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Abstract

The habitability of the surface of any planet is determined by a complex evolution of its interior, surface, and atmosphere.

The electromagnetic and particle radiation of stars drive thermal, chemical and physical alteration of planetary atmospheres,

including escape. Many known extrasolar planets experience vastly different stellar environments than those in our Solar system:

it is crucial to understand the broad range of processes that lead to atmospheric escape and evolution under a wide range of

conditions if we are to assess the habitability of worlds around other stars. One problem encountered between the planetary and

the astrophysics communities is a lack of common language for describing escape processes. Each community has customary

approximations that may be questioned by the other, such as the hypothesis of H-dominated thermosphere for astrophysicists, or

the Sun-like nature of the stars for planetary scientists. Since exoplanets are becoming one of the main targets for the detection

of life, a common set of definitions and hypotheses are required. We review the different escape mechanisms proposed for the

evolution of planetary and exoplanetary atmospheres. We propose a common definition for the different escape mechanisms,

and we show the important parameters to take into account when evaluating the escape at a planet in time. We show that the

paradigm of the magnetic field as an atmospheric shield should be changed and that recent work on the history of Xenon in

Earth’s atmosphere gives an elegant explanation to its enrichment in heavier isotopes: the so-called Xenon paradox.

1



manuscript submitted to JGR: Space Physics

Atmospheric Escape Processes and Planetary1

Atmospheric Evolution2

G. Gronoff 1,2, P. Arras 3, S. Baraka4, J. M. Bell 5, G. Cessateur 6, O. Cohen3

7, S. M. Curry 11, J.J. Drake 8, M. Elrod 5, J. Erwin 6, K. Garcia-Sage 5, C.4

Garraffo 8, A. Glocer 5, N.G. Heavens 9,10, K. Lovato 9, R. Maggiolo 6, C. D.5

Parkinson 10, C. Simon Wedlund 12, D. R. Weimer 4,13, W.B. Moore 4,9
6

1Science directorate, Chemistry and Dynamics branch, NASA Langley Research Center, 21 Langley Blvd.,7

Mail Stop 401B Hampton, Virginia 23681-2199 USA8
2Science Systems and Application Inc. Hampton, Virginia, USA9

3Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904, USA10
4National Institute of Aerospace, Hampton, Virginia, USA.11

5Heliophysics Division, NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771,12

USA13
6The Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Avenue Circulaire 3, 1180 Brussels,14

Belgium15
7Lowell Center for Space Science and Technology, University of Massachusetts Lowell, 600 Suffolk St.,16

Lowell, MA 01854, USA17
8Harvard-Smithsonian Center for Astrophysics, 60 Garden St. Cambridge, MA 02138, USA.18

9Department of Atmospheric and Planetary Sciences, Hampton University, 154 William R. Harvey Way,19

Hampton, Virginia 23668 USA20
10Space Science Institute, 4765 Walnut St, Suite B, Boulder, Colorado, USA21

11Space Sciences Laboratory, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720, USA.22
12Space Research Institute (IWF), Schmiedlstraße 6, 8042 Graz, Austria23

13Center for Space Science and Engineering Research, Virginia Tech, Blacksburg, Virginia, USA.24

Key Points:25

• The different escape processes at planets and exoplanets are reviewed along with26

their mathematical formulation.27

• The major parameters for each escape processes are described. Some escape pro-28

cesses currently negligible in the Solar system may be the major source at exo-29

planets, or for the early Solar system.30

• A magnetic field should not be a priori considered as a protection for the atmo-31

sphere.32
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Abstract33

The habitability of the surface of any planet is determined by a complex evolution of its34

interior, surface, and atmosphere. The electromagnetic and particle radiation of stars35

drive thermal, chemical and physical alteration of planetary atmospheres, including es-36

cape. Many known extrasolar planets experience vastly different stellar environments than37

those in our Solar system: it is crucial to understand the broad range of processes that38

lead to atmospheric escape and evolution under a wide range of conditions if we are to39

assess the habitability of worlds around other stars.40

One problem encountered between the planetary and the astrophysics communi-41

ties is a lack of common language for describing escape processes. Each community has42

customary approximations that may be questioned by the other, such as the hypothe-43

sis of H-dominated thermosphere for astrophysicists, or the Sun-like nature of the stars44

for planetary scientists. Since exoplanets are becoming one of the main targets for the45

detection of life, a common set of definitions and hypotheses are required.46

We review the different escape mechanisms proposed for the evolution of planetary47

and exoplanetary atmospheres. We propose a common definition for the different escape48

mechanisms, and we show the important parameters to take into account when evalu-49

ating the escape at a planet in time. We show that the paradigm of the magnetic field50

as an atmospheric shield should be changed and that recent work on the history of Xenon51

in Earth’s atmosphere gives an elegant explanation to its enrichment in heavier isotopes:52

the so-called Xenon paradox.53

Plain Language Summary54

In addition to having the right surface temperature, a planet needs an atmosphere55

to keep surface liquid water stable. Although many planets have been found that may56

lie in the right temperature range, the existence of an atmosphere is not guaranteed. In57

particular, for planets that are kept warm by being close to dim stars, there are a num-58

ber of ways that the star may remove a planetary atmosphere. These atmospheric es-59

cape processes depend on the behavior of the star as well as the nature of the planet,60

including the presence of a planetary magnetic field. Under certain conditions, a mag-61

netic field can protect a planet’s atmosphere from the loss due to the direct impact of62

the stellar wind; but it may actually enhance total atmospheric loss by connecting to the63

highly variable magnetic field of the stellar wind. These enhancements happen especially64

for planets close to dim stars. We review the complete range of atmospheric loss pro-65

cesses driven by interaction between a planet and a star to aid in the identification of66

planets that are both the correct temperature for liquid water and that have a chance67

of maintaining an atmosphere over long periods of time.68

1 Introduction69

The discovery of rocky exoplanets at distances from their host stars that might al-70

low stable surface liquid water has led to a blossoming of studies of the habitability of71

such objects (Anglada-Escudé et al., 2016; Gillon et al., 2017; Zechmeister et al., 2019).72

While the ultimate objective of this work is the discovery of life on an exoplanet, detailed73

investigations of such planets may also shed light on the evolution –both past and future–74

of the planets in our own Solar system (Arney & Kane, 2018), in particular, how they75

came to be, remain, and/or ceased to be habitable for life as we know it (Moore et al.,76

2017; Editors of Nature Astronomy, 2017; Tasker et al., 2017).77

The usual definition of the “habitable-zone” (HZ) (Kasting et al., 1988; Ramirez,78

2018; Lammer et al., 2009, and references therein), is where a planet like the Earth would79

be able to maintain liquid water at its surface, however it says nothing about whether80
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Figure 1. The processes leading to the creation and the destruction of an atmosphere. A

stable balance between these processes is required for a habitable atmosphere.

the planet actually has any liquid water, or the necessary atmospheric pressure to sta-81

bilize the liquid state. This definition fails to take into account the necessary pathways82

to habitability: a planet forming in the habitable zone of a star will have to accrete volatiles83

from the protostellar nebula to be able to have an atmosphere and liquid water, and it84

will also have to keep them, which is not necessarily the case for the previously mentioned85

exoplanets –even if we suppose they have a strong intrinsic magnetic field– (Airapetian86

et al., 2017; Garcia-Sage et al., 2017; Howard et al., 2018). The concept of the HZ is there-87

fore distressingly incomplete, which led to the concept of Space Weather Affected Hab-88

itable Zone (Airapetian et al., 2017) .89

One of the best examples of the problems with this definition comes from our un-90

derstanding of the early Earth: the so-called “Faint Young Sun” (FYS) paradox. 4 to91

3 Gyr ago, the Sun was fainter by about 30% (Claire et al., 2012), and our models pre-92

dict that surface water should have been frozen, and therefore that Earth was not in the93

HZ. There is however considerable evidence for an active hydrological cycle and excep-94

tionally warm and/or clement temperatures at that period (Mojzsis et al., 2001; Knauth95

& Lowe, 2003; Kasting & Ono, 2006; Lammer et al., 2009). The typical solution to the96

FYS paradox has been to propose that the Earth’s early atmosphere had a higher con-97

centration of greenhouse gases such as CO2, CH4, NH3, N2O, etc., in a perhaps thicker98

atmosphere than now (Sagan & Mullen, 1972; Walker et al., 1981; A. A. Pavlov et al.,99

2000; Airapetian et al., 2016). Greenhouse gas levels have overall implications for geo-100

logical activity, cloud/aerosol formation, and atmospheric chemistry and escape that can101

preclude their existence, stability, or positive contribution to habitability altogether (Kuhn102

& Atreya, 1979; A. A. Pavlov et al., 2000; Trainer et al., 2006). Several hypotheses re-103

main concerning the nature of the Early Earth’s atmosphere; a major problem lies with104

the uncertainties on the nitrogen cycle in the past, and on the actual ground pressure105

that recent studies suggest being closer to 0.5 bar (Som et al., 2016; Zerkle & Mikhail,106

2017; Laneuville et al., 2018). For a simple example of the complexity to extend research107

to exoplanets, consider recent work by Airapetian et al. (2016), which suggests that the108
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higher solar activity has led to chemical reactions creating N2O, a very efficient green-109

house gas in the Early Earth’s troposphere.110

Another uncertainty comes from the magnetic activity of the host star, responsi-111

ble for the space-weather conditions of close-in planets, and expected to be much stronger112

for lower mass stars such as the Trappist–1 system star and M dwarfs in general. Since113

those stars could remain as active as the young Sun throughout their lifetime (Airapetian114

et al., 2019), it is theoretically possible that some of the planets orbiting them are cur-115

rently subject to a N2O greenhouse effect while at the same time being out of the stan-116

dard HZ.117

In order to produce a more useful concept of habitability, we must contend with118

all the processes that lead to the habitability of a planet, and how the different variables119

(such as the type of star, the rotation rate of the planet, etc.) affect it. The formation120

of a planetary atmosphere is a balance between the amount of volatiles brought during121

the accretion phase, and subsequently outgassed, and the subsequent escape or fixing122

of volatiles as the planet evolves. (Lammer et al., 2009, Figure 1).123

Atmospheric escape is often overlooked in this type of analysis or only approximated124

by an energy-limited hydrodynamic escape. Modeling based on this approximation led125

a fraction of the community to conclude that Pluto’s atmosphere was greatly outgassing126

until the observations of New Horizons measured an escape rate four orders of magni-127

tude lower than predicted (Zhu et al., 2014; Gladstone et al., 2016). This leads to ma-128

jor questions concerning atmospheric escape that need to be solved.129

1.1 The Outstanding Questions of Atmosphere Escape130

Several major questions about the evolution of planetary atmospheres have been131

asked (Ehlmann et al., 2016), such as: “are [their] mass[es] and composition[s] sustain-132

able?”, “how do [they] evolve with time?”. Recent studies of atmospheric escape have133

led to the following major questions, specific to escape, that are being answered through134

experimental studies (e.g. satellites such as Venus Express -VEX-, Mars Express –MEX–135

, Rosetta, Mars Atmosphere and Volatile and EvolutioN mission -MAVEN-, etc.), and136

theoretical work.137

1. What is the current escape rate of planetary atmospheres, how does it138

vary with forcing parameters? Measurements by different spacecraft enable139

estimates of the flux of ions and neutrals escaping a planet. However, limitations140

in temporal and spatial resolution render some observations very difficult; e.g., the141

ion plume of Mars was inferred from MEX observations, but only MAVEN could142

fully observe and characterize it. (Liemohn et al., 2014; Dong et al., 2015); iono-143

spheric outflow at Earth is observed, but the fraction of ions coming back, and the144

variation of outflow with latitude, magnetic local time, and solar and geomagnetic145

activity, is difficult to address accurately (Strangeway et al., 2000).146

2. What was the escape rate in the past? How did it vary with the vary-147

ing forcing parameters and the varying atmospheres of planets? The iso-148

topic composition of an atmosphere hints at changes in its composition, and can149

be used to evaluate the total atmospheric loss. However, if some major param-150

eters of the composition have changed, extrapolating the current atmosphere to151

the past can be problematic. The Earth’s atmosphere is an emblematic example152

of an atmosphere that has greatly changed, with the appearance of oxygen in large153

quantities after about 2.5 Gyr ago (D. Catling, 2014). Observations of Sun-like154

stars in different stages of their evolution suggest that the Sun had more sunspots155

and flares in the past, which, undoubtedly, changed the escape conditions of the156

planets in the Solar system (Lammer et al., 2009).157
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3. How will escape and other atmospheric evolutionary processes shape158

the future of the planetary atmospheres we observe today For example,159

what will the habitability of the Earth and Mars be in a billion years? Variation160

of the Earth’s magnetic field may affect escape rates, and dramatically change the161

atmosphere of the Earth. At Mars, the atmospheric photochemistry may lead to162

H2O escape with the oxidation of the crust if O is not escaping enough (Lammer,163

Selsis, et al., 2003). Recent modeling shows that CO+
2 dissociative recombination164

is also an efficient loss channel (Lee et al., 2015). The adsorption of CO2 into the165

crust (Takasumi & Eiichi, 2002; Zent & Quinn, 1995; Hu et al., 2015; Mansfield166

et al., 2017) implies that future change in Mars’ obliquity will increase the out-167

gassing and therefore the surface atmospheric pressure of the planet. But what168

will happen if no more H2O compensates for the escape? Is it possible for all re-169

maining Martian H2O to escape? How much CO2 could escape?170

4. Does a magnetic field protect an atmosphere from escaping? Polar iono-171

spheric outflow is an efficient process to accelerate ions to escape speed. Since it172

is driven by the energy of the solar wind, funneled by the magnetic field, the stronger173

the magnetic field, the more energy is available for ionospheric outflow. In that174

sense, a planet with a magnetic field could be more sensitive to escape (Gunell et175

al., 2018). However, the returning component of the polar outflow is increasing,176

and therefore the net escape should be addressed in different conditions; there are177

many questions regarding how this component may evolve, and it may be so that178

it prevents an effective escape altogether. Do the similar escape rates measured179

at Earth, Venus, and Mars (Gunell et al., 2018) mean that there is no effective shield-180

ing, or is the comparison between these planets flawed because the upper atmo-181

sphere composition, and therefore the exospheric temperature are extremely dif-182

ferent? Is it just a coincidence that both the Earth and Titan are able to sustain183

a nitrogen atmosphere despite relatively large exospheric temperatures (more pre-184

cisely low λex parameter, see Section 2.1.2) while being immersed in a magneto-185

sphere? Is the question of the magnetic field protection actually the relevant one?186

5. What is the escape rate from exoplanets; can we test our models against187

exoplanetary observations? Some observed exoplanets are in hydrodynamic188

escape (Ehrenreich et al., 2015). It is possible to observe more extreme regimes189

for exoplanets than for planets in the Solar system; therefore the models devel-190

oped for the current Solar system conditions are likely to be inadequate for ex-191

oplanets. One of the main advantages of these tests is to be able to validate the192

conditions likely encountered in the early Solar system. One example of such a193

process that is believed to be more important in the past is sputtering, but how194

could we detect its efficiency at exoplanets?195

1.2 Analytical Approach196

The Solar system has a large variety of planetary bodies, with very different at-197

mospheres, including Mars with a thin CO2-rich atmosphere, Venus with a thick CO2-198

rich atmosphere (both of those presenting evidence of substantial escape), or Earth with199

a N2/O2 atmosphere. The difference between these planets is, in a large part, determined200

by how they are losing their atmospheres. Several missions, such as MAVEN, MEX, and201

VEX have been giving insights on the evolution of planetary atmospheres through their202

escape to space, and have led to a better understanding of which important processes203

are active to date, and maybe in the past. In addition, work on comets, such as 67P with204

Rosetta, highlight some of the fundamental processes that lead to escape in slightly dif-205

ferent regimes (D. Brain et al., 2016). Unfortunately, these results cannot be simply ex-206

trapolated to exoplanets, since they may be subject to very different conditions.207

To that extent, it is necessary to know: (1) what the possible mechanisms by which208

planets lose their atmosphere into space are, (2) how these mechanisms behave with dif-209
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ferent conditions, (3) how they produce different observables, and (4) what our current210

understanding of these mechanisms is. Ultimately, one would like to:211

• Determine what the escape processes are: review all the processes that have been212

suggested in the literature, review what their suggested rates were, and, since def-213

initions may vary between authors, decide for a standard definition.214

• Determine what the key parameters are for each escape process, i.e. what vari-215

ations will be of importance, and how these parameters couple with each other.216

