Evidence of nighttime production of organic nitrates during SEAC4RS, FRAPPE, and KORUS-AQ

Hannah S. Kenagy¹, Tamara Sparks², Paul J Wooldridge¹, Andrew J. Weinheimer³, Thomas B. Ryerson⁴, Donald Ray Blake⁵, Eric C Apel⁶, and Ronald Carl Cohen⁷

¹University of California, Berkeley ²UC-Berkeley ³National Center for Atmospheric Research (UCAR) ⁴NOAA ESRL ⁵University of California, Irvine ⁶UCAR ACD ⁷UC Berkeley

November 23, 2022

Abstract

Organic nitrates (RONO) are an important NO sink. In rural environments dominated by biogenic emissions, nocturnal NO-initiated production of RONO is competitive with daytime OH-initiated RONO production. However, in urban areas, OH-initiated production of RONO has been assumed dominant and NO-initiated production considered negligible. We show evidence for nighttime RONO production similar in magnitude to daytime production during three aircraft campaigns in chemically-distinct environments: SEACRS in the rural Southeastern US, FRAPPÉ in the Colorado Front Range, and KORUS-AQ around the megacity of Seoul. During each campaign, morning observations show RONO enhancements at constant, near-background Ox ([?] O + NO), indicating that the RONO are from a non-photochemical source, whereas afternoon observations show a strong correlation between RONO and O resulting from photochemical production. We show there are sufficient precursors for nighttime RONO formation during all three campaigns. This evidence impacts our understanding of the nighttime lifetime and fate of NO.

Evidence of nighttime production of organic nitrates during SEAC⁴RS, FRAPPÉ, and KORUS-AQ

Hannah S. Kenagy¹, Tamara L. Sparks¹, Paul J. Wooldridge¹, Andrew J. Weinheimer², Thomas B. Ryerson³, Donald R. Blake⁴, Eric C. Apel², and Ronald C. Cohen^{1,5}

6 7	¹ Department of Chemistry, University of California, Berkeley, CA, USA ² Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder,
8	CO. USA
9	³ Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
10	⁴ Department of Chemistry, University of California, Irvine, CA, USA
11	⁵ Department of Earth and Planetary Science, University of California, Berkeley, CA, USA

12 Key Points:

1

2

3

4

5

13	• Evidence for nocturnal NO ₃ -initiated production of organic nitrates similar in mag-
14	nitude to daytime OH-initiated production
15	• Significant nocturnal production of organic nitrates observed from three aircraft-
16	based field campaigns in chemically-distinct environments
17	• Nighttime production of organic nitrates impacts our understanding of the night-
18	time lifetime and fate of NOx

 $Corresponding \ author: \ Ronald \ C. \ Cohen, \ \texttt{rccohen@berkeley.edu}$

19 Abstract

 $Organic nitrates (RONO_2)$ are an important $NO_x sink$. In rural environments dominated 20 by biogenic emissions, nocturnal NO_3 -initiated production of $RONO_2$ is competitive with 21 daytime OH-initiated RONO₂ production. However, in urban areas, OH-initiated pro-22 duction of RONO₂ has been assumed dominant and NO₃-initiated production consid-23 ered negligible. We show evidence for nighttime RONO₂ production similar in magni-24 tude to daytime production during three aircraft campaigns in chemically-distinct en-25 vironments: SEAC⁴RS in the rural Southeastern US, FRAPPÉ in the Colorado Front 26 Range, and KORUS-AQ around the megacity of Seoul. During each campaign, morn-27 ing observations show RONO₂ enhancements at constant, near-background O_x ($\equiv O_3 +$ 28 NO_2 , indicating that the RONO₂ are from a non-photochemical source, whereas after-29 noon observations show a strong correlation between $RONO_2$ and O_x resulting from pho-30 tochemical production. We show there are sufficient precursors for nighttime RONO₂ 31 formation during all three campaigns. This evidence impacts our understanding of the 32

 $_{33}$ nighttime lifetime and fate of NO_x.

³⁴ Plain Language Summary

Nitrogen oxides are pollutants emitted during combustion which are involved in
ozone and secondary organic aerosol production. One way in which nitrogen oxides are
removed from the atmosphere is via chemistry that converts them to organic nitrates.
This conversion of nitrogen oxides to organic nitrates has been thought to occur primarily during the day when the chemistry is driven by sunlight. Here we show evidence that
nighttime processes generate similar quantities of organic nitrates to those produced by
sunlight-driven processes.

