, M., Guanter, L., ... 940 OCO-2 advances photosynthesis observation from space via others (2017).941 solar-induced chlorophyll fluorescence. Science, 358(6360), eaam5747. 942 Suyker, A. (2016a). (2001-2013) FLUXNET2015 US-Ne1 Mead - irrigated continu-943 ous maize site, Dataset. doi: 10.18140/FLX/1440084 944 Suyker, A. (2016b). (2001-2013) FLUXNET2015 US-Ne2 Mead - irrigated maize-945 soybean rotation site, Dataset. doi: 10.18140/FLX/1440085 946 (2016c).(2001-2013) FLUXNET2015 US-Ne3 Mead - rainfed maize-Suvker, A. 947 soybean rotation site, Dataset. doi: 10.18140/FLX/1440086 948 Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., & Watkins, M. M. 949 (2004).Grace measurements of mass variability in the earth system. Sci-950 ence, 305(5683), 503-505. 951 Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., 952 ... Papale, D. (2016).Predicting carbon dioxide and energy fluxes across 953 global FLUXNET sites with regression algorithms. Biogeosciences, 13(14),954 Retrieved from https://www.biogeosciences.net/13/4291/ 4291 - 4313.955 2016/ doi: 10.5194/bg-13-4291-2016 956 Vose, R., Easterling, D., Kunkel, K., LeGrande, A., & Wehner, M. (2017).Tem-957 perature changes in the united states [Book Section]. In D. Wuebbles, D. Fa-958 hey, K. Hibbard, D. Dokken, B. Stewart, & T. Maycock (Eds.), Climate sci-

959

| 960 | ence special report: Fourth national climate assessment, volume i (pp. 185–         |
|-----|-------------------------------------------------------------------------------------|
| 961 | 206). Washington, DC, USA: U.S. Global Change Research Program. doi:                |
| 962 | 10.7930/J0N29V45                                                                    |
| 963 | Wei, Y., Liu, S., Huntzinger, D. N., Michalak, A. M., Viovy, N., Post, W. M.,       |
| 964 | others (2014). The North American carbon program multi-scale synthesis and          |
| 965 | terrestrial model intercomparison project–Part 2: environmental driver data.        |
| 966 | Geosci. Model Dev., 7(6), 2875–2893. doi: 10.5194/gmd-7-2875-2014                   |
| 967 | Wolf, S., Keenan, T. F., Fisher, J. B., Baldocchi, D. D., Desai, A. R., Richardson, |
| 968 | A. D., others (2016). Warm spring reduced carbon cycle impact of the                |
| 969 | 2012 us summer drought. Proceedings of the National Academy of Sciences,            |
| 970 | 113(21), 5880-5885.                                                                 |
| 971 | Yang, X., Tang, J., Mustard, J. F., Lee, JE., Rossini, M., Joiner, J., Richard-     |
| 972 | son, A. D. (2015). Solar-induced chlorophyll fluorescence that correlates with      |
| 973 | canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous       |
| 974 | forest. Geophys. Res. Lett., 42(8), 2977–2987.                                      |
| 975 | Yin, Y., Byrne, B., Liu, J., Wennberg, P. O., Davis, K. J., Magney, T., Franken-    |
| 976 | berg, C. (2020). Cropland carbon uptake delayed and reduced by 2019 mid-            |
| 977 | west floods. $AGU Advances$ , $1(1)$ , e2019AV000140.                               |
| 978 | Zhang, X., Gurney, K. R., Peylin, P., Chevallier, F., Law, R. M., Patra, P. K.,     |
| 979 | Krol, M. (2013). On the variation of regional $co_2$ exchange over temperate and    |

boreal north america. Global Biogeochemical Cycles, 27(4), 991–1000.