• Determine the unknown parameters that need to be addressed to answer the ques-217

tions of section 1.1.218

• Determine the observable for each escape process, and determine how to disen-219

tangle the observations of escape in different solar/stellar conditions to determine220

the relative importance of each processes.221

This is why, in the present paper, we start by reviewing the different escape pro-222

cesses and their limitations (Section 2), what the major parameters that we need to know223

to calculate these escape processes and know their importance are (Section 3), before look-224

ing at how they influence the Solar system planets (Section 4) and some exoplanets (Sec-225

tion 5) in time. We will finally look at which measurements and models are needed to226

better understand the escape processes at planets and exoplanets (Section 6) before con-227

cluding.228

2 The Escape Processes229

The escape processes are usually separated into two parts: the thermal and non-230

thermal processes. The thermal processes are dependent on the temperature of the up-231

per atmosphere, usually controlled by the host star’s Extreme and X Ultraviolet (EUV-232

XUV) flux. The non-thermal processes are the result of more complex interactions, such233

as plasma interactions. Some non-thermal processes (such as sputtering) have a consis-234

tent nomenclature in the literature whereas others (such as ion outflow) have variable235

definitions depending on the authors. In Table 1, we summarize these escape processes236

and in Table 2 their main parameters. Those escape processes are sketched on Figure 2,237

and an evaluation of the current escape rates can be found on Table 3.238

Non-thermal escape processes can be separated into Photochemical loss (Section239

2.2), Ion loss (Section 2.3), Ionospheric outflow (Section 2.4), and Other losses (Section240

2.5). Moreover, in order to compute the total loss of an atmosphere into space, it is nec-241

essary to take into account the problem of the ion return (Section 2.6). It is important242

to note that, while we are separating these processes, they do influence each other, and243

sometimes one leads to the other. For example, an ionospheric outflow process at Venus244

can produce fast particles involved in ion pickup and sputtering (J. Luhmann et al., 2008).245

2.1 Thermal Escape246

Thermal escape is one of the most important escape processes (Chassefière & Leblanc,247

2004; Selsis, 2006). It takes place in two regimes, Jeans escape and hydrodynamic es-248

cape, with a transition regime that is the subject of recent studies (e.g. D. F. Strobel249

(2008b); Volkov, Johnson, et al. (2011); Volkov, Tucker, et al. (2011); Erkaev et al. (2015)).250

Most of the observed isotopic fractionation in planetary atmospheres is interpreted as251

originating from thermal escape because of its energy efficiency at escaping large amount252

of gases.253
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MAGNETIZED
PLANETS

BOTH

UNMAGNETIZED
PLANETS

Stellar EUV FluxStellar Wind

Thermal Jeans
Escape

Thermal
Hydrodynamic

Escape

Bulk Ion
Escape

Trapped Ion
Charge

Exchange

Ionospheric
Outflow

Pickup and
Sputtering

Stellar Wind
Charge

Exchange

Photochemical
Escape

Exobase

Figure 2. The main processes of atmospheric escape, along with their typical efficient al-

titudes domains (near the thermosphere/exobase or away from it) and their conditions of effi-

ciency/occurrence (magnetic field).
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2.1.1 Fundamental Theory254

2.1.1.1 Jeans regime The neutral atmospheric constituents in the upper atmo-255

sphere are in local thermodynamic equilibrium (or close to it). Therefore, their distri-256

bution function can be approximated by a Maxwellian function (Mihalas & Mihalas, 1984):257

f(~x,~v) = N
( m

2πkT

)3/2
e−

mv2

2kT

= N

(
1

ui
√
π

)3

e−v
2/u2

i (1)

where ui =
√

2kT
mi

is referred to as the thermal speed for the species i.258

The exobase is quantitatively defined as the level where li, the mean free path of259

the ith constituent is equal to the scale height (H) (Hunten, 1973; Shizgal & Arkos, 1996).260

At the exobase, we consider that a molecule of the ith constituent going upwards at the261

escape velocity, vesc =
√

2GM/r will not impact another molecule, and therefore will262

escape. This approximation is the equivalent of considering an atmosphere collisionless263

above the exobase and fully collisional below (Fahr & Shizgal, 1983).264

By integrating the vertical flux, vi cos(θ)×fi, at the exobase, for the velocities greater265

than the escape velocity (vesc), and neglecting the collisions above it, we retrieve the flux266

of escaping molecules.267

Φi(escape) =

2π∫
0

π/2∫
0

∞∫
vesc

vi cos(θ)f(vi)v
2
i sin(θ)dvidθdΨ (2)

Carrying out this integration gives:268

Φi(escape) = Ni

(
kTe

2πmi

)1/2(
1 +

miv
2
esc

2kTe

)
e−

miv
2
esc

2kTe (3)

= Ni

(
ui

2
√
π

)(
1 +

v2exc
u2i

)
e
− v

2
exc
u2
i (4)

In Eqs. 3 and 4, it is important to use the values of vesc and ui at the exobase (using269

the temperature, Texo, and radius rexo at the exobase) to get a correct estimation of the270

escape flux.271

It is common to introduce the non-dimensional Jeans parameter to express the es-272

cape flux, and we will see later that this parameter is very useful in understanding the273

thermal escape process. The Jeans parameter is the ratio of gravitational energy to ther-274

mal energy, expressed at λex = (GMmi/r)
kT =

v2esc
u2
i

. Using this, the escape flux becomes:275

Φi(escape) = Ni

(
ui

2
√
π

)
(1 + λex) e−λex (5)

Eq. 2 assumes that we can approximate the distribution at the exobase by a Maxwellian276

despite the fact that molecules faster than vesc are removed. When the escape rate is277

high enough, a non-Maxwellian correction must be applied to consider that the high-energy278

tail of the Maxwellian is depleted, following J. W. Chamberlain and Smith (1971). This279

correction lowers the escape rate by about 25%. However, this correction is based on the280

assumption of an isothermal atmosphere below the exobase and has been evaluated for281

H and He escape within a O or CO2 rich background atmosphere, i.e. the thermosphere282

of the Earth and Mars/Venus etc.283
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A more realistic simulation, performed by Merryfield and Shizgal (1994), that con-284

sidered the effect of increasing temperature with altitude, shows that the escape from285

the deeper layer should also be considered (i.e. it cannot be assumed that a Maxwellian286

is a good approximation of the atomic/molecular distribution at the exobase). In that287

case, the correction is an increase of the order of 30%. Therefore, for extremely precise288

determination of escape, it is important to solve the Boltzmann equation; one of the most289

used techniques is the Direct Simulation Monte Carlo (DSMC) method (Volkov, John-290

son, et al., 2011; Tucker & Johnson, 2009), whose results show that the source of escap-291

ing particles is distributed over a wide altitude range above and below the exobase.292

Overall, equation (4) is a good approximation for the thermal escape when the at-293

mosphere is strongly gravitationally bound to the planet, and this formula is valid for294

all the constituents independently. Ideally this equation would be evaluated at or near295

the nominal exobase, but can be applied far below the exobase assuming no addition heat-296

ing if a correction factor is applied (Volkov, 2015; R. Johnson et al., 2016).297

It is important to note that while the Jeans parameter is the main parameter of298

thermal escape, the location of the exobase is extremely important. In the case of Ti-299

tan or a possible early Moon atmosphere (Aleinov et al., 2019) the altitude of the exobase300

is non-negligible compared to the radius of the planet, and while the flux per unit sur-301

face is small, it can become the most important source of loss when taking the whole exobase302

surface into account.303

2.1.1.2 Hydrodynamic regime In cases where the internal energy of individual304

gas molecules approaches the kinetic energy required for escape (λex ≈ 1), the gas will305

begin to escape as a flow of continuous fluid (Hunten, 1973; Gross, 1972; Watson et al.,306

1981).307

Qualitatively, the fundamental distinctions between the Jeans and hydrodynamic308

regimes can be viewed in two helpful and complementary ways. First, the Jeans regime309

is “collisionless” (Shizgal & Arkos, 1996): it is one where collisions between molecules310

define an exobase as a surface (or at least a narrow region). The atmosphere is not only311

retained by the gravitational pull on individual molecules but also by the effective force312

of collision with other atmospheric molecules. In the “collisional” hydrodynamic regime,313

the molecules are so energetic that collisions are insufficient to restrict escape. Indeed,314

the escaping flow of lighter gases (the ones that are most likely to be escaping) is capa-315

ble of exerting an effective force and dragging heavier gas molecules such as water and316

the noble gases (Pepin, 1991; Zahnle & Kasting, 1986). And furthermore, hydrodynamic317

escape can take place far below the exobase.318

Second, the distinction between Jeans and hydrodynamic escape is analogous to319

that between evaporation at temperatures below the boiling point and boiling. In this320

analogy, the exobase is like the surface of the evaporating fluid, the force of gravity is321

like the atmospheric pressure, and the effective pressure of other molecules is like the ef-322

fective pressure of other molecules in the liquid. Quantitatively, hydrodynamic escape323

is approached by numerical solution of an appropriate system of inviscid fluid dynam-324

ical equations (Watson et al., 1981; Tian & Toon, 2005). For instance, the one-dimensional325

time-dependent inviscid equations for a single constituent, thermally conductive atmo-326

sphere in spherical geometry is given by Tian and Toon (2005) as:327

∂(ρr2)

∂t
+
∂(ρvr2)

∂r
= 0 (6)

∂(ρvr2)

∂t
+
∂(ρv2r2 + pr2)

∂r
= −ρGM + 2pr, (7)

∂(Er2)

∂t
+
∂[(E + p)vr2]

∂r
= −ρvGM + qr2 +

∂κr2 ∂T∂r
∂r

(8)
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where E = ρ(v2/2 + e) (the equation for the total energy density), e = p/[ρ(γ −328

1)] (the definition of the internal energy), and p = ρRT (the ideal gas law). Here, ρ is329

the density of the gas, p is the pressure, γ is the polytropic index of the gas, R is the uni-330

versal gas constant, κ is the thermal conductivity, and q is the volume heating rate. Thus,331

Eq. 6 is the continuity equation, Eq. 7 is the momentum conservation equation, and Eq.332

8 is the energy conservation equation.333

If energy conservation is neglected and the temperature is held constant, steady334

state solutions to the above system are possible. It is convenient in that case to rewrite335

p and GM such that:336

p = ρv20 (9)

GM = 2r0v
2
0 , (10)

where v0 is the sound speed and r0 is a critical radius based on the relative gravitational337

potential energy and kinetic energy of a particle at the sound speed.338

A single differential equation is then obtained:339

1

v

dv

dr

(
1− v2

v20

)
=

2r0
r2
− 2

r
(11)

Eq. 11 has an obvious critical point at (±v0, r0) and thus various solutions to the340

differential equation can be derived by integrating from these two critical points to some341

other velocity and radius, assuming v0 is constant. The example of interest here is the342

transonic outflow solution obtained by integrating Eq. 11 from the critical point to higher343

velocity, v, and radius, r.344

log
v

v0
− 1

2

(
v2

v20

)
+

2r0
r

+ 2 log
r

r0
=

3

2
(12)

A good discussion of the various solutions and their significance can be found in345

Pierrehumbert (2010).346

It is possible to derive a theoretical upper bound for hydrodynamic escape of a sin-347

gle constituent atmosphere at a given temperature and atmospheric level. This bound348

is given by Eq. 4 in the limit where λex ≈ 0 (Hunten, 1973):349

Φi(escape) = N

(
kTe
2πm

)1/2

(13)

At this bound, escape takes the form of a one-dimensional outflow at the thermal350

velocity. In realistic models of atmospheres, however, hydrodynamic loss rates tend to351

be much lower than the theoretical limit for reasons to be discussed below. In addition,352

the use of an hydrodynamic escape approach is easily abused, especially when many as-353

sumptions have to be made on the nature of the atmosphere (such as the composition354

and the exospheric temperature). A solution to that problem is to estimate the criti-355

cal heating rate (Johnson et al., 2013b, 2013a, and Section 3.1.1).356

2.1.1.3 Fluid-Kinetic Models Applying the Jeans equation requires that the tem-357

perature and density to be known near the exobase. As an alternative to the hydrody-358

namic model, one can still use the fluid equations 6 - 8 by utilizing the Jeans escape rate359

and energy escape rate as upper boundary conditions. This Fluid-Jeans model has been360

adapted to hot gas giants (Yelle, 2004), as well as to terrestrial planets like Earth (Tian361

et al., 2008). One advantage of these methods is the solution is valid up to the exobase,362

so that heating, photochemistry and diffusion can be included and their effects on the363
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escape rate investigated. Using this Fluid-Jeans model, Tucker et al. (2012) and Erwin364

et al. (2013) refined the escape rate using DSMC to get a Fluid-DSMC result. This ex-365

tends the Fluid-Jeans result to model the transition from the collisional to collisionless366

regimes, and demonstrates the breakdown in the fluid equations below the exobase. These367

models predict that escape rates at Titan and Pluto are roughly consistent with Jeans368

escape even with low gravity or with high-heating rates.369

2.1.1.4 Limiting factors to thermal escape One limit arises from the impact of370

thermal escape on the energetics of the upper atmosphere. Removal of the escaping ma-371

terial either will cool the atmosphere around the exobase or lower the altitude of the exobase.372

Either way, some energy source will be necessary to maintain escape in a steady state.373

That energy source is whatever stellar EUV < 90 nm that can be absorbed near the exobase374

(this absorption threshold is set for H, as this is the main species evaluated in the con-375

text of energy limited escape, but is generally valid for upper atmospheric species) which376

results in one form of the energy-limited escape rate (Watson et al., 1981; Erkaev et al.,377

2007):378

Φi(limited escape) = εF�,EUV

(
GMm

r

)−1
(14)

where ε is the EUV heating efficiency and F�,EUV is the solar (or stellar) EUV flux.379

When fluxes of EUV are high, energy-limited escape is defined by the balance be-380

tween conductive heating of absorbed solar EUV from the exobase with adiabatic cool-381

ing of the thermosphere, as initially argued by Watson et al. (1981). Thus, at increas-382

ingly higher levels of EUV flux, the thermospheric temperature profile should evolve from383

one in which temperature increases monotonically to the exobase to one where peak tem-384

perature is significantly below the exobase. And after a certain point, the higher the in-385

coming solar flux, the lower the exobase temperature (Tian et al., 2008): a regime thought386

to have limited the thermal escape rate on the early Earth (the authors refer to hydro-387

dynamic escape as the regime where the adiabatic flow is important in the upper ther-388

mosphere, even though they are using Jeans escape to define the escape rate at the up-389

per boundary). Where increased EUV flux simultaneously reduces other cooling mech-390

anisms (such as IR emission from CO2 on Mars (Tian, 2009)), the adiabatic cooling-driven391

energy limit to thermal escape is less relevant. Erwin et al. (2013) showed that Pluto’s392

atmospheric escape is energy-limited even with the small EUV flux experienced at its393

orbit.394

The final limit arises from the impact of thermal escape on the composition of the395

upper atmosphere. Escaping species typically cannot be supplied to the escaping region396

of the atmosphere at rates comparable to the various theoretical upper limits for either397

Jeans or hydrodynamic escape. Escape rates are then controlled by the flux of escap-398

ing species to the region of escape, a regime known as diffusion-limited escape because399

diffusion is the principal transport mechanism in the escape regions of the most famil-400

iar planetary atmospheres (Hunten, 1973; Kasting & Catling, 2003). Consider a trace401

gas of density ni significantly lighter than the mean molecular mass of a planetary at-402

mosphere and present at the homopause, where eddy diffusion is too weak to mix the403

atmosphere thoroughly. The separate gases will unmix by molecular diffusion and seg-404

regate. Unmixing at the homopause sets the limiting diffusion rate, which is dependent405

on the mixing ratio at the homopause itself as well as the diffusion coefficient of the light406

trace gas in the heavier principal constituents (bi,dom) (Hunten, 1973) (In the following407

equation the mass of the trace gas, is very small compared to the mass of the principal408

constituent, its number density is also very small, and we neglect thermal diffusion; we409

will explore diffusion limited escape more in Section 3.1.3; n is the number density of the410

main constituent).411
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Φi(escape) =

(
bi,dom
H

)n
i,homopause

n
(15)