42 1 Introduction

Nitrogen oxides $(NO_x=NO + NO_2)$ are important tropospheric oxidants that con-43 tribute to ozone (O_3) formation, secondary organic aerosol production, and nitrogen de-44 position to ecosystems. Alkyl and multifunctional nitrates $(RONO_2)$ are an oxidative 45 sink of NO_x . Previous studies have shown that $RONO_2$ production is a significant NO_x . 46 loss pathway (Day et al., 2003), especially as urban NO_x concentrations decrease (Perring 47 et al., 2013; Romer Present et al., 2019). Organic nitrates can be generated through both 48 daytime photochemical oxidation pathways initiated by OH and nighttime oxidation path-49 ways initiated by NO_3 . 50

During the day, $RONO_2$ is produced photochemically as a radical termination step 51 in a series of reactions between oxidized VOCs (volatile organic compounds) and NO_{x} 52 (shown in Figure 1). VOCs are oxidized by OH to form organic peroxy radicals, RO_2 (R1). 53 Reaction between NO and organic peroxy radicals can result in formation of an organic 54 nitrate (R2, minor pathway, branching ratio α). The major pathway for the reaction be-55 tween RO_2 and NO (R3), however, continues radical propagation to form two ozone molecules 56 (R4, R5, R6). Consequently, this day time chemistry produces both $\rm O_x~(\equiv O_3 + NO_2)$ 57 and $RONO_2$ so, if photochemistry is dominant, we expect a correlation between O_x and 58 $RONO_2$. Typically, chain lengths are such that we expect 6-20 O_x for each $RONO_2$. 59

$$RH + OH \longrightarrow RO_2 + H_2O \tag{R1}$$

$$RO_2 + NO \longrightarrow RONO_2$$
 (R2)

 $RO_2 + NO \longrightarrow RO + NO_2$ (R3)

$$\mathrm{RO} + \mathrm{O}_2 \longrightarrow \mathrm{R}'(\mathrm{O}) + \mathrm{HO}_2$$
 (R4)

$$HO_2 + NO \longrightarrow OH + NO_2$$
 (R5)

$$2 \operatorname{NO}_2 + \mathrm{h}\nu \longrightarrow 2 \operatorname{O}(^3\mathrm{P}) \longrightarrow 2 \operatorname{O}_3$$
 (R6)

(R7)

At night, RONO₂ is produced from alkenes via addition of NO₃ to a double bond (R10), as shown in Figure 1. NO₃ is formed from reaction between NO₂ and O₃ (R9). During the day, NO₃ is quickly photolyzed, but at night, NO₃ concentrations can build up and react with alkenes. Two O₃ molecules are consumed in the production of NO₃ (R8 followed by R9), meaning that nighttime RONO₂ formation is a net sink of O_x. Consequently, we do not expect a positive correlation between RONO₂ and O_x if NO₃ is the

dominant oxidant, and we might even expect a weak negative correlation.

$$NO + O_3 \longrightarrow NO_2$$
 (R8)

$$NO_2 + O_3 \longrightarrow NO_3 + O_2$$
 (R9)

$$NO_3 + R_1 = R_2 \longrightarrow R_2(ONO_2) - R_2$$
(R10)

The fate of NO_x at night is controlled by the balance of two NO_3 reaction path-67 ways. First, NO_x can be lost via NO_3 reaction with alkenes, as described above. Second, 68 NO_3 can be lost at night via reaction with NO_2 to form N_2O_5 in thermal equilibrium, 69 followed by aerosol uptake and heterogeneous hydrolysis to produce HNO_3 and, to a smaller 70 degree, $ClNO_2$. The competition between these two pathways is controlled by both the 71 availability of alkenes and by the fate of N_2O_5 . Nighttime RONO₂ production increases 72 in environments with high biogenic alkene emissions (isoprene, monoterpenes) and in en-73 vironments with high anthropogenic alkene emissions, particularly where either of these 74 two emission sources is sustained overnight. The N_2O_5 to HNO_3 pathway becomes less 75 competitive with $RONO_2$ formation in environments with low aerosol surface area and 76 small heterogeneous uptake coefficients for N_2O_5 ($\gamma(N_2O_5)$), as these decrease the rate 77 of heterogeneous hydrolysis of N_2O_5 to HNO_3 . Additionally, higher temperatures shift 78 the N_2O_5 equilibrium towards dissociation, making N_2O_5 formation less favorable, while 79 also increasing the rate of bimolecular NO_3 reactions with alkenes. Thus, nighttime $RONO_2$ 80 formation is most favorable in environments with high alkene emissions, low aerosol sur-81 face area, small $\gamma(N_2O_5)$, and high temperatures. 82

There is reason to suspect that $RONO_2$ production from nighttime NO_3 oxidation 83 of VOCs could be competitive with RONO₂ production from photochemical OH oxida-84 tion. A shallow planetary boundary layer characteristic of many nighttime environments 85 results in increased concentrations. Higher concentrations of precursors increases the rate 86 of bimolecular reactions, thereby increasing the rate of formation of NO_3 and the reac-87 tion of NO_3 with alkenes. Moreover, $RONO_2$ yields from NO_3 -initiated oxidation (20-88 80%) are far larger than RONO₂ yields from OH-initiated oxidation of VOCs (0.1-35%). 89 Even if NO_3 oxidation represents a smaller fraction of total VOC oxidation than OH ox-90 idation, the larger RONO₂ yields could make RONO₂ production from NO₃ oxidation 91 competitive with RONO₂ production from OH oxidation. 92

A number of recent studies have shown that NO₃ oxidation can be a significant source of RONO₂ in regions dominated by biogenic VOC emissions. In forested regions of Col-

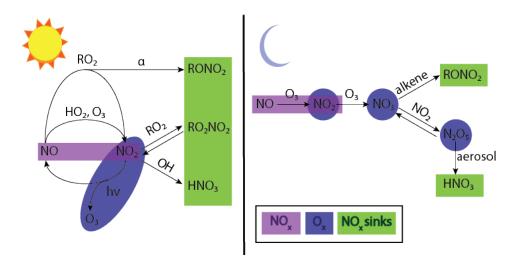


Figure 1. Schematic of daytime (left) and nighttime (right) NO_x chemistry.

orado, Finland, and Germany, nighttime production of RONO₂ was found to be comparable to daytime RONO₂ (Fry et al., 2013; Sobanski et al., 2016; Liebmann et al., 2019).
Other studies have found NO₃-initiated formation of isoprene nitrates to be competitive
with OH-initiated formation of isoprene nitrates in the Southeastern United States (Starn
et al., 1998; Xiong et al., 2015), in an observationally-constrained model of the the eastern United States (Horowitz et al., 2007), and in a global model (von Kuhlmann et al.,
2003).

Moreover, NO₃ oxidation has been shown to be a significant source of organic aerosol in in the Central Valley of California (Rollins et al., 2012), the Southeastern United States (Ayres et al., 2015; B. H. Lee et al., 2016; Xu, Guo, et al., 2015; Xu, Suresh, et al., 2015; Pye et al., 2015; Fisher et al., 2016), in a forested region of Colorado (Fry et al., 2013), in rural Southwestern Germany (Huang et al., 2019), throughout Europe (Kiendler-Scharr et al., 2016), and in the Alberta oil sands (A. K. Y. Lee et al., 2019).

Though NO_3 chemistry has been shown to be an important source of $RONO_2$ and 108 secondary organic aerosol in rural regions dominated by biogenic emissions, nocturnal 109 NO_3 -initiated $RONO_2$ formation has often been considered negligible in comparison to 110 daytime OH-initiated production of $RONO_2$ in urban environments. In this study, we 111 present evidence for significant nighttime RONO_2 production using measurements of O_x 112 and RONO₂ from three aircraft-based field campaigns in distinct environments. First, 113 we show evidence for significant nighttime RONO₂ production in the rural southeast-114 ern United States during SEAC⁴RS, an area with high biogenic emissions. Second, we 115 show similarly high nighttime $RONO_2$ production in two urban areas: in the Colorado 116 Front Range during FRAPPÉ, which is affected by both high urban and oil/gas emis-117 sions, as well as in and around the megacity of Seoul during KORUS-AQ. In each loca-118 tion, we show that the expected linear relationship between O_x and $RONO_2$ is observed 119 during the afternoon. However, during the morning hours, the relationship between O_x 120 and $RONO_2$ shows evidence of nighttime $RONO_2$ production. We support this conclu-121 sion further by assessing precursor availability for nighttime RONO₂ production. 122

123 **2** Measurements

124

2.1 SEAC⁴RS, FRAPPÉ, and KORUS-AQ aircraft campaigns

The Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC⁴RS) campaign took place during August-September 2013 in the Southeastern and Western US. This analysis uses observations from the NASA DC-8 aircraft which flew 19 research flights out of Ellington Field, near Houston, TX.

The Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ) took place during July - August 2014 in the Northern Front Range Metropolitan Area (NFRMA) of Colorado. This analysis uses observations from the NSF/NCAR C-130 aircraft which flew fifteen daytime research flights out of the Rocky Mountain Metropolitan Airport in Jefferson County, CO.

The Korea-United States Air Quality Study (KORUS-AQ) campaign took place during May and June 2016 over South Korea and the Yellow Sea. This analysis uses observations from the NASA DC-8 aircraft which flew 20 daytime research flights out of Pyeongtaek, South Korea (≈ 60 km south of Seoul).