Note that the dependence of the diffusion rate at the homopause on the concen-412

tration of the light species at the homopause makes diffusion-limited transport also de-413

pendent on all barriers to transport of the light gas lower in the atmosphere such as an414

atmospheric cold trap. Escape of H at Earth is a perfect example of diffusion limited es-415

cape (Shizgal & Arkos, 1996).416

Thus, thermal escape has three classes of rate limit: (1) an absolute one based on417

fluid dynamics at the exobase; (2) an energetic one based on the absorption of solar EUV418

near the exobase; and (3) a compositional one based on atmospheric vertical transport419

below the exobase.420

2.1.2 Key parameters421

The most important parameters controlling thermal escape are the atmospheric scale422

height in the thermosphere, H, which depends upon the exospheric temperature Te (Sec-423

tion 3.3.2) and the mass of the atmospheric constituents, mi.424

The regime of thermal escape is governed by the dimensionless Jeans parameter425

λex = (GMmi/r)/(kT ) with r being taken either as the distance from the center of the426

planet to the surface, exobase, or the location of the molecule(s) in question. There is427

a critical value for λex, below which there is a transition between between hydrodynamic428

and Jeans escape. Simply equating the internal energy and the escape velocity would429

suggest that the critical value of λex is 1
γ−1 , with γ begin the heat capacity ratio, directly430

linked to the degree of freedom of the molecule/atom. This would correspond to 1.5 for431

ideal monoatomic gases and 2.5 for ideal diatomic gases. Thus, Selsis (2006) refers to432

a critical value of 1.5 for simplicity. Simulations by Erkaev et al. (2015) of an atmosphere433

dominated by H2 show a transition in escape rates near λex = 2.5, which implies that434

1
γ−1 is indeed a good estimate of λex.435

Following Selsis (2006), we can define a critical temperature Tc for which λex =436

1.5 for the different planets, which is valid for a H atom.437

At Titan, the eventual escape of material to space is determined by the combined438

effects of the deep atmosphere limiting flux and the effects of photochemical loss (for CH4)439

or production (for H2) above the homopause region (J. M. Bell et al., 2014). Each of the440

major species, N2, CH4, and H2 possess separate critical points, but the nominal exobase441

is located near 1500 km, which is a significant fraction of the radius of Titan (2575 km).442

Selsis (2006) gives a table of critical temperature, λex (noted χ in that paper) and443

exospheric temperature for different objects in the Solar system. Table 2 is an update444

taking into account the recent data, e.g. from New Horizons.445

In Johnson et al. (2013b, 2013a) a criterion for where the transition between Jeans446

escape and hydrodynamic escape should be considered, based on the heating rates, has447

been described.448

2.1.3 Questions and Important Points449

2.1.3.1 How the transition between the thermal escape and the hydrodynamic es-450

cape is done? Motivated by Cassini spacecraft data for Titan, and New Horizons data451

for Pluto, there has been renewed interest in the physical assumptions underlying plan-452

etary escape. Following Hunten (1982), it was assumed that if the binding parameter453

λex < 1 near the exobase, an organized hydrodynamic flow would result, whereas if λex >454

10 that collisionless Jeans escape would result. Intermediate models called slow hydro-455

–15–



manuscript submitted to JGR: Space Physics

dynamic escape including transport effects such as thermal conduction were also devel-456

oped (Watson et al., 1981; Hunten & Watson, 1982; D. F. Strobel, 2008b) to bridge the457

intermediate values of λex between the two limits. Recently, Volkov, Johnson, et al. (2011)458

used DSMC to model atom/molecule motions under gravity and collisions. It was as-459

sumed that heating occurred below the base of the simulation domain, so that particles460

enter the domain with a Maxwell-Boltzmann distribution at a prescribed temperature.461

Subsequent collisions between particles then transport heat upward effectively by a heat462

conduction flux (although the Fourier law may be inaccurate to describe this flux). The463

particle density at the base of the simulation domain was parameterized through the ra-464

tio of mean free path to the scale height (the Knudsen number), which is a measure of465

the frequency of collisions. The surprising result of the simulations presented in Volkov,466

Johnson, et al. (2011) was that a sharp transition occurs from the hydrodynamic to the467

Jeans escape limits, near λex ∼ 2− 3 depending on the particle interaction law. Ana-468

lytic support of these results was given in Gruzinov (2011). For λex > 3, the bulk fluid469

velocity never becomes supersonic, and the escape rate is near the Jeans escape rate. Hence,470

given the assumptions of that study, hydrodynamic outflow is limited to small values of471

the binding parameter. Early in the Cassini mission to the Saturn system, D. F. Stro-472

bel (2008b) posited that slow hydrodynamic escape could be occurring in the upper at-473

mosphere of Titan, due the moon’s low gravity and the extended nature of its atmosphere.474

Further still, the combined works of D. F. Strobel (2008b, 2012) and Yelle et al. (2008)475

went a step further and suggested that hydrodynamic escape was in fact the only mech-476

anism that could adequately reproduce the observations of methane. However, later in-477

vestigations by J. M. Bell et al. (2011) and later in J. M. Bell et al. (2014) demonstrated478

that, by self-consistently coupling dynamics, composition, and thermal structure calcu-479

lations, that the in-situ measurements of methane by the Ion-Neutral Mass Spectrom-480

eter (INMS) (J. H. Waite et al., 2004; Magee et al., 2009) could be explained with the481

atmosphere in a nearly diffusive state without the need for invoking slow hydrodynamic482

escape of methane.483

Similar to the situation at Titan, the data obtained by the New Horizons flyby of484

Pluto and Charon was not consistent with a previously posited hydrodynamic escape mech-485

anism occurring at the dwarf planet Gladstone et al. (2015). Prior to this observation,486

Pluto was suggested to be the archetype for a planetary atmosphere in a state of hydro-487

dynamic escape. Instead, the DSMC simulation by Tucker and Johnson (2009); Tucker488

et al. (2012), which suggested that Pluto’s atmosphere could be simulated without in-489

voking hydrodynamic escape, seem to better match observations made by New Horizons.490

Thus, despite being posited as occurring at several bodies in the Solar system, there is491

no clear evidence for slow hydrodynamic escape occurring in our Solar system during the492

current epoch.493

2.1.4 Observables494

When observing escape in real time, thermal escape can be viewed as principally495

a function of the density of the escaping species and exospheric temperature (Eq. 4). A496

typical technique is to infer density and temperature from airglow emission, which is also497

a function of density and exospheric temperature (e.g. M. S. Chaffin et al. (2014)). In498

some cases, in-situ mass spectrometry of neutrals can enable better constraints on den-499

sity (e.g. Cui et al. (2008)), while satellite drag can add yet another constraint jointly500

dependent on bulk atmospheric density and temperature (e.g. Krauss et al. (2012)).501

The central value of observing airglow emission for planets in the Solar system and502

the difficulty of obtaining additional constraints on escape from exoplanets strongly sug-503

gests that airglow emission will be the key observable for quantifying thermal escape at504

exoplanets, whether by Jeans or hydrodynamic escape. The expected observable for in-505

tense hydrodynamic escape is of a highly extended hydrogen corona containing relatively506

large amounts of heavier atoms rather than a rapid fall-off in the concentration of such507
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atoms beyond the exobase (Vidal-Madjar et al., 2003). Airglow, however, is extremely508

difficult to observe at exoplanets and can be affected by particle precipitation (Bernard509

et al., 2014). For small/rocky planets such as a Earth-like or a Mars-like exoplanet, a510

technique based on CO2 or O2 absorption due to stellar occultation in the near UV can511

be used, but is extremely challenging (Gronoff, Maggiolo, et al., 2014).512

The main observable for thermal escape in a planet’s past is mass fractionation of513

the isotopic composition of the atmosphere from the stellar value. However, caution must514

be exercised. Isotopic composition can be affected by the outgassing of primordial ma-515

terials and low-temperature chemical reactions unrelated to escape (Pepin, 2006; E. C. Pope516

et al., 2012). Moreover, isotopic composition is strongly sensitive to Jeans escape but517

variably sensitive to hydrodynamic escape.518

For Jeans escape, it can be inferred from Eq. 4 that the escape rate is proportional519

to m
−1/2
i for small values of λex and m

1/2
i e−λex for large values of λex. The former case520

would be hydrodynamic escape. So for Jeans escape, deuterium escapes at a rate less521

than atomic hydrogen.522

In the case of hydrodynamic escape, the principal escaping species drags gases lighter523

than the “crossover mass” (mc) (Hunten et al., 1987).524

mc = mesc +
kTΦesc
bgXesc

(16)

where esc refers to the principal escaping species, b is the binary diffusion coefficient (the525

diffusion coefficient in a 2-components gas), and X is the mole fraction. If the escape526

flux of the principal escaping species can be defined at a reference altitude Φ◦esc and is527

sufficiently small, then the escape flux of the trace species at the reference altitude Φ0
trace528

is:529

Φ◦trace =
Xtrace
Xesc

Φ◦esc

[
mc −mtrace
mc −mesc

]
(17)

(Hunten et al., 1987). It is in these slower hydrodynamic escape cases that significant530

fractionation is possible on geological timescales. Otherwise, the larger species are car-531

ried along with the flow. And everything scales with mole fraction.532

Φ◦trace =
Xtrace
Xesc

Φ◦esc

[
1− bg◦Xesc

kTF ◦esc
(mtrace −mesc)

]
(18)

(Hunten et al., 1987). In this case, fluxes are weakly dependent on mass at masses close533

to the mass of the principal escaping species but more strongly dependent on mass at534

masses much greater than that of the principal escaping species, resulting in minimal frac-535

tionation of low mass species but significant fractionation of high mass species (Hunten536

et al., 1987; Tian et al., 2013).537

As noted in Pepin (1991); Shizgal and Arkos (1996); Pepin (2006), the uncertainty538

in the hydrodynamic escape parameters, notably with the EUV output of the Young Sun,539

the noble gas reservoirs, the volatile outgassing (etc.), are a problem to retrieve the whole540

history of a planetary atmosphere. In addition, other escape processes lead to isotopic541

fractionation.542

2.2 Photochemical Escape543

The dominant non-thermal loss processes vary for each planetary body. The rel-544

ative significance of each process depends on planetary mass, atmospheric composition,545

and distance from the sun. For instance, at Mars, the current dominant non-thermal loss546

processes are photochemical, while at Venus is it thought to be through ionospheric es-547

cape (Lammer et al., 2008).548
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The photochemical escape of a planetary atmosphere is a non-thermal loss process549

due to exothermic chemical reactions in the ionosphere that provide enough kinetic en-550

ergy for the escape of the neutral constituents. Photochemical escape often includes di-551

rect interactions of photons and photoelectrons with thermospheric and exospheric molecules,552

as well as chemical reactions of ions with neutrals and electrons. In the following, we will553

add the symbol ∗ to neutral and ionized species to show that they have a non-negligible554

amount of kinetic energy. Such species are usually called “hot”; and for the neutral atoms,555

the term ENA, for Energetic Neutral Atom, is often used.556

The general method of computation for the escape of a fast atom or ion can be found557

in Shematovich et al. (1994). The general transport equation for any species in the at-558

mosphere is:559

∂f

∂t
+ ~v

∂f

∂~x
+

~F

m

∂f

∂~v
= Q+Hhν + Jel + Jq + Jcx (19)

where Q represents the productions, Hhν the spontaneous transition to another state560

–typically by light emission–, Jel the loss due to elastic scattering (and therefore momen-561

tum transfer) (Lilensten et al., 2013), and Jq the loss due to quenching. Note the ad-562

dition of an extra loss term, Jcx, for charge exchange. The transport equation should be563

taken into account for all the species, and they can be coupled when the loss of one species564

creates another one. An example of that situation is the coupled transport between H565

and H+, where a proton undergoing a charge exchange will become a fast H, that can566

be re-ionized later. This equation is also valid for the excited state species, such as O(1S)567

and O(1D), that are notably responsible for the green line and the red line in aurorae568

(Gronoff, Simon Wedlund, Mertens, & Lillis, 2012; Gronoff, Simon Wedlund, Mertens,569

Barthélemy, et al., 2012).570

In the following subsections, we review the main processes creating ENA/fast ions.571

Charge exchange is described in a later section. While the same equation should be solved572

to address atmospheric escape, approximations are often used for the coupled ion/ENA573

equations, angular diffusion, and upper atmospheric densities (Rahmati et al., 2018). These574

approximations are used for several reasons. One particularly problematic point in the575

simulations is the distance at which a particle is considered lost in space; some studies576

take a few planetary radii, other a few exospheric altitudes. Such approximations can577

create difficulties when comparing with observations (Baliukin et al., 2019).578

2.2.1 Ion recombination579

An exothermic ion recombination (or chemical reaction) can give enough kinetic580

energy to one of its products so that it can escape. Ion recombination is the most effec-581

tive channel to escape O in the present Martian atmosphere. It is, in general, an efficient582

way to heat up an atmosphere through non-thermal process. It is also a process lead-583

ing to the escape of heavier atoms from light planets or bodies. The process has been584

largely studied in the past (Shizgal & Arkos, 1996), and is being refined in support of585

the MEX and MAVEN missions (Cipriani et al., 2007; Yagi et al., 2012; Valeille et al.,586

2010; Zhao & Tian, 2015; Lillis et al., 2017).587

At Mars, the main photochemical escape process is the loss of oxygen through the588

reaction:589

O+
2 + e− → O(3P ) + O(3P ) + 6.99eV (20)

→ O(1D) + O(3P ) + 5.02eV (21)

→ O(1D) + O(1D) + 3.05eV (22)

→ O(1S) + O(3P ) + 2.80eV (23)

→ O(1D) + O(3S) + 0.83eV (24)
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Recent studies by MAVEN were able to show the hot oxygen corona produced by590

these recombination reactions (Deighan et al., 2015). A study by Cravens et al. (2017)591

shows that, in the limits of the current solar conditions at Mars, a linear dependence of592

the escape rate to the EUV flux can be made.593

Another interesting reaction is N+
2 + e− → 2N∗ which is efficient enough for the594

removal of 14N but not 15N at Mars, and could explain the isotopic fractionation (Shizgal595

& Arkos, 1996).596

At Earth and Mars, we also have (Shizgal & Arkos, 1996; Gröller et al., 2014) (the597

channel with O(1D) has branching ratio close to zero):598

NO+ + e− → N(4S) + O(
3
P ) + 2.78eV (25)

→ N(2D) + O(3P ) + 0.39eV (26)

→ N(4S) + O(1D) + 0.81eV (27)

To compute the photochemical escape through these processes, it is first necessary599

to compute the ion density. This involves, first, computing the ion productions (via pho-600

toionization, secondary electron ionization, etc.); second, computing the resulting chem-601

istry and transport to get the ion densities; third, computing the hot atom production,602

using the densities and the reaction rate; fourth, compute the actual escape by comput-603

ing the transport of the hot atom. Such an escape should include collisions with other604

species; if the hot atom creation rate is important enough, it should be taken into ac-605

count that these collisions heat up the upper atmosphere, and therefore change its pro-606

file towards more escape.607

Recent work at Mars shows that the CO+
2 dissociative recombination is a non-negligible608

source of hot oxygen (Lee et al., 2015; Zhao & Tian, 2015). In the following, the first re-609

action is believed to have a branching ration between 96% and 100%:610

CO+
2 + e− → CO(1Σ) + O(3P ) + 8.27eV (28)

→ CO2(1Σg) + 13.78eV (29)

→ C(3P ) + O2(3Σg) + 2.29eV (30)

→ C(3P ) + 2O(3P )− 2.87eV (31)

CO+ + e− → C(3P ) + O(3P ) + 2.90eV (32)

→ C(1D) + O(3P ) + 1.64eV (33)

→ C(3P ) + O(1D) + 0.93eV (34)

→ C(1S) + O(3P ) + 0.22eV (35)

→ C(1D) + O(1D)− 0.32eV (36)

→ C(3P ) + O(1S)− 1.28eV (37)

Hot oxygen in a planetary thermosphere can also induce escape of lower mass species611

by sputtering (Shizgal, 1999).612

2.2.2 Photodissociation613

Another process leading to the creation of fast ions or atoms is the direct dissoci-614

ation by photon, electron, or proton impact.615

In Shematovich et al. (1994) an example is given by the reaction O2+hν →O(3P)+O(3P,1D,1S);616

the kinetic energy given to the products is the difference between the energy of the pho-617

ton and the binding energy (i.e. the threshold energy for the reaction). Similar processes618
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can be evaluated for N2, CO2, etc. Photodissociation reaction are seldom considered in619

evaluating escape rates since the production of fast enough particle to escape is small620

with respect to ion recombination processes. To properly evaluate these productions, it621

is necessary to have an accurate set of cross sections (see Section 3.2.4). In general, ther-622

mospheric codes consider that the kinetic energy given by these photodissociations ends623

up in heating, therefore one has to be careful to not count that loss of energy twice in624

their simulations.625

2.2.3 Di-cation dissociation626

The di-cation dissociation effect on planetary escape has been proposed by Lilensten627

et al. (2013). It is a non-thermal processes that is based on the fact that the Coulom-628

bian dissociation of a molecular doubly charged ion may give enough energy to one or629

both of the ions to allow their escape.630

The typical example for this process is CO2+
2 → CO++O+, as described in Lilensten631

et al. (2013). Other processes such as N2+
2 → 2N+ (Gronoff et al., 2007), or O2+