138 2.2 Instrumentation

During all three campaigns, measurements of NO_2 and $RONO_2$ were made by the 139 UC Berkeley thermal dissociation laser induced fluorescence (TD-LIF) instrument (Day 140 et al., 2002). Briefly, one channel of the instrument measures NO_2 by laser induced flu-141 orescence. Two other channels first flow air through a heated quartz oven. One channel is set at 180 °C, the temperature at which peroxy nitrates (RO₂NO₂) dissociate into 143 RO_2 and NO_2 . The second is set at 360 °C, the temperature at which $RONO_2$ dissoci-144 ate into $RO + NO_2$. The difference in NO_2 detected in adjacent channels gives the mix-145 ing ratio for each class of compounds: the RO_2NO_2 mixing ratio is the difference between 146 the 180 $^{\circ}$ C channel and the unheated channel, and the RONO₂ mixing ratio is the dif-147 ference between the 360 $^{\circ}\mathrm{C}$ channel and the 180 $^{\circ}\mathrm{C}$ channel. 148

¹⁴⁹ O_3 and NO were measured by chemiluminescence. During SEAC⁴RS, O_3 and NO ¹⁵⁰ were measured by the NOAA NO_yO_3 instrument (Ryerson et al., 2000). During FRAPPÉ ¹⁵¹ and KORUS-AQ, O_3 and NO were measured by the NCAR chemiluminescence instru-¹⁵² ment (Ridley et al., 1994).

Alkenes were measured by whole air sampling (WAS) and trace organic gas analyzer (TOGA). For SEAC⁴RS and KORUS-AQ, we use WAS measurements of propene, butene, isoprene, α -pinene, and β -pinene. During FRAPPÉ, we use WAS measurements of propene, isoprene, α -pinene, and β -pinene and TOGA measurements of butene and limonene.

158 **3** Observations/Results

¹⁵⁹ 3.1 O_x versus RONO₂

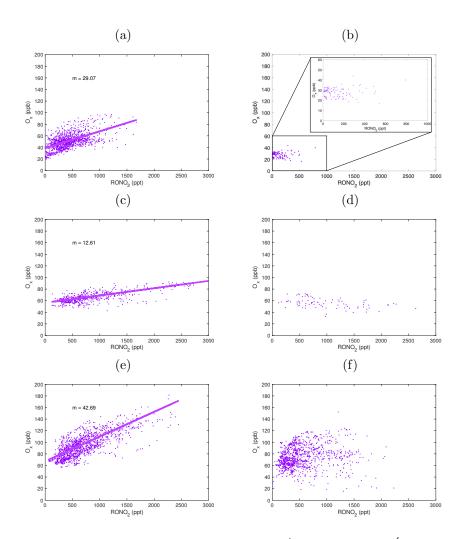
The relationship between O_x and $RONO_2$ during each campaign is shown in Fig-160 ure 2. During all three campaigns, during the afternoon hours (13:00 - 19:00), there is 161 a positive, linear relationship between O_x and $RONO_2$, indicating that photochemical 162 production of both O_x and RONO₂ is occurring. The slope of the relationship between 163 O_x and RONO₂ mixing ratios is indicative of the branching ratio between O_x and RONO₂ 164 production. From Figure 2, during SEAC⁴RS, 29 O_x are produced for each RONO₂. Chain 165 lengths are shorter during FRAPPÉ, where $12 O_x$ are produced for each RONO₂, and 166 longer during KORUS-AQ, where 43 O_x are produced for each RONO₂. 167

	SEAC ⁴ RS	FRAPPÉ	KORUS-AQ
$RONO_2 (ppt)$	120	980	560
propene (ppt)	N/A	84	88
butene (ppt)	N/A	26	58
isoprene (ppt)	N/A	130	61
α -pinene (ppt)	N/A	N/A	16
β -pinene (ppt)	N/A	N/A	13
limonene (ppt)	N/A	6.8	N/A
$\Sigma_i \alpha_i [VOC]_i \text{ (ppt)}$	N/A	160	140
$\rm NO_x \ (ppb)$	0.43	3.5	6.5

Table 1. Table of the average RONO₂, alkene, and NO_x concentrations in morning (before 10:00). Nitrate yields used are from (Perring et al., 2013) and references therein. There are insufficient morning SEAC⁴RS measurements to report meaningful average alkene mixing ratios.

During the morning hours (before 11:00), however, the relationship between O_x mix-168 ing ratios and $RONO_2$ mixing ratios has a flat (zero) slope. At a relatively constant ob-169 served O_x mixing ratio, a wide range of $RONO_2$ mixing ratios were observed. This in-170 dicates that O_x and $RONO_2$ are not produced from the same pathway. Instead, the high 171 levels of $RONO_2$ at relatively low levels of O_x suggest that many of the observed $RONO_2$ 172 were produced via a non-photochemical pathway that produces RONO₂ without gen-173 erating O_x . Since this trend is only observed in the morning, and not in the afternoon, 174 it is indicative of a large source of $RONO_2$ produced from NO_3 oxidation overnight. We 175 also explored the effects of O_3 deposition and nighttime dynamics, but neither could suf-176 ficiently explain the observed trend. 177

3.2 Precursors for nighttime RONO₂ production


As additional evidence for nighttime RONO_2 production, we assess the availability of precursors to RONO_2 production, namely NO_3 and alkenes. We tabulate average morning mixing ratios of RONO_2 , alkenes, and NO_x in Table 1. The abundance of NO_x and alkenes observed in the morning indicates that these precursors are not depleted by overnight chemistry; rather, the non-zero concentrations of precursors in the morning suggests that NO_3 -initiated RONO_2 production chemistry is sustained overnight and occurs until daybreak.

¹⁸⁶ During SEAC⁴RS, there were insufficient morning alkene measurements to report ¹⁸⁷ meaningful averages. However, average diurnal profiles of monoterpenes (not shown) over ¹⁸⁸ the southeast US during the Southern Oxidant and Aerosol Study (SOAS) show that ¹⁸⁹ the mixing ratios of α -pinene and β -pinene both increase overnight, evidence that there ¹⁹⁰ is monoterpene emission overnight which occurs faster than loss to RONO₂ production. ¹⁹¹ Therefore, there is an abundance of alkenes available overnight to form alkyl nitrates.

¹⁹² 4 Discussion and Conclusion

178

We show evidence of significant nighttime RONO₂ production during three aircraft campaigns in three distinct locations: the rural southeastern United States dominated by biogenic emissions (SEAC⁴RS), the Colorado Front Range dominated by a combination of urban and oil/gas emissions (FRAPPÉ), and the megacity of Seoul dominated by urban emissions (KORUS-AQ). Though, in urban areas, nighttime production of RONO₂ has often been considered negligible in comparison to daytime production, we show ev-

Figure 2. Plots of O_x vs. RONO₂ during SEAC⁴RS (a, b), FRAPPÉ (c,d) and KORUS-AQ (e,f) during afternoon (left: a, c, e) and morning (right: b, d, f). Only data in the boundary layer (< 1 km for SEAC⁴RS and KORUS-AQ, < 2 km for FRAPPÉ) are included. York linear fits (with slopes labeled as m) to the afternoon data are shown.

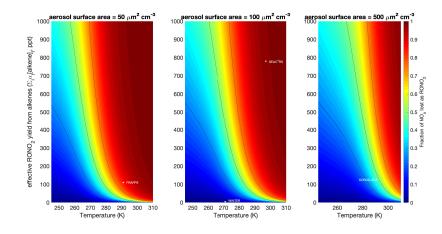


Figure 3. Fraction of NO_x lost as $RONO_2$, shown as a function of temperature and effective $RONO_2$ yield from alkenes ($\Sigma_i \alpha_i [alkene]_i$) for three different aerosol surface areas (50, 100, and 500 μ m² cm⁻³). We assume 1 ppb NO₂, 40 ppb O₃, 1013 hPa, $\gamma_{N2O5} = 0.04$, and NO₃ and N₂O₅ in steady-state. Black contour lines correspond to 25%, 50% and 75% of NO_x lost as RONO₂. Average conditions during SEAC⁴RS, FRAPPÉ, and KORUS-AQ are shown. Average conditions during WINTER (NSF aircraft campaign over Northeastern US during Feb-Mar 2015) are also shown as an example of conditions during which HNO₃ is the dominant nighttime sink of NO_x ((Kenagy et al., 2018)).

idence for nighttime RONO₂ production that results in morning RONO₂ mixing ratios
 of similar magnitude to afternoon observations of RONO₂ in all three of these distinct
 environments.

Rapid nighttime $RONO_2$ production impacts our understanding of the lifetime and fate of NO_x at night. Evidence for nighttime $RONO_2$ production indicates that HNO_3 produced via heterogeneous hydrolysis of N_2O_5 is not necessarily the dominant nighttime sink of NO_x . In environments with low aerosol loading, high temperatures, and an abundance of alkenes, $RONO_2$ production can be the dominant nighttime NO_x sink. Significant nocturnal NO_3 -initiated $RONO_2$ production in urban areas also has implications for substantial overnight secondary organic aerosol production in and around cities.

We explore the effects of temperature, alkenes, and aerosol surface area on the frac-209 tion of NO_x lost as $RONO_2$ at night in Figure 3, assuming constant NO_2 , O_3 , pressure, 210 and γ_{N2O5} , and NO₃ and N₂O₅ in steady-state (see Appendix A). Under these model con-211 ditions, the temperature, alkenes, and aerosol surface area during FRAPPE and SEAC⁴RS 212 indicate that $RONO_2$ is the dominant sink of NO_x at night, and during KORUS-AQ in-213 dicate that overnight NO_x loss is evenly split between HNO_3 and $RONO_2$. For contrast, 214 during the WINTER campaign (aircraft campaign over NE US, Feb-Mar 2015), low tem-215 peratures and low alkene concentrations lead to HNO_3 -dominant NO_x loss at night (Kenagy 216 et al., 2018). 217

Here we have presented evidence for a significant, and sometimes dominant, nighttime source of RONO₂ using airborne, daytime measurements. Stationary measurements of the full diel variations in RONO₂ and its precursors in cities would help further elucidate the relative importance of the different mechanisms for RONO₂ formation. Additionally, measurements of the diel cycle of RONO₂ could provide insights into the fate of daytime- and nighttime-produced RONO₂ by showing whether they remain in the gas phase or partition into particles and whether hydrolysis, oxidation, or deposition dom-

inates loss of $RONO_2$.