2 → 2O+
632

(Simon et al., 2005; Gronoff et al., 2007) can give sufficient energies for the ion to escape.633

To account for the flux of escaping particles through that process, it is necessary to com-634

pute the transport of the fast ions from where they are created to the exobase. Since it635

is ions that are escaping, they are not necessarily escaping even if they reach the exobase636

with sufficient energy: the presence of magnetic fields could prevent their escape, and637

return them into the atmosphere where they could create some additional heating (the638

Coulomb energy being in the range of several 10 eV, such ions could not efficiently sput-639

ter, except if they are further accelerated by the solar wind). A process not accounted640

for in the Lilensten et al. (2013) paper is the heating of the ionosphere and the creation641

of fast ENA through charge exchange of the fast ions with the atmosphere (a process sim-642

ilar to the one described in Chassefière (1996a)). On the contrary, ions with energy lower643

than escape energy could escape due to electromagnetic forces, as will be explained in644

Section 2.4 and 2.5.645

The calculation of the dication escape in a non-magnetized atmosphere proceeds646

as follows: from Pi2+(z), the production rate of the specific dication i2+ in function of647

the altitude z, we compute its density n2+ = Pi2+(z)/Li2+(z) from the chemical loss648

processes L, neglecting the transport because of the small lifetime of the dication (for649

a detailed analysis of the production processes see e.g. Gronoff, Simon Wedlund, Mertens,650

and Lillis (2012); Gronoff, Simon Wedlund, Mertens, Barthélemy, et al. (2012)). From651

there, the standard transport equation of fast ion in the atmosphere can be used. The652

study of Lilensten et al. (2013) does not take into account the loss of energy of O+∗ im-653

pacting atmospheric O, therefore overestimating the escape (the study consider impact654

on CO2, which has a smaller scale height). On the other hand it underestimates the es-655

cape rate by not doing a coupled equation transport and therefore not taking into ac-656

count the escape of O∗ created by charge exchange of O+∗ with other thermospheric species.657

2.2.4 Key parameters658

Modeling photochemical loss requires the cross section for ionization by the differ-659

ent processes (including elastic, inelastic, and charge exchange), and the chemical reac-660

tion rates for the density/recombination (including the branching ratio and the prod-661

ucts speed probabilities). The ionospheric electron temperature is overall extremely im-662

portant since the recombination cross section is likely to be extremely sensitive to it (Sakai663

et al., 2016). For the simulation of the ion/electron composition and temperature, it is664

necessary to perform a 3-D modeling of the ionosphere.665
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2.2.5 Questions666

The evaluation of escape rates from photochemical reactions has mainly been done667

for Solar system planets, especially Mars and Venus. Once we consider exoplanets or the668

Young Solar system, questions remains about the efficiency of each processes. The ion669

recombination or the usually neglected processes such as particle impact dissociation could670

become more important when increase in XUV or precipitating particle flux occur. This671

question is difficult to answer since each process affects the state of the upper atmosphere672

and the efficiency of each other.673

2.2.6 Observables674

The recombination processes create ENA at very specific energies, typically in the675

5 eV range. Since collisions occurs, changing the spectral shape of the energy distribu-676

tion, the direct observation of these energies peaks is extremely challenging. Indirect tech-677

niques, based on modeling the hot oxygen corona are used. At Mars, a technique to ob-678

serve the product of photochemical reactions involved observing the hot oxygen geocorona679

(Deighan et al., 2015). As explained in Shizgal and Arkos (1996), photochemical escape680

can explain the fractionation of 14N/15N at Mars. A more recent work from Mandt et681

al. (2015) shows that non-thermal processes except photodissociation can explain the iso-682

topic enrichment. The work of Liang et al. (2007) shows that self-shielding effects can683

lead to an increase in heavier isotopes (here 15N at Titan) escape from photodissocia-684

tion.685

2.3 Ion Loss686

The ion loss mechanisms begin with the interaction of the upper atmosphere and687

ionosphere with the solar wind. Neutral atoms can be ionized by solar UV, charge ex-688

change and electron impact, and can be scavenged by the solar wind. There are differ-689

ent processes and loss channels through which the planetary ions can escape to space,690

including pickup and sputtering, charge exchange, and outflow, which will have its ded-691

icated subsection. Ion escape is believed to be one of the major sources of atmospheric692

escape in the current Solar system and also at exoplanets around M-dwarfs (Garcia-Sage693

et al., 2017).694

2.3.1 Pickup and sputtering escape695

2.3.1.1 Pick-up escape Pick up ion loss is due to the ionization of neutral con-696

stituents in the exosphere and upper atmosphere that sense an electric field and can be697

“picked up” and swept away. In the presence of the magnetic field, at Earth for exam-698

ple, the polar wind drives pick up ion escape (T. E. Moore et al., 1997). At lower alti-699

tudes, this interaction can compress the magnetic field on the sunward side, forming a700

tail on the anti-sunward side. At high altitudes, the loss of H+, He+ and O+ can occur701

when thermal plasma originating from the polar regions in the ionosphere is accelerated702

into the magnetosphere and escapes downtail (Johnson et al., 2008). These processes will703

be detailed in Section 2.4 and 2.6.704

At weakly magnetized planets, such as Mars and Venus, the lack of an intrinsic dipole705

magnetic field creates a scenario where the solar wind directly interacts with the upper706

atmosphere. In this situation, neutral constituents are ionized and picked up by the back-707

ground convection electric field that is driven by the solar wind, where ~ESW=−~USW×708

~BSW where ~ESW is the electric field induced on an ion by the solar wind (and there-709

fore that ion will be subject to a force ~F = q ~ESW), ~USW is the solar wind speed and710

~BSW is the interplanetary magnetic field. The main channels for ionizing planetary neu-711

trals are photoionization, charge exchange and electron impact ionization. Curry et al.712

(2013) investigates these mechanisms as a function of solar zenith angle, bulk velocity713
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and plasma temperature, respectively, finding that the majority of pick-up ions are formed714

in the corona and sub-solar region of Mars. The origin of pickup ions plays a major role715

in their fate as escaping particles or precipitating particles (Fang et al., 2010). In the for-716

mer case, the pick-up ions can accelerate to twice the solar wind speed and their gyro-717

radii are on the order of a planetary radius, and are likely to escape. The maximum en-718

ergy of a picked-up ion is Emax = 2mU2
SWsin2(θB) where θB is the angle between the719

solar wind direction and the interplanetary magnetic field (Rahmati et al., 2015). In the720

case of precipitating ions, the pick up ions will collide with neutrals in the exobase or721

thermosphere and transfer enough energy and momentum to the neutral that they could722

be able to exceed the escape velocity; a process known as sputtering. Ion precipitation723

also impacts the atmosphere through heating. The sputtering process can also happen724

at Earth, inside the polar regions (Shematovich et al., 2006), but it is a small process725

there.726

2.3.1.2 Pick-up equations If we consider nSW as the solar wind density, nO the727

density of oxygen where that solar wind is located, σCX the average charge exchange cross728

section between the solar wind and oxygen and σPI(λ) the photoionization cross section,729

we have an ion production of PI = nO(
∫
σPI(λ)ΦEUV (λ)dλ + σCXnSWUSW) (and730

other ionization processes can be added such as electron impact) (Rahmati et al., 2015,731

2017), that production is balanced by the pick-up transport. If we consider PI(~v) the732

production of ion at a speed defined by ~v (so that
∫
PI(~v)d~v = PI), e the charge of the733

ion and m its mass, then the velocity distribution function f(~x,~v) for the picked-up ions734

is governed by (Hartle et al., 2011):735

~ESW = −~USW × ~BSW (38)

~v.
∂f

∂~x
+

e

m
( ~ESW + ~v × ~BSW).

∂f

∂~v
= PI(~v) (39)

Φ(~x) =

∫
vfd~v (40)

with e the ion charge. Several techniques can be used for solving Equation 39; the com-736

plexity arises from the solar wind piling up around the planet (or the comet (Coates, 2004),737

creating complex magnetic field geometries. Typically, it has been solved using test par-738

ticles (Monte Carlo simulations) in fields from MHD or self consistent hybrid codes, as739

by (Jarvinen & Kallio, 2014).740

2.3.1.3 Sputtering The yield Y of sputtered neutrals is defined by the sputter-741

ing efficiency. This yield is the ratio of the number of escaping particles and the num-742

ber of incident particles, which varies inversely with the planet’s gravitational energy (Johnson,743

1994; Leblanc & Johnson, 2002; Johnson et al., 2008). Sputtering is dependent on the744

incident particles’ energy and angle of incidence, as well as the mass of the incident par-745

ticle. For lighter incident pickup ions, the direct scattering of planetary neutrals is known746

as “knock-on”, which dominates at low, grazing incidence angles. For heavier incident747

pickup ions, the additional momentum can create a cascade of collisions at high enough748

energies to cause a neutral to escape, where Y ≥ 1 (Leblanc & Johnson, 2001; Johnson749

et al., 2008). This occurs for O+ pickup ions at energies of ∼keV to ∼hundred keV. This750

is especially important when the pickup ion gyroradius is of the order of the planet ra-751

dius, as at weakly magnetized bodies such as Mars, Venus and Titan.752

Sputtering is widely believed to be the dominant escape process at Mars and Venus753

during earlier epochs of our Sun, which has major implications for exoplanetary atmo-754

spheres. J. G. Luhmann et al. (1992) calculated the flux of precipitating pick-up ions and755

ENAs using a 1D exospheric model of the O density and a a gas-dynamic model of the756

solar wind and found compared to pickup ion and photochemical escape, sputtering drove757

the highest rates of atmospheric erosion (see Figure 3). Other studies using MHD and758

hybrid models have found similar results (Chaufray et al., 2007; Wang et al., 2014). Sput-759

tering as a dominant driver of atmospheric escape is further supported by current iso-760
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Figure 3. EUV dependence of the escape process at Mars. Simulations data from J. G. Luh-

mann et al. (1992)

tope ratios. Specifically, Ar is an important atmospheric tracer because once Ar is in the761

atmosphere, the only loss process is escape to space (as opposed to volcanic outgassing762

from the interior, impact delivery, and mixing with the crust), which limits the exchange763

pathways that become complicated for most planetary volatiles (Jakosky & Phillips, 2001).764

Thus, measurements of the present day atmosphere reflect the importance of these ex-765

changes over billions of years and emphasizes the need for understanding our own ter-766

restrial planets’ atmospheric evolution as a ground truth for understanding exoplane-767

tary atmospheres.768

Unfortunately, sputtering is incredibly difficult to observe as the sputtered com-769

ponent at Mars is indiscernible from photochemically produced oxygen. Thus models have770

typically predicted what the sputtered component would be in a variety of scenarios. The771

passage of the Siding Spring comet close to Mars (Bodewits et al., 2015) created a high772

flux of O+ ions that impacted the atmosphere as predicted in (Gronoff, Rahmati, et al.,773

2014). Observations by the MAVEN Solar Energetic Particle instrument (SEP) and the774

Mars Odyssey-High Energy Neutron Detector (HEND) indicate an increase in the O+
775

pickup during the passage; however, an increase in solar activity at the same time pre-776

vents a clear conclusion on whether or not it was due to the comet (Sánchez-Cano et al.,777

2018). Wang et al. (2016) computed the impact of these ions on the escape rate, and found778
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that up to 10 tons of atmosphere may have escaped while 1 ton of material was added.779

Another formulation of the escape by sputtering can be found in Shizgal (1999). In this780

paper, it is the sputtering by the hot oxygen of Venus that leads to the escape of H and781

D. The main difference with the usual pickup-sputtering process is the origin of the hot782

O, from the thermosphere itself, and therefore that the forcing by an external flux and783

the use of yield function cannot be applied. Shizgal (1999) developed a specific kinetic784

model for the escape.785

2.3.1.4 Sputtering equations The rate of species nj escaping an atmosphere from786

sputtering is given by
∂nj
∂t ≈ 2πR2

exo < ΦaYj > (Johnson, 1994) where Φa is the flux787

of the particle leading to the sputtering and Yj the sputtering efficiency for that pecu-788

liar species. For sputtering by an incident particle A and a target species B, and of re-789

spective masses MA and MB i.e. a thermosphere whose main constituent is B, the yield790

can be computed as follows. First, for an incident particle of energy EA, it is necessary791

to evaluate the elastic cross section σd(EA) which is related to the momentum transfer792

(or knock-on, elastic nuclear) stopping cross section Sn(EA) through:793

γ =
4MAMB

(MA +MB)
2 (41)

σd(EA) =
γ

2
EASn(EA) (42)

The overall yield is the result of single impact plus multiple impact momentum trans-794

fer at energy greater than the escape energy. It can be approximated by (Johnson, 1994;795

Johnson et al., 2000):796

Y (θ,E) ≈ αβSn(E)

2Uesσd(Ees)cospθ
(43)

Ees ≈ Ues (44)

where θ is the incident angle, Ues is the gravitational binding energy at the exobase, Ees797

is the average energy of the escaping particle. α, β, and p are constants depending upon798

the impact particles, see Johnson (1994) for some numerical values in the literature. The799

sputtering yield may be enhanced by the sputtered particles that are picked-up and ac-800

celerated towards the atmosphere (equation 2 in Johnson (1994)). If the efficiency of es-801

cape for a sputtered particle is Ya and its ionization and return is pi, then the effective802

yield is Yeff = Y/ (1− pi (Ya − 1)).803

2.3.1.5 Other impact processes The classical sputtering process involves the im-804

pact of an ion that has been accelerated by pick-up, i.e. a non-thermal processes out-805

side of the thermosphere. Gacesa et al. (2012) proposed a very similar mechanism where806

the impact of hot O from the Martian corona sputters light gases. Their computations807

suggest it is the main channel for HD and D2 direct escape. To validate that approach,808

it is suggested to observe the emission of H2 ro-vibrationally excited by the impact. ENA809

impact on the Martian atmosphere are also a source of escape, especially when they have810

been created by charge exchange from the solar wind (Lewkow & Kharchenko, 2014),811

which leads us the the other class of escape processes.812

2.3.2 Charge exchange of a magnetically trapped particle813

The basic idea of charge exchange escape is that a magnetically trapped energetic814

ion, such as H+, exchanges its charge and becomes an energetic neutral atom (ENA) that815

can escape or sputter (an ion trapped in a magnetic mirror may be prevented to reach816

the thermosphere and therefore to efficiently sputter) (Shizgal & Arkos, 1996). The tem-817

perature dependence is complex: at Earth it decreases with exospheric temperature for818

H (Shizgal & Arkos, 1996) so that the escaping flux from charge exchange plus Jeans es-819

cape is constant, reaching the diffusion-limited value.820
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A simple approach adopted by Yung et al. (1989) was to consider that the ion H+
821

had a Maxwellian distribution at the temperature Tion. Having exchanged its charge,822

the energetic neutral atom could escape, and it would have the same energy as the ini-823

tial ion. The efficiency for an escaping charge-exchanged atom, with respect to the tem-824

perature of the initial ion is825

αi(R) = BCX

[
1− v2esc

uj(R)2

]
e
− v2esc
uj(R)2 (45)

with uj(R) =
√

2kTion(R)/mi. Considering ki+−j the charge exchange rate between826

the ionized species i and a neutral species j (rate that can vary with temperature), this827

gives the escape flux828

φ =

∫ Rpp

Rexo

(
R

Rexo

)2

αi(R)
∑
j

ki+−j [i
+][j]dR. (46)