$_{226}$ Appendix A Calculating fraction of NO_x lost as $RONO_2$ overnight

We calculate the nighttime production of $RONO_2$ from reaction of NO_3 and alkenes (R10) and the nighttime production of HNO_3 from heterogeneous hydrolysis of N_2O_5 as:

$$P(\text{RONO}_2) = \alpha \times k_{\text{NO}_3 + \text{alkene}} \times [\text{alkenes}] \times [\text{NO}_3]$$
(A1)

$$P(\text{HNO}_3) = k_{hyd}[N_2O_5], \text{ where } k_{hyd} = \frac{1}{4} \times \bar{c}_{N_2O_5} \times \text{SA} \times \gamma_{N_2O_5}$$
(A2)

Here α is the branching ratio for RONO₂ production from the reaction of NO₃ with alkenes,

 $\bar{c}_{N_2O_5}$ represents the mean molecular speed of N_2O_5 , $\gamma_{N_2O_5}$ represents the heterogeneous

uptake coefficient for N_2O_5 , and SA represents the aerosol surface area per volume of air.

We use the rate constant for the reaction of NO₃ + isoprene for $k_{\text{NO}_3 + \text{alkene}}$. Values for $k_{\text{NO}_3 + \text{alkene}}$ and for k_b are from the IUPAC chemical kinetics database (Atkinson et al., 2004, 2006). Values for $k_{\text{NO}_2 + \text{O}_3}$ and for k_f are from JPL Data Evaluation #18 (Burkholder et al., 2015). We assume constant NO₂ (1 ppb), O₃ (40 ppb), pressure (1013 hPa), and γ_{N2O5} (0.04). Additionally, we assume NO₃ and N₂O₅ in steady-state:

$$[\mathrm{NO}_3]_{SS} = \frac{k_{\mathrm{NO}_2 + \mathrm{O}_3}[\mathrm{NO}_2][\mathrm{O}_3]}{k_{\mathrm{NO}_3 + \mathrm{alkene}}[\mathrm{alkene}]}$$
(A3)

$$[N_2O_5]_{SS} = \frac{k_f [NO_3][NO_2]}{k_b + k_{hyd}}$$
(A4)

where k_f represents the formation of N₂O₅ from NO₂ and NO₃ and k_b represents the decomposition of N₂O₅ into NO₂ and NO₃.

232 Acknowledgments

This work was supported by NASA grant 80NSSC18K0624 and an NSF Graduate Research Fellowship to H.S.K. (DGE1106400). We thank the science teams of SEAC⁴RS, FRAPPÉ, and KORUS-AQ. Data from SEAC⁴RS are available at https://www-air.larc .nasa.gov/cgi-bin/ArcView/seac4rs. Data from FRAPPÉ are available at https:// data.eol.ucar.edu/master_lists/generated/frappe/. Data from KORUS-AQ are available at https://www-air.larc.nasa.gov/cgi-bin/ArcView/korusaq?DC8=1.

239 References

- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, 240 Evaluated kinetic and photochemical data for R. G., ... Troe, J. (2004).241 atmospheric chemistry: Volume I - gas phase reactions of O_{x} , HO_{x} , 242 Atmos. Chem. Phys., 4(6), 1461–1738. NO_{x} and SO_{x} species. Re-243 trieved from http://www.atmos-chem-phys.net/4/1461/2004/ doi: 244 10.5194/acp-4-1461-2004 245 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, 246 R. G., ... IUPAC Subcommittee (2006).Evaluated kinetic and pho-247 tochemical data for atmospheric chemistry: Volume II - gas phase reac-248 tions of organic species. Atmos. Chem. Phys., 6(11), 3625–4055. Re-249 trieved from http://www.atmos-chem-phys.net/6/3625/2006/ doi: 250 10.5194/acp-6-3625-2006 251 Ayres, B. R., Allen, H. M., Draper, D. C., Brown, S. S., Wild, R. J., Jimenez, J. L., 252 ... Fry, J. L. (2015).Organic nitrate aerosol formation via NO3+ biogenic 253 volatile organic compounds in the southeastern United States. Atmos. Chem. 254
- $_{255}$ Phys., 15(23), 13377-13392. doi: 10.5194/acp-15-13377-2015

256	Burkholder, J. B., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Huie, R. E., Kolb,
257	C. E., Wine, P. H. (2015). Chemical Kinetics and Photochemical Data for
258	Use in Atmospheric Studies, Evaluation No. 18 (Tech. Rep.). Pasadena: Jet
259	Propulsion Laboratory. Retrieved from https://jpldataeval.jpl.nasa.gov
260	Day, D. A., Dillon, M. B., Wooldridge, P. J., Thornton, J. A., Rosen, R. S., Wood,
261	E. C., & Cohen, R. C. (2003). On alkyl nitrates, O ₃ , and the
262	“missing NO _y ”. J. Geophys. Res., 108(D16),
263	JD003685. Retrieved from http://doi.wiley.com/10.1029/2003JD003685
264	doi: 10.1029/2003JD003685
265	Day, D. A., Wooldridge, P. J., Dillon, M. B., Thornton, J. A., & Cohen, R. C.
266	(2002, mar). A thermal dissociation laser-induced fluorescence instrument
267	for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3. J.
268	Geophys. Res. Atmos., 107(D6), ACH 4–1–ACH 4–14. Retrieved from http://
269	doi.wiley.com/10.1029/2001JD000779 doi: 10.1029/2001JD000779
270	Fisher, J. A., Jacob, D. J., Travis, K. R., Kim, P. S., Marais, E. A., Chan, C.,
271	Day, D. A. (2016). Organic nitrate chemistry and its implications for nitrogen
272	budgets in an isoprene- and monoterpene-rich atmosphere : constraints from
273	aircraft (SEAC 4 RS) and ground-based (SOAS) observations in the South-
274	east US. Atmos. Chem. Phys., 16, 5969–5991. doi: 10.5194/acp-16-5969-2016
275	Fry, J. L., Draper, D. C., Zarzana, K. J., Campuzano-Jost, P., Day, D. A., Jimenez,
276	J. L., Grossberg, N. (2013). Observations of gas- and aerosol-phase or-
277	ganic nitrates at BEACHON-RoMBAS 2011. Atmos. Chem. Phys., 13(17),
278	8585–8605. doi: 10.5194/acp-13-8585-2013
279	Horowitz, L. W., Fiore, A. M., Milly, G. P., Cohen, R. C., Perring, A., Wooldridge,
280	P. J., Lamarque, J. F. (2007). Observational constraints on the chemistry
281	of isoprene nitrates over the eastern United States. J. Geophys. Res. Atmos.,
282	112(12), 1–13. doi: 10.1029/2006JD007747
283	Huang, W., Saathoff, H., Shen, X., Ramisetty, R., Leisner, T., & Mohr, C. (2019).
284	Chemical Characterization of Highly Functionalized Organonitrates Con-
285	tributing to Night-Time Organic Aerosol Mass Loadings and Particle Growth.
286	Environ. Sci. Technol., 53(3), 1165–1174. doi: 10.1021/acs.est.8b05826
287	Kenagy, H. S., Sparks, T. L., Ebben, C. J., Wooldrige, P. J., Lopez-Hilfiker, F. D.,
288	Lee, B. H., Cohen, R. C. (2018). NOx Lifetime and NOy Partition-
289	ing During WINTER. J. Geophys. Res. Atmos., 123(17), 9813–9827. doi:
290	10.1029/2018JD028736
291	Kiendler-Scharr, A., Mensah, A. A., Friese, E., Topping, D., Nemitz, E., Prevot,
292	A. S., Wu, H. C. (2016). Ubiquity of organic nitrates from nighttime
293	chemistry in the European submicron aerosol. Geophys. Res. Lett., 43(14),
294	7735–7744. doi: 10.1002/2016GL069239
295	Lee, A. K. Y., Adam, M. G., Liggio, J., Li, SM., Li, K., Willis, M. D., Brook,
296	J. R. (2019). A Large Contribution of Anthropogenic Organo-Nitrates to
297	Secondary Organic Aerosol in the Alberta Oil Sands. Atmos. Chem. Phys.
298	Discuss., 1–25. doi: 10.5194/acp-2018-1177
299	Lee, B. H., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Hallquist, M., Lee, L.,
300	Thornton, J. A. (2016). Highly functionalized organic nitrates in the south-
301	east United States: Contribution to secondary organic aerosol and reactive
302	nitrogen budgets. Proc. Natl. Acad. Sci., 113(6), 1516–1521. Retrieved
303	from http://www.pnas.org/lookup/doi/10.1073/pnas.1508108113 doi:
304	10.1073/pnas.1508108113
305	Liebmann, J., Sobanski, N., Schuladen, J., Karu, E., Hellén, H., Hakola, H.,
306	Crowley, J. N. (2019). Alkyl nitrates in the boreal forest: Formation via
307	the NO ₃ , OH and O ₃ induced oxidation of
308	BVOCs and ambient lifetimes. Atmos. Chem. Phys. Discuss.(3), 1–23. doi:
309	10.5194/acp-2019-463
310	Perring, A. E., Pusede, S. E., & Cohen, R. C. (2013, aug). An Observational Per-