The BCX factor in the definition of αi is an efficiency factor, that was taken identical829

to the one for thermal escape in the Yung et al. (1989) paper. The rest of the equation830

is similar to the thermal escape equation, except the ui

2
√

(π)
factor (which was taken off831

for considering it is hidden in the charge exchange rate). The equation in Yung et al. (1989)832

paper has a negative sign that should be positive: using the equation with that nega-833

tive sign leads to negative escape fluxes. Using that equation, it happens that the charge834

exchange flux should increase with increasing exospheric temperature, which is not what835

is observed. It means that this simplified approach is not good enough for evaluating the836

charge exchange flux at Earth.837

Shizgal and Lindenfeld (1982) developed a collisional model for computing the charge838

exchange induced escape. The main difference with the previous approach is that the839

efficiency of charge exchange with respect to the temperatures is taken into account fol-840

lowing Fitzpatrick and Shizgal (1975). It is shown that the charge exchange is, at Earth,841

the most efficient mechanism to remove H from the upper atmosphere during low solar842

activity (low exospheric temperature) while Jeans’ escape is the main mechanism dur-843

ing high solar activity. It is important to remember here that H escape is diffusion lim-844

ited at Earth. In the following, A corresponds to the neutral atmosphere (O and H), n̄845

to the average density (of A, O, and H+) over the region of charge exchange and σ cor-846

responds to the energy independent hard sphere cross section, and a = mA
mO

847

λCX =
mHv

2
esc

2kTion
(47)

n̂ =
σH+,A

σH,O

[
¯nH+ n̄A
n̄O

]
Γ(a)

1 + a
(48)

τCX =
Texo
TH+

− 1 (49)

ΦCX(escape) = n̂

√
2kTexo
πmH

e−λCX

τCX

×
[
(1 + τCX)−

√
1 + τCXe

−λCXτCX
]

(50)

This equation is valid for the escape of H at Earth from charge exchange. It sup-848

poses that (1) the H+ density varies slowly with altitude at the location where this pro-849

cess is the most efficient (from the exobase to 3000 km), (2) the only species interact-850

ing are H, O, and H+ , and (3) the distributions are Maxwellian, with a fixed temper-851

ature in the altitude range.852

At Earth, the charge exchange is the main mechanism to remove O+ from the ring853

current (Daglis et al., 1999). The exchange creates ENA that can be imaged to study854

the ring current evolution.855
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2.3.3 Charge exchange with the solar wind856

The charge exchange between the solar wind and the upper atmospheric species857

can enhance the escape rate through pick-up like processes: a species M exchanges its858

charge with, for example, a proton from the solar wind H+∗+M→H∗+M+. The solar wind859

proton becomes an ENA, and can creates additional heating that increases the thermo-860

spheric temperature, and therefore escape (Chassefière, 1996a). The created ion can es-861

cape thanks to pickup by the magnetic field.862

At comets, charge transfer reactions primarily involve solar wind ions, H+, He2+863

but also multiply-charged minor species such as O6+, Si10+, or C5+ (Cravens, 1997; Bode-864

wits, 2007; Simon Wedlund et al., 2016), with water molecules continuously outgassing865

upon sublimation from the nucleus. As the atmosphere of a comet is in expansion, charge-866

transfer reactions take place over a large region of space (of the order of several 106 km)867

and will have time to facilitate the absorption of the solar wind, converting fast ions into868

slow-moving ones. Charge transfer has recently been evidenced by the ESA/Rosetta ion869

spectrometers at comet 67P/Churyumov-Gerasimenko (67P), with the observation of H−870

ions (Burch et al., 2015), and He+ fast ions (Nilsson et al., 2015). The latter charge-exchanged871

ions, originating from solar wind He2+ ions (composing about 4% of the bulk of the undis-872

turbed solar wind), were present throughout the mission from a heliocentric distance rang-873

ing from 3.4 to 2 AU (Simon Wedlund et al., 2016; Simon Wedlund, Behar, Kallio, et874

al., 2019; Simon Wedlund, Bodewits, et al., 2019; Simon Wedlund, Behar, Nilsson, et al.,875

2019). The net effect of the charge transfer of He2+ solar wind ions with the neutral at-876

mosphere of the comet (composed of molecules M) is the production of ENAs following877

the typical sequence of electron capture reactions (double charge transfer, and stripping878

reactions are ignored here for simplicity):879

He2+ + M −→ He+ + M+ (51)

He+ + M −→ He + M+ (52)

This set of reactions is equivalent to coupled differential flux continuity equations which880

can be solved analytically for the simplified case or numerically (Simon Wedlund et al.,881

2016; Simon Wedlund, Bodewits, et al., 2019).882

Similar equations can also be derived for the coupled (H+,H) system. These pro-883

cesses lead to the almost total conversion of the solar wind into ENAs, potentially es-884

caping or sputtering the nucleus, by the time the solar wind impinges within a few tens885

of kilometres from the comet’s surface, in the case of a highly outgassing nucleus (per-886

ihelion conditions). This total conversion depends on many parameters: outgassing rate,887

heliocentric distance, solar wind density and speed (Simon Wedlund, Behar, Kallio, et888

al., 2019; Simon Wedlund, Bodewits, et al., 2019; Simon Wedlund, Behar, Nilsson, et al.,889

2019). The effect of minor solar wind species (multiply-charged heavy ions) can be seen890

in the production of X-rays through charge exchange emission with the cometary atmo-891

sphere (Cravens, 1997). The case of comets provides a unique opportunity to study charge-892

exchange processes within different and varying atmospheric environments.893

The observation of escape from HD 209458 has been interpreted as increased by894

charge exchange processes between the solar wind and the hydrogen from the upper at-895

mosphere of the planet (Holmström et al., 2008).896

2.3.4 Charge exchange with a precipitating particle897

Particles precipitating in the atmosphere of planets can give rise, through charge898

exchange with the ambient neutral atmosphere, to the local production of ENAs. This899

is particularly significant at Earth in the case of protons of solar wind origin, first ac-900

celerated in the magnetosphere and then precipitating down the magnetic field lines in901

the polar regions. When protons are neutralized in collisions with neutrals (mainly oxy-902

gen atoms above 200 km altitude, O2 and N2 below), a process referred to as electron903
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capture, the newly produced hydrogen ENAs, not being sensitive to the magnetic field,904

travel in straight trajectories, whose direction is related to the pitch angle distribution905

of the impinging protons, resulting in a horizontal spreading of the precipitating beam906

(see, for example, Rees (1989); Kozelov et al. (1994); Galand et al. (1997, 1998); Basu907

et al. (2001); Simon et al. (2007)). Hydrogen ENAs, keeping most of the kinetic energy908

of the incoming proton, can in turn be ionized (electron stripping). Due to magnetic mir-909

roring and angular re-distributions stemming from collisions between the energetic species910

and the atmosphere, downwelling (or precipitating) and upwelling (or backscattered) ions911

and ENAs will coexist at any given altitude above the E-region peak of the initial pro-912

ton energy deposition (for a 10 keV initial proton peak will occur at 120 km altitude at913

Earth). The energy and angular degradation of a (H+,H) beam in the atmosphere is usu-914

ally formalized as a coupled system of two non-linear Boltzmann transport equations (Galand915

et al., 1997, 1998), including angular re-distributions due to the non-uniformity of the916

magnetic field and to collisions, for an ENA, X, and its corresponding ion, X+. In the917

following, I, the intensity, P, the momentum transfer, RCX, the charge transfer, and,918

Q, the local production, depend upon (τ, E, µ). The transport of ENAs, denoted X, is919

as follows:920

µ
∂IX
∂τ

= −IX +
PX +QX +RCX

X+→X∑
k σk,elas(E)nk(z)

(53)

µ
∂IX+

∂τ
= −IX+ +

PX+ +QX+ +RCX
X→X+∑

k σk,elas(E)nk(z)
(54)

Numerical solutions of this system have historically made use of continuous slowing-921

down approximations (Decker et al., 1996), DSMC techniques (Basu et al., 2001; She-922

matovich et al., 2011), and a semi-analytical exponential matrix solution (both with dis-923

sipative forces and angular redistributions Galand et al. (1997); Simon et al. (2007)).924

Motivated by the Mars Express and MAVEN missions, there are an increasing num-925

ber of studies of proton precipitation at Mars. (Shematovich et al., 2011) have developed926

a DSMC model of the coupled (H+,H) system in a (CO2, N2, O) atmosphere and ap-927

plied it to Mars Express ASPERA data in solar minimum conditions. They concluded928

that about 20% (10%) of the incoming particle (energy) flux was backscattered by the929

atmosphere, and emphasized the role of the solar wind magnetic field pile-up region at930

altitudes above 100 km in increasing the backscattered flux by a factor up to 50%. (Shematovich,931

2017) recently studied the production of suprathermal O atoms in Mars’ thermosphere932

via this process and concluded that a hot oxygen corona may form, creating an additional933

non-thermal escape flux of O that may become prevalent when extreme solar transient934

events, such as flares and Coronal Mass Ejections (CMEs), take place. Finally, Halekas935

(2017) derived the ENA flux originating from the solar wind interaction with the Mar-936

tian atmosphere from the observation of protons by MAVEN/SWIA. From there, it was937

possible to retrieve the exospheric temperature of Mars (as well as the solar wind veloc-938

ity).939

At Jupiter, energetic precipitation involves protons (Bisikalo et al., 1996), but also940

singly or multiply-charged heavy ions such as Sn+ and On+ (with n the charge number)941

(Horanyi et al., 1988), colliding with H and H2 (J. Waite & Lummerzheim, 2002). The942

high charged states of O at very high energies (above 200 keV/amu) are responsible for943

auroral X-ray emissions, as modelled in (Cravens et al., 1995) and compared to X-ray944

observations of Jupiter. Such ion precipitation creating fast energetic atoms is also ex-945

pected to play a role for satellites of Jupiter, and at Saturn, and its satellites.946
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2.3.5 Charge exchange in the ionosphere947

This process is an hybrid between charge exchange and photochemical escape; it948

consists of having excess kinetic energy when a charge exchange is performed, such as949

He++N2 →He∗(+9eV)+N+
2 (Shizgal & Arkos, 1996). This process has been suggested950

to address the problem of the He budget in the Earth’s thermosphere (Shizgal & Arkos,951

1996; Lie-Svendsen et al., 1992).952

2.3.6 Key parameters953

The important parameters in the computation of the pick-up / sputtering are the954

solar wind parameters, that can usually be found thanks to models of the interaction of955

the solar wind with the planet (Curry et al., 2013; C. O. Lee et al., 2017), and the cross956

sections for ionization and stopping power/elastic scattering. In addition, it is necessary957

to have good inelastic/interaction potential (Johnson, 1994) cross sections to be able to958

compute the α, β and p parameters in Equation 43. Finally, a particular attention should959

be given towards the nature of the model with respect to modifying the inputs of ion pickup960

models: for example, it is usually assumed that an exosphere is present in a MHD model,961

and mass loading will reduce the accuracy of the model. Hybrid modeling will better im-962

prove such models, as is done in a cometary environment (Simon Wedlund et al., 2017).963

A review of the comparative advantages/inconvenients of each type of solar wind mod-964

els can be found in Ledvina et al. (2008).965

For the majority of the recent work in pick-up and sputtering, many cross sections966

are being used without being published, which is a major problem for the community.967

The state-of-the-art models for sputtering are now using a DSMC approach (Johnson968

et al., 2000).969

For charge-exchange processes, in addition to the particle precipitation models and970

the solar wind models, it is important to have a good knowledge of the atmosphere com-971

position and temperature, including the ion temperature.972

2.3.7 Questions973

How much do these processes scale up with the solar wind density, speed, and ori-974

entation? How does the creation of an induced magnetic field influence these charge ex-975

changes processes?976

2.3.8 Observables977

2.3.8.1 Composition change The observation of the change in solar wind com-978

position is a proof of charge exchange, for example at comets (Simon Wedlund, Behar,979

Kallio, et al., 2019; Simon Wedlund, Bodewits, et al., 2019; Simon Wedlund, Behar, Nils-980

son, et al., 2019). At Mars, the charge exchange of solar wind protons at the bow shock981

leads to precipitation of H that can be observed by the effects on the chemistry and by982

the backscatter (Halekas, 2017), even if the H chemistry at Mars is complex (M. Chaf-983

fin et al., 2017) One more striking example of charge-exchange processes at Mars is the984

observation of heavier ions, such as O+, that later lead to sputtering (Leblanc et al., 2015,985

2018).986

2.3.8.2 Fractionation due to pickup/sputtering The fractionation due to pickup987

and sputtering is efficient because of its tendency to make the species at the top of the988

thermosphere escape. Since isotopes have a gravitational fractionation at these altitudes,989

the overall effect is to increase the number of heavier species in the atmosphere. This990

is known as a Rayleigh distillation [see section 3.4.2.2].991
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2.4 Ionospheric outflow992

Heating and energization of electrons and ions at a magnetized planet results in993

escape of ionospheric plasma, either onto open field lines where it joins the solar wind994

flow and is lost to interplanetary space, or onto closed or reconnecting magnetic field lines995

where it becomes trapped in the magnetosphere and becomes subject to magnetospheric996

dynamics and loss processes. The escape of ionospheric plasma is often considered in the997

context of magnetospheric dynamics and as a competing source of magnetospheric plasma998

together with the solar wind. However, it also has a vital role in the context of atmo-999

spheric escape and evolution in that a charged particle has additional plasma physics pro-1000

cesses acting on it, as compared to a neutral particle which does not respond to the mag-1001

netic or electric field. These processes help reduce the gravitational potential barrier bind-1002

ing the charged particle to the planet.1003

The escape of ionized particles to space has several names in the literature, ion out-1004

flow, polar wind, bulk ion escape, polar outflow, etc. This leads to some confusion as some-1005

times authors are generically referring to escaping plasma, but other times they are talk-1006

ing about outflow energized by particular processes that vary in space and time, as shown1007

in Figure 4. For instance, the “polar wind” typically refers to the supersonic outflow of1008

ions from the polar ionosphere accelerated by ambipolar electric fields (Axford, 1968; Banks1009

& Holzer, 1968). As the name implies, this polar wind is similar in concept to the so-1010

lar wind, the supersonic expansion of the solar corona into space, proposed by Parker1011

(1958) nearly a decade before. While outflows of polar wind were initially thought to con-1012

tain only light species such as protons, the first quantitative observations of O+ in the1013

polar wind by the Retarding Ion Mass Spectrometer on-board the Dynamics Explorer1014

1 (DE-1) demonstrated that heavy ions can be present as well in quite significant num-1015

bers. O+ accelerated by wave-particle interactions in the cusp is sometimes referred to1016

as the “cleft ion fountain” while the same process above the auroral region is occasion-1017

ally referred to as an “auroral wind”. The variability in location, composition, and en-1018

ergy of outflowing ions at Earth has led to the variety of names that describe escape along1019

magnetic field lines. In this section, we eschew these more specific terms instead will use1020

the term ionospheric outflow or ion outflow with the more broad meaning of any pop-1021

ulation of plasma upflowing from the planet at high altitude.1022

When thinking about what drives ionospheric outflows, it is instructive to consider1023

the types of energy input. These break down into two broad categories as outlined in1024

(Strangeway et al., 2005) (see Figure 5): (1) particle and (2) electromagnetic energy in-1025

put from the magnetosphere. Both downward Poynting flux and soft electron precipi-1026

tation from the magnetosphere were shown to correlate very well with outflow of ions1027

observed by the Fast Auroral Snapshot (FAST) Explorer spacecraft. While correlation1028

is not the same as causation, it so happens that there are a number of causal mechanisms1029

associated with each type of energy input:1030

1. Particle: Suprathermal electrons (Photoelectrons, auroral electrons, secondary elec-1031

trons,...) enhancing the ambipolar electric field and depositing energy to the ther-1032

mal electron population.1033

2. Electrodynamic: Transverse heating of ions as a result of wave-particle interac-1034

tions, ponderomotive forcing from Alfvén waves, field-aligned currents driving E‖,1035

low altitude frictional heating driving upwelling, centrifugal force due to field line1036

convection and curvature change and/or magnetic field co-rotation with the planet.1037

The varied timescales and spatial regions over which these processes act result in dynamic1038

outflow that varies spatially. At lower altitudes, the influence of different drivers sepa-1039

rates the upflowing plasma into what has been called Type 1 and Type 2 outflow (Wahlund1040

et al., 1992), where Type 1 involves strong electric fields and Joule heating, and1041

Type 2 involves particle precipitation and enhanced electron temperatures.1042
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Figure 4. Processes leading to the creation of ion outflow/polar escape

At high altitudes, the escaping plasma also exhibits temporal and spatial variability. The1043

polar region at Earth typically contains lower energy polar wind outflow, whereas ad-1044

ditional energization, particularly from wave particle interactions, results in an energetic1045

ion outflow and preferential acceleration of heavy ions in the auroral and cusp regions.1046

Figure 5 shows the different pathways to ion outflow and some of the unknown.1047