311	spective on the Atmospheric Impacts of Alkyl and Multifunctional Nitrates
312	on Ozone and Secondary Organic Aerosol. Chem. Rev., 113(8), 5848–5870.
313	Retrieved from http://pubs.acs.org/doi/abs/10.1021/cr300520x doi:
314	10.1021/cr300520x
315	Pye, H. O., Luecken, D. J., Xu, L., Boyd, C. M., Ng, N. L., Baker, K. R., Shep-
316	son, P. B. (2015). Modeling the Current and Future Roles of Particulate
317	Organic Nitrates in the Southeastern United States. Environ. Sci. Technol.,
318	49(24), 14195-14203. doi: $10.1021/acs.est.5b03738$
319	Ridley, B. A., Walega, J. G., Dye, J. E., & Grahek, F. E. (1994). Distributions of
320	NO, NOx, NOy, and O3 to 12 km altitude during the summer monsoon season
321	over New Mexico. J. Geophys. Res. Atmos., 99(D12), 25519–25534. Retrieved
322	from http://dx.doi.org/10.1029/94JD02210 doi: 10.1029/94JD02210
323	Rollins, A. W., Browne, E. C., Min, KE., Pusede, S. E., Wooldridge, P. J., Gen-
324	tner, D. R., Cohen, R. C. (2012). Evidence for NOx Control over Night-
325	time SOA Formation. Science (80)., 337(6099), 1210–1212. Retrieved from
326	http://science.sciencemag.org/content/sci/337/6099/1210.full.pdf
327	doi: 10.1126/science.1221520
328	Romer Present, P. S., Zare, A., & Cohen, R. C. (2019). The changing role of organic
329	nitrates in the removal and transport of NO _x . Atmos. Chem.
330	<i>Phys. Discuss.</i> (x), 1–18. doi: $10.5194/acp-2019-471$
331	Ryerson, T. B., Williams, E. J., & Fehsenfeld, F. C. (2000). An efficient photol-
332	ysis system for fast-response NO2 measurements. J. Geophys. Res. Atmos.,
333	105(D21), 26447-26461. doi: $10.1029/2000JD900389$
334	Sobanski, N., Thieser, J., Schuladen, J., Sauvage, C., Song, W., Williams, J.,
335	Crowley, J. N. (2016). Day- and Night-time Formation of Organic Nitrates
336	at a Forested Mountain-site in South West Germany. Atmos. Chem. Phys.
337	Discuss., 1-26. Retrieved from http://www.atmos-chem-phys-discuss.net/
338	acp-2016-874/ doi: 10.5194/acp-2016-874
339	Starn, T. K., Shepson, P. B., Bertman, S. B., Riemer, D. D., Zika, R. G., & Ol-
340	szyna, K. (1998). Nighttime isoprene chemistry at an urban-impacted
341	forest site. J. Geophys. Res. Atmos., 103(D17), 22437–22447. doi:
342	10.1029/98JD01201
343	von Kuhlmann, R., Lawrence, M. G., Pöschl, U., & Crutzen, P. J. (2003). Sensitiv-
344	ities in global scale modeling of isoprene. Atmos. Chem. Phys. Discuss., $3(3)$,
345	3095–3134. doi: 10.5194/acpd-3-3095-2003
346	Xiong, F., McAvey, K. M., Pratt, K. A., Groff, C. J., Hostetler, M. A., Lip-
347	ton, M. A., Shepson, P. B. (2015). Observation of isoprene hy-
348	droxynitrates in the Southeastern United States and implications for the $(1 - 1)^{1/2} = (1 $
349	fate of NOx. Atmos. Chem. Phys. Discuss., $15(13)$, 17843–17886. doi:
350	10.5194/acpd-15-17843-2015
351	Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Ng,
352	N. L. (2015). Effects of anthropogenic emissions on aerosol formation from iso-
353	prene and monoterpenes in the southeastern United States. <i>Proc. Natl. Acad.</i>
354	Sci. U. S. A., $112(1)$, $37-42$. doi: $10.1073/\text{pnas.}1417609112$
355	Xu, L., Suresh, S., Guo, H., Weber, R. J., & Ng, N. L. (2015). Aerosol charac-
356	terization over the southeastern United States using high-resolution aerosol
357	mass spectrometry: Spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates. <i>Atmos. Chem. Phys.</i> , 15(13), 7307–
358	7336. doi: 10.5194/acp-15-7307-2015
359	1000. doi: 10.0104/acp-10-1001-2010