2.4.1 Suprathermal electron effect1048

Suprathermal electrons refer to electrons whose mean energy is much greater than1049

the thermal energy. The source of these electrons are either from XUV light shining on1050

the atmosphere creating photoelectrons, precipitating electrons of magnetospheric ori-1051

gin (auroral electrons), or secondary electrons formed by impact ionization of the neu-1052

tral atmosphere. This population is known to alter the ion outflow solution though two1053

main processes:1054

1. Formation of the self-consistent ambipolar electric field.1055

2. Coulomb collisions between the superthermal and thermal electrons raising Te.1056

Relative to ions, suprathermal electrons are unbound by gravity and in absence of any1057

other process would escape. However, this would lead to a net charge in the plasma vi-1058

olating the quasi-neutrality condition. Therefore, an electric field forms that retards the1059

electrons and accelerates the ions, reducing the gravitational potential barrier. Another1060

pathway through which these electrons influence the outflow is through the deposition1061

of energy to the thermal electrons raising the electron temperature and eventually the1062

ion temperature.1063

Photoelectrons, formed from ionization of the atmosphere by solar/stellar radia-1064

tion, have been particularly well studied in the context of ionospheric outflows. There1065
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Figure 5. Correlation and causation in the ion outflow. The correlations are under current

and proposed investigation to prove if they are actual causes or just coincidences/effect of similar

causes. From Strangeway et al. (2005).
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have a large number of theoretical studies (Lemaire, 1972; Tam et al., 1995, 1998; Khaz-1066

anov et al., 1997; Wilson et al., 1997; Su et al., 1998) and observational studies (Lee et1067

al., 1980; Peterson et al., 2008; Kitamura et al., 2011) showing that this population is1068

critical to setting up the quiet time outflow solution.1069

2.4.2 Electrodynamic Energy Input1070

Waves also play an important role in the acceleration of plasma in the high-latitude,1071

high-altitude polar region. They do this primarily through two mechanisms: the pon-1072

deromotive forces of Alfvén waves (Li & Temerin, 1993; Guglielmi et al., 1996; Khazanov1073

et al., 1998; Khazanov et al., 2000, 2004) and wave heating (Retterer et al., 1987; Crew1074

et al., 1990; Barghouthi, 1997; Bouhram et al., 2003; Waara et al., 2011).1075

Ponderomotive forcing due to low frequency electromagnetic waves allows electro-1076

magnetic energy from the magnetosphere to transfer energy to the ionospheric plasma.1077

It arises from a non-resonant interaction between the particle encountering different por-1078

tions of the wave during different parts of the particle gyration. The ponderomotive forc-1079

ing depends on the wave mode, propagation direction, frequency, and background fields.1080

While there are several types of pondermotive force derived in the literature, a useful1081

description of the total field-aligned force F ‖ from Alfvén waves as given by Lundin1082

and Guglielmi (2006) is:1083

F‖ = −mc
2

2B2

[
E2

B

∂B

∂z
− 1

2

∂E2

∂z
± 1

cA

(
∂

∂t
+ ν

)
E2

]
(55)

Where m is the mass, cA the Alfvén speed, and ν the collision frequency. E the electric1084

field and B the magnetic field.1085

Although the upward ponderomotive acceleration of ions is not species-dependent,1086

it is countered by a downward force on electrons, resulting in a downward ambipolar field1087

and a resulting species-dependent reduction to the acceleration (Miller et al., 1995).1088

In contrast, wave-heating arises from the resonant interaction of particles with the1089

portion of the turbulent wave spectrum that corresponds to the cyclotron motion of the1090

particle. This preferentially heats the ions perpendicularly to the magnetic field. The1091

mirror force converts this excess perpendicular energy into organized parallel motion.1092

When modeling this interaction, the wave-heating is often represented as a diffusion term1093

on the right hand side of the Boltzmann equation having a form like (Crew & Chang,1094

1985):1095

1

v⊥

∂

∂v⊥

(
v⊥D⊥

∂f

∂v⊥

)
(56)

where f is the velocity space distribution function, v⊥ is the perpendicular velocity, and1096

D⊥ is a diffusion coefficient. The diffusion coefficient can be written approximately as1097

(Crew et al., 1990):1098

D⊥ = (πq2/2m2)|EL|2(Ω(l)) (57)

Where |EL|2 is the electric field spectral density of left hand polarized waves, and Ω(l)1099

is the gyrofrequency of an ion of mass m and charge q at position ‘l’ along a field line.1100

Clearly this term acts to add energy to the ions transverse motion around the field in-1101

creasing the first adiabatic invariant and enhancing the mirror force which accelerates1102

the ion.1103

Resonant wave-heating has a clear signature in the shape of the ion distribution1104

function. When the wave heating is active, the distribution function becomes increas-1105

ingly perpendicular and pancake shaped. The mirror force, which acts more strongly on1106

particles with higher perpendicular velocity, causes the distribution to “fold” upward into1107
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Figure 6. The conic distribution function of ions as observed by different satellites. These

observations are a signature of wave excitation typical of polar outflow. From Bouhram et al.

(2004), Creative Commons.

a characteristic “V” shape. In three-dimensional velocity space this looks like a cone, and1108

hence the name “conic” distribution. The observation of a conic distribution is a clear1109

signature of the presence of resonant wave-particle interactions. Figure 6, from Bouhram1110

et al. (2004), shows three examples of this feature observed by different satellites.1111

2.4.3 Field-Aligned Currents1112

Field-aligned currents (FAC, also known as “Birkeland currents”), driven by a planet’s1113

magnetic interaction with the stellar wind, are another form of electromagnetic energy1114

input that contributes to ionospheric escape. This process was looked at by Gombosi and1115

Nagy (1989), who found that including a field aligned current causes the thermal elec-1116

trons to respond by possibly enhancing the ambipolar electric field. More generally, a1117

current conservation equation can be defined as follows (Glocer, 2016):1118

neue + nseuse −
∑
i

niui = − j

en
(58)

which states that the current density, j, must be equal to the difference between the flux1119

of electrons (thermal and suprathermal) and the flux of ions. If a large current is driven1120

into the ionosphere, then this condition requires other populations to react.1121

2.4.4 Joule Heating1122

Joule heating (see also Section 3.2.3) refers to the frictional heating caused by the1123

differential motion of ions being dragged through the neutral atmosphere. In this pro-1124

cess, the planet’s magnetic field interaction with the stellar wind generates a cross po-1125

lar cap potential which sets up magnetospheric convection as well as strong convective1126

flows in the E and F regions of the polar ionosphere. This convective flow is generated1127

by the ExB drift and is not felt directly by the neutral population. As a result there is1128

a differential motion between the ions and the electrons. There are several presentations1129

of Joule heating as described by R. J. Strangeway (2012), but fundamentally the most1130

direct way to model this process is as a frictional heating term. This term can be pre-1131
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sented based on Burger’s fully linear approximation (Burgers, 1969) as:1132 ∑
j

ρiνij
mi +mj

[
mj (ui − uj)2

]
(59)

(Gombosi & Killeen, 1987) and (Cannata et al., 1988) examined the role of Joule heat-1133

ing and found that transient upflows can result from this process.1134

Centrifugal forces play a role both at Earth (Horwitz et al., 1994) and at Jupiter1135

(Nagy et al., 1986), but the origin of the centrifugal forcing is different for the two plan-1136

ets. At Earth, the solar-wind connected field lines convect across the high altitude po-1137

lar cap region, resulting in changes to the field line curvature that centrifugally accel-1138

erate the particles outward along the magnetic field. At Jupiter, solar wind-driven con-1139

vection plays a less important role, but the rapid rotation of the planet results in out-1140

ward acceleration at lower latitudes.1141

2.4.5 Escape equations1142

There are several types of methods for modeling ionospheric outflows, but they can1143

generally be divided into two categories: hydrodynamic models and kinetic models. In1144

the case of hydrodynamic models usually a multimoment expansion of the Boltzmann1145

equation for each ion species is undertaken. For magnetized planets, this is taken in the1146

low β limit where the magnetic field is strong. In this case the gyrotropic 5 moment equa-1147

tions with heat flux along an expanding magnetic field are given by (Gombosi & Nagy,1148

1989):1149
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In this case m refers to mass, ρ is the mass density, u refers to the velocity, T to the tem-1152

perature, p to the pressure, r to the distance along the field line, and e is the charge of1153

an electron. The subscriptions denote ion species or electron. Other terms include the1154

expanding cross-sectional area of the flux tube (A), the heat conductivity (κ), the spe-1155

cific heat ratio γ, and Boltzmann’s constant (k). The electric field (E‖) is derived as an1156

Ohm’s law from a the steady state electron momentum equation as:1157

E‖ = − 1

ene

[
∂
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(
pe + ρeu

2
e
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+
A′

A
ρeu

2
e

]
+

1

ene

∂
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+
δMe

∂t
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(63)

The source on the right hand side of equations 60-62 represent the source due to ion pro-1158

duction and loss (Si), the source due to momentum transfer ( δMi

δt ), and the source due1159
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to energy transfer ( δEiδt ), which includes Joule heating effects. There are several deriva-1160

tions of the collision based source terms for momentum and energy transfer, but a com-1161

mon choice are determined by using Burgers’ fully linear approximation (Burgers, 1969).1162

Specific expressions for these terms can be found in the textbook by (Schunk & Nagy,1163

2004). The equations outlined above are used in the Polar Wind Outflow Model (Glocer1164

et al., 2013, 2009). However, other codes use different hydrodynamics expansions includ-1165

ing higher moment approximations. For example, the model presented by Varney et al.1166

(2014) uses the 8 moment approximation, while Barakat and Schunk (1982) uses the 161167

moment approximation. We do not elaborate further on these approach here but refer1168

the interested reader to those papers.1169

Kinetic solutions to ionospheric outflow typically solve the Boltzmann equation in1170

some approximation. In the steady state this equation is given by Khazanov et al. (1997);1171

Khazanov (2010):1172

µ
∂fα
∂t

+ µv
∂fα
∂r
− 1− µ2

2B

∂B

∂r
v
∂fα
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1173

−
(
e

me
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)(
µ
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+
1− µ2

v

∂fα
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(64)

Solving this equation usually takes one of two forms. Khazanov et al. (1997) use1174

a direct solution of the Vlasov equation along a field line, whereas Barakat and Schunk1175

(2006) use a 3D macroscopic particle-in-cell Monte Carlo technique. (Depending on the1176

study, the time dependent or the static case are solved).1177

2.4.6 Questions1178

The PWOM model (Glocer et al., 2009) was applied to exoplanets (Airapetian et1179

al., 2017) with the study of the atmospheric escape of a Earth-like planet at Proxima-1180

b (Garcia-Sage et al., 2017). These studies were able to show that large escape rates hap-1181

pen even in the presence of magnetic fields. This model has the advantage of taking into1182

account the diffusion of ions, assuring that this escape is not limited by ionospheric mod-1183

eling. The questions remaining for this process is how it evolves in the absence of a per-1184

manent magnetic field, i.e. when there is only an induced magnetic field. Studies by Collinson1185

et al. (2019) tends to indicate that ambipolar diffusion helps the ion escape at Venus,1186

but it remains to be modeled exhaustively. The long-lived doubly charged ions, observed/predicted1187

in several ionospheres (Simon et al., 2005; Lilensten et al., 2005; Gronoff et al., 2007; Thissen1188

et al., 2011), are easier to lift and therefore to escape through these processes. Are the1189

O2+ observed by ISEE (Horwitz, 1981) due to these processes, and are they a signifi-1190

cant source of escape? The dependence upon the EUV flux in certain situations (D. T. Young1191

et al., 1982) is consistent with such an hypothesis.1192

2.4.7 Observables1193

As explained, the polar wind is directly observed by plasma instruments. The de-1194

pendence of the escape efficiency upon the q/m ratio means that lighter isotopes are eas-1195

ier to lift, therefore enhancing the gravitational distillation of the ions (which can be af-1196

fected by the self-shielding effect Section 2.2.6).1197

2.5 Other ion escape1198

While the main sources of losses could be linked to the previously cited ones, other1199

ion escape mechanisms, have been reported in the literature. They mainly come from1200

the observation of “bulk” ion escape at Mars or Venus, during specific solar conditions1201

(Halekas et al., 2016). This general denomination groups together escape that could come1202
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from very different processes while leading to loss of ions in an organized way. Overall,1203

it is transfer of momentum from the solar wind to the ionosphere that makes these plasma1204

escape, and it could be considered as ion pickup in a first approximation, but with more1205

complex MHD effects. As explained in Terada et al. (2002), the main problem is that1206

the production of ions above the ionopause is less than the escaping flux, which means1207

that different processes have to diffuse these ions from the ionosphere to above the ionopause1208

where they would be picked up.1209

This is this second class of processes, that comes from complex interactions between1210

the ionosphere and the interplanetary magnetic field to help transfer ions to the top of1211

the thermosphere, that are studied here. These ions are usually not energetic enough to1212

escape, but their presence makes it easier for pickup and “bulk” escape. It is to be noted1213

that, when conditions are extreme, it is possible to reach levels where the production/diffusion1214

of ions is limiting the escape. Numerous models of ion pickup do not take that situation1215

into account, leading up to unrealistic ion escape fluxes (Egan et al., 2019).1216

In magnetospheres, similar problems arise: the different ion energizing processes1217

lead to the creation of a plasmasphere, i.e. ions trapped inside the magnetosphere, and1218

these ions are removed either by falling back to the planet or leaving through different1219

processes (Seki et al., 2015; Jackman et al., 2014).1220

2.5.1 Fluid processes: Kelvin-Helmholtz and other instabilities1221

Kelvin-Helmholtz instabilities (KHI) (J. R. Johnson et al., 2014) have been observed1222

at Mercury (Sundberg et al., 2010), Venus (S. A. Pope et al. (2009); Lammer et al. (2006);1223

Terada et al. (2002) and references therein: the observations of flux rope and detached1224

plasma clouds are linked to KHI through modeling), Earth (J. R. Johnson et al., 2014)1225

and Mars (Ruhunusiri et al., 2016). They occur at the interface between two fluids or1226

plasmas having a velocity shear and lead to upward pressure gradients and the forma-1227

tion of a vortex. KHI have effects in a variety of planetary processes. In the case that1228

interest us, i.e. the development of KHI at the interface between an ionosphere and the1229

solar wind, it leads to the transfer of solar wind momentum to the ion and, ultimately,1230

to their acceleration into space. Penz et al. (2004) computed, for Mars, O+ escape val-1231

ues of the order of 2 1023 – 3 1024 ions/s. Rayleigh-Taylor instabilities, ion-ion instabil-1232

ities, electron-ion instabilities, have also been proposed as mean of momentum exchange1233

leading to escape (Dubinin et al., 2011).1234

2.5.2 Pick-up processes: the ion plume1235

The ion plume of Mars was inferred from Mars Express observations, and fully char-1236

acterized by MAVEN (Liemohn et al., 2014; Dong et al., 2015). It originates from the1237

interaction between the solar wind and the ionophere of Mars, which creates an upward1238

electric fields through ~E = −~USW × ~B. This process can be looked as a special case1239

of ion-pickup since it is observed in such-models. At Mars, this plume escape for O+ is1240

estimated to be 30% of the tailward escape, equivalent to 23% of the total ion escape1241

(Dong et al., 2015).1242

2.5.3 Ambipolar fluxes / outflow anomalies / snowplow1243

The “cold” ions, i.e. ions not energized at suprathermal temperature and coming1244

from the ionosphere, are prominent in the plasmasphere (Kun et al., 2017). Several pro-1245

cesses leads to the filling of that plasmasphere. Ion upwelling (Strangeway et al., 2005),1246

which can be linked to the ambipolar electric field, but at levels that do not lead to es-1247

cape, is one of these processes at Earth. For unmagnetized planets, ions are transported1248

in the upper layers of the ionosphere by ambipolar electric field (Collinson et al., 2019;1249

Akbari et al., 2019). The draping of the interplanetary magnetic field (IMF) could lead1250
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to additional induced field with respect to the processes described in Section 2.4, this1251

process is called the “snowplow” (Halekas et al., 2016). From there, the transfer of mo-1252

mentum from the solar wind to the ionosphere creates detached plasma clouds that are1253

escaping. It is important to note that the ~E× ~B drift can help these ions escape as ob-1254

served at Mars, where different escape rates are observed in the +E and -E hemispheres1255

(Inui et al., 2019).1256

2.5.4 Plasmaspheric ion losses / substorm losses / plasmoids / flux ropes1257

As previously shown, the charge exchange is a major ion loss process in magneto-1258

spheres. A fraction of ions can be lost from escape from the tail, but, as shown from the1259

observations at Jupiter, this is a low percentage of the escape (Jackman et al., 2014) (At1260

Jupiter, other processes have to be taken into account to balance the input of plasma1261

from Io.). This escape from the tail works through the creation of a plasmoid: the pres-1262

sure of the IMF elongates the planetary magnetic field, leading to the reconnection of1263

that magnetic field. This reconnection means that a part of the inital magnetosphere is1264

no more linked to the magnetic field of the planet and is ejected into space, along with1265

the plasma it contains. Ejection of plasmoids is also associated to a return of plasma to-1266

wards the planet. (This is different for situations when magnetic fields are weaker, such1267

as Mars). The equivalent of these plasmoids have been observed at Mars near the mag-1268

netospheres created by the crustal magnetic field, they are usually named “flux ropes”1269

(Hara, Brain, et al., 2017), are linked with coronal mass ejection disturbances and other1270

processes (Hara, Harada, et al., 2017). They could be responsible for up to 10% of the1271

present day ion escape at Mars (D. A. Brain et al., 2010). Finally, plasmoid escape has1272

also been observed at Venus, in the induced magnetic field, and looks like the Earth’s1273

or Jupiter’s plasmoids (Zhang et al., 2012).1274

2.5.5 Questions1275

These ion escape processes are actively studied with missions such as MEX, VEX,1276

MAVEN, etc., as well as numerical models. Most of the questions are linked to the ac-1277

tual amount of ions escaping due to these processes and how these evolve with the so-1278

lar/stellar activity. From an observation point of view, it may be difficult to distinguish1279

between processes from the a single point observation of the amount and location of plasma1280

escaping (Inui et al., 2019). In addition, some processes can be seen as generalization1281

of other processes (e.g. the “snowplowing” is a generalization of the ion outflow observed1282

in magnetospheres). These points led to the above definitions and organization of these1283

ion escape processes.1284

2.6 Ion Return and Net Escape Rates1285

While the ionospheric outflow processes detailed above determine the escape of plasma1286

from the ionosphere, a significant fraction of this plasma becomes trapped in Earth’s mag-1287

netosphere. Magnetospheric ions mostly consist in a mixture of H+ and O+ ions. Con-1288

trary to H+ ions, which can either originate from the solar wind or the ionosphere, O+
1289

ions almost exclusively originate from the ionosphere and are used as tracers of ionospheric1290

material in the magnetosphere. They have been observed by several spacecraft, includ-1291

ing GOES 1 and 2 (D. T. Young et al., 1982), ISEE (Lennartsson & Shelley, 1986; Lennarts-1292

son, 1989), Van Allen Probes(Fernandes et al., 2017), GEOTAIL (Nosé et al., 2009; Ohtani1293

et al., 2011), and Cluster (Maggiolo & Kistler, 2014; Kistler & Mouikis, 2016). All these1294

observations show an increase the amount of O+ ions in the magnetosphere, and thus1295

of ionospheric material, with increasing solar EUV/UV flux and geomagnetic activity,1296

i.e. with the amount of energy deposited din the ionosphere. Once in the magnetosphere,1297

ionospheric material enters magnetospheric circulation patterns, which may ultimately1298

result in loss to interplanetary space or return to the ionosphere. Seki et al. (2001) es-1299
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timate the fraction of Earth’s oxygen lost to interplanetary space at about 1/10 of the1300

ionospheric oxygen outflow during periods of low solar activity, based on the estimate1301

of the O+ loss due to the main four escape routes for terrestrial ions: the escape of cold1302

detached plasmaspheric particles through the magnetopause, of high-energy ring current/dayside1303

plasma sheet particles through the magnetopause, of plasmasheet ions through antisun-1304

ward flow in the nightside plasma sheet, and of terrestrial ion beams through the lobe/mantle.1305

Note that the charge exchange loss of ring current ions was not considered by Seki et al.1306

(2001). The outflow and loss rates are enhanced during high solar and geomagnetic ac-1307

tivity but may not account for all magnetospheric loss mechanisms, particularly for low1308

energy ions that are difficult to observe. This estimate, then, should be considered a lower1309

bound on escape, but the important point here is that not all outflowing ions escape from1310

the magnetosphere-ionosphere system.1311

However, recent observations above the polar ionosphere in the magnetospheric lobes1312

by the Cluster spacecraft, provide evidence for a higher loss rate for ionospheric ions flow-1313

ing through the lobe and mantle region. Slapak et al. (2017) showed that energetic ions1314

(in the range of a few hundred to several thousand of eV) escaping from the cusp region1315

through the magnetospheric lobes/mantle have a high probability of being loss to inter-1316

planetary space rather than being returned to the ionosphere. They even claim that over1317

geological times a quantity of oxygen lost by the Earth’s atmosphere could be roughly1318

equal to the amount of the present atmospheric oxygen content if the young Sun was ac-1319

tually more active than nowadays. Furthermore, the flux of precipitating ions as esti-1320

mated by the the DMSP satellites is only of the order of 1024 (Newell et al., 2010): 1 to1321

2 orders of magnitude lower than the estimated flux of outflowing ionospheric ions. These1322

new observations provide strong evidence against a high return rate of ionospheric ions1323

and rather suggest that a significant fraction of ionospheric ions escaping from the iono-1324

sphere may actually be definitively lost into the interplanetary space.1325

3 Major Parameters and Concepts1326

In order to address the escape rate of an atmosphere and to retrieve its evolution1327

with time, it has been demonstrated that several processes are in action. To evaluate whether1328

or not they are negligible at a certain period in time, or to approximate the calculations,1329

several concepts have been proposed, such as the energy limited escape or the critical1330

heating rate for hydrodynamic escape. The two major parameters in the different mod-1331

els are the energetic inputs, from the EUV-XUV fluxes to the electron precipitations,1332

and the atmospheric structure and composition. Finally, it is very important to take into1333

account the evolution with time, from the time dependence on small scales (typically sen-1334

sitive to the solar/stellar activity) to the evolution of the atmospheric escape through1335

eons, leading to isotopic fractionation, which is the main probe for the history of our So-1336

lar system’s atmospheres (in the absence of better in-situ measurements, e.g. trapped1337

gases in rocks (Jakosky, 1991)).1338

3.1 Limiting parameters1339

3.1.1 Critical Heating Rate1340

Present theory (Section 2.1.1.2) incompletely describes transition from Jeans es-1341

cape to hydrodynamic escape. Transonic models (Murray-Clay et al., 2009) have been1342

used to describe rapid escape from exoplanets and from Pluto (D. F. Strobel, 2008a).1343

However, Johnson et al. (2013b, 2013a) have recently discovered that this model for Pluto1344

gave an incorrect upper atmospheric structure (Tucker et al., 2012). This erroneous pre-1345

diction of the upper atmospheric structure results from applying the Jeans expressions1346

at the exobase (Chamberlain & Hunten, 1987) for uncertain boundary conditions at in-1347

finity (Tian et al., 2008) when simulating rapid escape using continuum gas dynamics.1348

In this context, a sonic point is assumed to occur at an altitude r∗, above which the den-1349
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sity and temperature dependence can be simply characterized (Parker, 1964b, 1964a).1350

The hydrodynamic, energy-limited (see Section 3.1.2) escape rate, applied to exoplanet1351

atmospheres (Lammer et al., 2009), is often assumed to imply that sonic boundary con-1352

ditions are applicable (Erkaev et al., 2013). Johnson et al. (2013b, 2013a) used molec-1353

ular kinetic simulations to show that this is not the case. Ignoring viscosity, (Parker, 1964b,1354

1964a) used the momentum and energy equations to describe escape when the dominant1355

heat source is internal. This same model was applied to planetary atmospheres primar-1356

ily heated at an altitude ra. For a Jeans parameters at r0 (the lower altitude considered)1357

as large as λ0 ∼ 40, such models were assumed to produce a transonic expansion, which1358

is often referred to as a slow hydrodynamic escape (D. F. Strobel, 2008a). However, rapid1359

escape can occur for large Jeans parameters only when the Knudsen number is low, i.e.1360

when the collisional approximation cannot be assumed. Therefore, the gas does not go1361

sonic in the collision-dominated region and the escape rate computed in the “slow hy-1362

drodynamic escape” paradigm is a few times larger than the Jeans rate (Volkov, Tucker,1363

et al., 2011; Volkov, Johnson, et al., 2011). As we explained in Section 2.1.3.1, the ob-1364

servations that led to the “slow hydrodynamic escape” hypothesis could be explained1365

by alternative processes based on chemistry.1366

From there Johnson et al. (2013b, 2013a) have developed a criterion to check if a1367

transonic solution will exists, i.e. if we can approximate the escape by a hydrodynamic1368

model. Assuming that r0 < r∗ < rx, which should be the case in hydrodynamic es-1369

cape, it was found that the net heating rate Qnet should follow equation 65:1370

Qnet > Qc ≈ 4πr∗
γ

ccσcKnm

√
2U(r∗)

m
U(r0) (65)

U(r) =
GmM

r
(66)

K is the Knudsen number and cc is determined by the energy dependence of the1371

total collision cross section, σc.1372

If heat is primarily absorbed over a broad range of r below rx, we can use Knm ∼11373

as an approximation. Here, it can be seen that Qc does not explicitly depend on T0, but1374

on the sonic point only where a lower bound can be obtained by replacing r∗ with ra,1375

the mean absorption depth. This mean absorption depth is estimated from σa , the ab-1376

sorption cross section. At threshold, the sonic point will approach rx, such that r∗ ∼1377

ra[1 + ( σa
ccσc

)λave] where λave ∼ (λa + 2γ)/2 which slightly increases Qc. Using Pluto1378

as an example, UV/EUV absorption at ra ∼ 1.5 times Pluto’s radius, Knm ∼ 10−3, and1379

r∗ ∼ ra ∼ r0, Equation (65) gives Qc ∼ 4.5 x 1010 W for Pluto, which is well above the1380

largest heating rate, and shows that hydrodynamic escape should not be applied for the1381

dwarf planet. We compiled the values of Qc in Table 2.1382

3.1.2 Energy limited escape – Radiation / Recombination - limited es-1383

cape1384

The estimation of mass loss rate of exoplanets often assume an energy-limited es-1385

cape (Section 2.1.1.4). The basis of that assumption is that an exoplanet thermosphere1386

is mainly composed of H, heated by ionization of H. From there, it is supposed that a1387

large quantity of that heat is transformed into hydrodynamic escape. Therefore, one uses1388

an efficiency coefficient ε (sometimes η) for transforming EUV-XUV energy into escape.1389

This led to equation 14, with the standard efficiency coefficients found in the literature.1390

Erkaev et al. (2007) shows that this equation can be slightly modified to account for stel-1391

lar gravity effects that affect close-in planets.1392

For giant planets close to very active stars, the radiation-recombination limited es-1393

cape is often used as a harsher limit to the energy limited escape, because the H+ can1394

recombine, reducing some of the energy in the system (Luger, 2017; Linsky, 2019), this1395
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leads to an escape proportional to
√
FXUV instead of FXUV . In the case of H atmospheres1396

where the heating is only supposed to come from ionization, there is also a case where1397

the escape is limited by the number of ionizing photons.1398

This approach has been developed to study close-in giant planets (Salz et al., 2016),1399

and led to energy diagrams (Ehrenreich & Désert, 2011) to evaluate the mass loss from1400

giant exoplanets. Unfortunately, it notably neglects the radiative cooling processes in1401

the upper atmosphere of the planet, i.e. it neglects the problem of the upper atmosphere1402

temperature (Note: Lopez (2017) includes radiative cooling in an energy-limited diffu-1403

sion approach). The main problem of the energy limited escape approximation is that1404

it is too often applied for rocky exoplanets while concealing these major limitations:1405

1. The escape regime is not evaluated: if the exoplanet is not in hydrodynamic1406

escape, the energy-limited escape equation will give an overestimate of the escape.1407

2. The atmospheric profile is not evaluated: what is exactly the profile of the1408

atmosphere, and therefore the efficiency of the escape if it is truly in hydrodynamic1409

regime?1410

3. The atmospheric composition is not taken into account, H is assumed1411

to be the only species: this is related to the other problems; the presence of1412

cooling species such as CO2 may totally change the escape regime; diffusion-limited1413

processes may prevent H to be present in large quantities in the thermosphere, etc.1414

4. Only photo-ionization heating is taken into account: Joule heating or par-1415

ticle precipitations can be large sources of heating for close-in exoplanets.1416

5. Non-thermal processes are not addressed: those can dramatically change1417

the profile of the escaping species.1418

Energy-limited escape models can be interesting for studying H-rich rocky planets early1419

in their histories, for which the escape of H may not have been diffusion-limited but energy-1420

limited (Tian et al., 2005), however energy-limited escape is less relevant to more com-1421

prehensive habitability studies.1422

3.1.3 The diffusion-limited escape1423

Some escape processes can be very efficient, and limited by the amount of parti-1424

cle available for the escape, the bottleneck for the escape of these particles will then be1425

the diffusion from the lower layers of the atmosphere to the upper atmosphere. Typi-1426

cally, the escape of H at Earth is diffusion limited. It follows the Equation 15. At Ti-1427

tan, like Earth, H2 escape is determined by the limiting flux through the homopause deep1428

in the lower thermosphere (Cui et al., 2008; D. F. Strobel, 2012; J. M. Bell et al., 2014).1429

However, there is currently a discrepancy between the densities of H2 measured in-situ1430

by INMS and those produced by modeling studies (Magee et al., 2009; Cui et al., 2008;1431

D. Strobel, 2002; J. M. Bell et al., 2014). Despite this discrepancy, all modeling stud-1432

ies to date have indicated that the H2 upwelling into the lower thermosphere, combined1433

with additional H2 produced in the thermosphere, sets the eventual planetary escape flux1434

of H2. A more complete theory of diffusion-limited escape, including the cases where the1435

diffusing species has a non-negligible mass with respect to the main species can be found1436

in Hunten (1973).1437

3.2 Energetic inputs1438

3.2.1 The EUV/XUV flux1439

The EUV-XUV flux modifies the temperature of the exosphere and the exobase1440

altitude. It therefore changes the concentration of particles above the exobase. It is also1441

responsible for the creation of hot atoms through photochemical processes. At the Earth,1442

the EUV-XUV flux varies substantially as a function of solar activity. When the vari-1443
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ability of the solar irradiance is rather low for the visible and the IR, with less than 0.1%1444

and 1% from minimum to maximum respectively, the solar irradiance variability in the1445

XUV /EUV can be more than doubled with a direct impact on the upper atmosphere1446

(Haigh, 2007). This variability is of two different origins: one depends on sporadic ex-1447

plosive events such as flares with time scales from minutes to hours, while the second one1448

is linked to the full Sun disk activity with longer cycles, from days to years. The latter1449

one is then related to the appearance and disappearance of active regions on the solar1450

disk, which causes then the variability on a 27-day solar rotation scale, associated with1451

a 13.5-day modulation from the center-to-limb variation. The long-term monitoring of1452

the solar EUV flux, however, is a difficult task, mainly because of the heavy degrada-1453

tion experienced by the solar instruments that are in orbit (BenMoussa et al., 2013). Be-1454

fore 2002 with the launch of the TIMED satellite (Woods et al., 2005), measurements1455

of the solar EUV flux variability were rather scarce. This has led to the development of1456

several empirical approaches for reconstructing the solar XUV/EUV part of the spec-1457

trum.1458

A common approach lies with using solar proxies such as the radio measurements1459

at 10.7 cm (F10.7) (Tapping & Detracey, 1990) and the MgII core-to-wing index (Heath1460

& Schlesinger, 1986). Many models are then using a linear combinations involving these1461

proxies and their 81-days running means, or even non linear combinations (Hinteregger,1462

1981; Lean et al., 2003; Richards et al., 2006). However, no single index can properly re-1463

construct the solar XUV/EUV irradiance at all time scales (Dudok de Wit et al., 2009).1464

Moreover, some widely used proxies, such as F10.7, are not really suited for the XUV/EUV1465

lines reconstruction, whose originated from the solar corona. The F10.7 index is, how-1466

ever, used as the solely index to estimate the solar variability within thermospheric and1467

ionospheric models. For the solar minimum in 2008, when the thermospheric density dropped1468

by 28%, the F10.7 only decreased by 4% (Emmert et al., 2010), outlying then the lim-1469

itations of the F10.7 index for ionospheric studies (Solomon et al., 2010). More appro-1470

priate solar proxies has been recently suggested such as the radio measurements at 3 cm1471

and 30 cm which are directly linked to chromospheric and corona emissions (Dudok de1472

Wit & Bruinsma, 2017).1473

A different approach considers that the solar spectrum is a linear combination of1474

reference spectra that coming from different regions of the solar disk. Those regions are1475

attributed to the quiet Sun, coronal holes and active regions and can be disentangled us-1476

ing solar images or solar magnetograms. Their respective contrast can be obtained by1477

an empirical approach (Worden et al., 1998) or using the differential emission measure1478

(Kretzschmar et al., 2004). A few terms is normally needed to reconstruct the solar ir-1479

radiance in the XUV/EUV spectral range (Amblard et al., 2008). This strongly outlines1480

that the spectral variability is highly coherent through the spectrum, but this only for1481

time scales that exceed the dynamic time of solar flares, since the solar atmosphere is1482

strongly structured by the magnetic field. The solar spectrum in the XUV/EUV can then1483

be reconstructed from measurements of a few correctly chosen passbands (Cessateur et1484

al., 2011, 2012). For the short term spectral variability, a specific model has been devel-1485

oped, the Flare Irradiance Spectrum Model (FISM) (Chamberlin et al., 2008), based on1486

TIMED/SEE and SDO data.1487

The effects of the solar XUV/EUV variability on Earth’s upper atmosphere have1488

been quantified with empirical models (Bowman et al., 2008), that specify the exospheric1489

temperatures as a function of indices of EUV radiation at different wavelengths (Tobiska1490

et al., 2008). At Mars, J. G. Luhmann et al. (1992) computed the influence of the EUV1491

flux on the escape processes. It is complicated by the fact that the solar wind pressure1492

is also included in the calculations: the EUV flux increases, therefore the density of hot1493

oxygen above the exobase increases (and the altitude of the exobase increases). There-1494

fore the escape of hot oxygen increases, the density of pickup ions increases as well, and1495

so the sputtering and the sputtered atoms. These non-linear effects lead to the large vari-1496
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ations in the escape rates as computed in Figure 3. More recent modeling and data shows1497

that the actual increase is less important than that previous simulations (Lillis et al., 2015).1498

The correlation of Mars Express’ observations of ion escape at Mars with the EUV flux1499

show that it is difficult to draw a direct relation between the two (Ramstad et al., 2015)1500

in the 7 year span these observations took place. However, the non-linearity of the de-1501

pendence, and the fact that negligible escape processes can become very important for1502

extreme EUV-XUV flux, such as in the conditions in the beginning of the solar system,1503

is still valid.1504

3.2.2 The electron flux1505

3.2.2.1 The auroral-like electron flux The energetic electron flux at high latitudes1506

is produced as a result of the interaction of the solar wind and interplanetary magnetic1507

field with the magnetic field and magnetosphere of the planet, which in turn drives iono-1508

spheric electric fields and currents. Upward currents may contain a significant, down-1509

ward energy flux from electrons (Fuller-Rowell & Evans, 1987). The energy flux at the1510

Earth typically ranges from under 1 GW up to 20 GW (Newell et al., 2010).1511

As Mars only has a limited magnetosphere, there is no significant energy deposited1512

by the aurora as discovered by Mars Express in 2005 (Bertaux et al., 2005). This con-1513

clusion can be challenged by the observations of global aurora during solar events (Schneider1514

et al., 2018). Diffuse electron (Clancy et al., 2017) and proton aurora (Deighan et al.,1515

2018) observed by MAVEN may carry significant amounts of energy, but the total flux1516

still needs to be estimated.1517

On the other hand, both Jupiter and Saturn do have large internal magnetic fields1518

and correspondingly large magnetospheres, so there is considerable power in their au-1519

rorae. As there are no direct measurements available, much of what is known about the1520

outer planets’ aurorae has been obtained from UV measurements, at first on the Voy-1521

ager flyby of Jupiter (Broadfoot et al., 1979). Most recent UV observations are from the1522

Hubble Space Telescope (HST). In a review of such observations, Grodent (2014) indi-1523

cated that the auroral emissions at Jupiter and Saturn are on the order of 1 TW and1524

0.1 TW respectively. Uranus and Neptune are much weaker, at 1 GW or less, and ob-1525

servations are sparse. Of course, the power of the emissions is less than the kinetic en-1526

ergy that is deposited. The Voyager UV measurements at Jupiter has implied a power1527

injection on the level of 12 TW (Broadfoot et al., 1981), and Gérard et al. (2014) stated1528

that the auroral precipitation at Jupiter has a power on the order of 10 to 50 TW. As1529

this level of heating is much greater than that from solar radiation, the aurora has a sig-1530

nificant contribution to the thermal properties of the upper atmosphere.1531

3.2.2.2 The supra-thermal electrons Supra-thermal electrons are electrons with1532

energy higher than the typical electron in an ionosphere: when looking at the flux of elec-1533

trons in function of energy, the supra-thermal electrons are responsible for the depar-1534

ture of the curve from a Maxwellian at high energy. These electrons come mainly from1535

the precipitation of electrons from outside of the ionosphere, from local creation (typ-1536

ically photoionization -hence the name of photoelectrons-), but also from other ioniza-1537

tion, including from suprathermal electron impact). Electric potential drops can accel-1538

erate electrons to suprathermal energies, but they occur outside the ionosphere and are1539

responsible for some magnetospheric precipitation at Earth. To understand the effect1540

of the suprathermal electrons, it is necessary to compute their transport in an atmosphere.1541

Codes such as Aeroplanets and PWOM do that.1542

The basis of these codes is to compute the flux of electrons by solving their trans-1543

port equation. The existence of codes not based on a Monte-Carlo scheme, such as Aero-1544

planets, allow to fastly compute large quantities of conditions and to perform sensitiv-1545

ity analysis (Gronoff, Simon Wedlund, Mertens, & Lillis, 2012; Gronoff, Simon Wedlund,1546

–42–



manuscript submitted to JGR: Space Physics

Mertens, Barthélemy, et al., 2012). We refer to these papers for the equations to solve1547

in the ionosphere/thermosphere, and for the uncertainties encountered.1548

3.2.3 The electromagnetic energy1549

The Joule heating is the heating created by the resistance of the thermosphere to1550

the electric current due the ionospheric plasma (Vasyliunas & Song, 2005). It is com-1551

puted by evaluating the electric field and the conductivities.1552

Joule heating in the polar ionosphere has a significant effect on the exospheric tem-1553

peratures, and hence the amount of outflow (Section 2.4.4). At the Earth the total Joule1554

heating is normally in the range of a few hundred GW, but in extreme events can range1555

from 1 TW (Lu et al., 1998) up to 5 TW, while increasing the mean temperature of ther-1556

mosphere by up to 500◦K (Weimer et al., 2011). At the same time, the additional heat-1557

ing tends to increase the amount of nitric oxide in the thermosphere, which acts to ac-1558

celerate the rate at which it cools down to the equilibrium temperature set by the so-1559

lar EUV radiation (Weimer et al., 2015). Wilson et al. (2006) had found that Joule heat-1560

ing is most typically about 3 times the energy from precipitating particles, with the ra-1561

tio varying from 2 to 7 in the different events that were studied.1562

At other planets there are no direct measurements of the electromagnetic energy1563

input into their ionosphere and thermosphere, so at present it can only be estimated. At1564

Jupiter, D. Strobel (2002) estimated the Joule and auroral particle heating to be about1565

1000 times larger than at the Earth for typical conditions, which would be on the order1566

of 500 TW.1567

The generation of currents and electromagnetic energy at Jupiter may be domi-1568

nated by processes much different from at the Earth, as the interaction of the solar wind1569

and interplanetary magnetic field are weaker. It is thought that the planet’s rotation and1570

magnetic field provide a significant contribution to the energy sources of the heating pro-1571

cesses (Eviatar & Barbosa, 1984; J. Waite & Lummerzheim, 2002).1572

Due to the lack of observations of the electromagnetic fields at other planets, most1573

of what is known is derived from computer simulations, such as the Jupiter Thermospheric1574

General Circulation Model (JTGCM), that addresses global temperatures, three-component1575

neutral winds, and neutral-ion species distributions (Bougher et al., 2005). In a case study1576

with auroral forcing plus ion drag, Bougher et al. (2005) calculated exospheric temper-1577

atures at auroral latitudes ranging from 1200 to 1300 K, which match available multi-1578

spectral observations. The levels of Joule heating are in the range of 70 to 140 mW/m2
1579

in the auroral ovals, while the auroral particles produce 2 to 8 mW/m2. With different1580

model parameters higher levels of the Joule heating can be produced and exospheric tem-1581

peratures above 3000 K may be achieved. Other numerical studies have been done, too1582

numerous to mention here. The main point is that Joule heating can significantly mod-1583

ify the heat budget of the thermosphere in the Jovian gas giant, and similar processes1584

would be expected at similar exoplanets. As there are many assumptions and approx-1585

imations made in the modeling process, more work needs to be done to more accurately1586

calculate the contribution of Joule heating to the exospheric temperatures and the re-1587

sulting effects on the outflow, particularly the contributions from the solar wind dynamo.1588

3.2.4 The Cross Sections and the computation of ionization1589

Elastic and inelastic cross sections are at the core of the computation of the energy1590

transfer from particle precipitation to the atmosphere. To that extent cross sections for1591

ionization, excitation, and dissociation are necessary tools for all the computations. Sev-1592

eral efforts have been made to gather cross sections. The most comprehensive one has1593

been recently developed with the study of upper atmospheres in mind, called AtMoCIAD.1594

Its advantage is the inclusion of error bars, that allows the computation of the propa-1595

–43–



manuscript submitted to JGR: Space Physics

100 101 102 103 104 105 106

Electron production (cm−3s−1)

100

120

140

160

180

200

220

240

260

A
lti

tu
de

(K
m

)

Mars

F107 = 200
Before Flare
Flare

100 101 102 103 104 105 106

Electron production (cm−3s−1)

120

140

160

180

200

220

240

260
Venus

F107 = 200
Before Flare
Flare

10−2 10−1 100 101 102 103

Electron production (cm−3s−1)

600

800

1000

1200

1400

1600
Titan

F107 = 200
Before Flare
Flare

102 103 104 105 106

Electron production (cm−3s−1)

100

150

200

250

300

350

400
Earth

F107 = 200
Before Flare
Flare

Figure 7. The ionization at Mars, Venus, and Titan for similar solar conditions, including a

solar flare. The neutral atmosphere is of importance in deciding at which altitude the peak is.

The extent of the atmosphere, roughly determined by the scale height (since it can be function of

the altitude) of the atmosphere, is the main parameter to explain the height of the peak. These

ionizations were computed using the Aeroplanets model (Gronoff, Simon Wedlund, Mertens, &

Lillis, 2012); including both direct photoionization and secondary electron ionization.

gation of the experimental or theoretical uncertainties (Gronoff, Simon Wedlund, Mertens,1596

& Lillis, 2012; Gronoff, Simon Wedlund, Mertens, Barthélemy, et al., 2012), but also the1597

inclusion of all kinds of particles (photons, electrons, protons, hydrogen, . . . ) colliding1598

with atoms or molecules.1599

The precise knowledge of all types of cross section can improve the computation1600

of the different conditions at different planets. A consistent set of cross sections allows1601

to perform comparative planetology studies. An example of such a computation can be1602

seen in Figure 7.1603

Other cross sections such as charge-exchange cross sections are of importance for1604

escape studies. The database maintained by the Atomic and Molecular Collisions Group1605

of the Department of Physics and Astronomy at Rice University (Houston, USA, http://www.ruf.rice.edu/∼atmol/)1606

is among the most populated with species of interest for space science studies (Lindsay1607

& Stebbings, 2005).1608

3.3 Atmospheric structure1609

Addressing the atmosphere structure is one of the more complex part of the study1610

of upper atmosphere. Model should address both ionospheric problems, such as the pre-1611
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cipitation of particles and Joule heating, as well as fluid problems like the heat trans-1612

port, winds, or radiative problems such as the CO2 15µm cooling (Johnstone et al., 2018,1613

and references therein).1614

3.3.1 Vertical Mixing and Photochemical Modeling of Atmospheres1615

Most of the planets in our Solar system have a substantial atmosphere, with the1616

exception of Mercury which has a very tenuous atmosphere. Several moons in the So-1617

lar system also have atmospheres. An atmospheric gas can be made up of a variety of1618

chemical species that were distributed unevenly at the time of the formation of the So-1619

lar system. A basic relationship between fundamental quantities governing the gas dis-1620

tribution of chemical species is the ideal gas law, p = n(z)kT , which becomes increas-1621

ingly less valid for pressures greater than 1 bar, after which Van der Waals equation of1622

state should be used (Parkinson, 2002).1623

Knowledge of the photochemical and chemical processes governing the transforma-1624

tion of a particular atmospheric species into another can be used to calculate the dis-1625

tribution of each species considered throughout the atmosphere. Since a particular at-1626

mospheric constituent might be the source of one or more other constituents, this cal-1627

culation requires the simultaneous solution of a series of coupled continuity equations,1628

one for each atmospheric species considered, viz.,1629

∂ni
∂t

+∇ · φi = Pi − Lini (67)

where φi is the flux of a particular species, and t is time. The species number density1630

is given by ni, Pi is the chemical production rate and Li is the loss frequency at altitude1631

z and time t (Chamberlain & Hunten, 1987, see).1632

The solution of Equation 67 yields the distribution of the species that are being1633

studied. This solution is obtained by considering the various photochemical and chem-1634

ical production and loss terms in addition to the effects of composition, eddy diffusion,1635

temperature, mixing ratio and the solar flux on the various constituents distribution. This1636

method of solution is described for one dimension in the sections that follow.1637

3.3.1.1 1-D General Method of Solution The vertical distribution of a minor con-1638

stituent in a planetary atmosphere is governed by the 1-dimensional continuity equation1639

for each species, i,1640

∂ni
∂t

+
∂φi
∂z

= Pi − Lini (68)

where the vertical flux, φi, can be approximated by1641

φi = φKi + φDi . (69)

The eddy flux, φKi ,1642

φKi = −K(
∂ni
∂z

+ (
1

Hav
+

1

T

∂T

∂z
)ni) (70)

represents the vertical flux that parameterizes macroscopic motions, such as the large1643

scale circulation and gravity waves, and φDi1644

φDi = −Di(
∂ni
∂z

+
(1 + αi)

T

∂T

∂z
+
ni
Hi

) (71)

is the vertical flux carried by molecular diffusion. The species number density is given1645

by ni, Pi is the chemical production rate (cm−3 s−1) and Li is the loss frequency (s−1)1646

at altitude z and time t (e.g. Chamberlain and Hunten (1987)). Di and K = K(z) are,1647
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respectively, the molecular and vertical eddy diffusion coefficients. The molecular dif-1648

fusion coefficients, Di, are taken from Mason and Marrero (1970); Cravens (1987) where1649

applicable using the formula Di = bi
nbg

= AT s

nbg
where b is the binary collision parame-1650

ter (expressed in terms of the coefficients A and s) and the subscript ‘bg ’ denotes back-1651

ground. Hi and Hav are respectively the constituent and background atmospheric pres-1652

sure scale heights, i.e., Hi = kT
Mig

and Hav = kT
Mavg

where Mi and Mav are respectively1653

the molecular weights of the constituent and the atmosphere. In these calculations we1654

have neglected the effects of the thermal diffusion factor, αi, as its inclusion contributed1655

less than 1% to a given species column in test runs.1656

Eddy mixing tends to homogenize the atmosphere such that, where there are no1657

effects due to chemistry, all species would be distributed according to the mean atmo-1658

spheric pressure scale height. Molecular diffusion tends to separate constituents by their1659

individual molecular weights. The atmospheric level at which the molecular diffusion co-1660

efficient is equal to the eddy diffusion coefficient is defined as the homopause for the ith1661

constituent. Above this altitude, molecular diffusion dominates and the time constant1662

for reaching diffusive equilibrium is given by τD =
H2
av

Di
(Chapman et al., 1990; Cole-1663

grove et al., 1966). Below the homopause, eddy diffusion dominates and the long lived1664

species are “mixed”, and the mixing time constant is analogously expressed as τK =
H2
av

K .1665

Equation (68) is solved using a finite central difference approximation for the ver-1666

tical derivatives and the species densities are solved semi-implicitly in time using a sim-1667

ple tridiagonal solver. For these applications we have assumed a steady state exists and1668

so have driven the solution so that 1
P
∂ni
∂t → 0. Examples of such models and details1669

are given in (Parkinson, 2002; Yung & DeMore, 1982)1670

3.3.1.2 Eddy Diffusion Coefficient, K(z) One of the fundamental properties of1671

a planetary atmosphere is the amount of mechanical mixing forced by large scale circu-1672

lation, gravity waves and other processes. In a one-dimensional model, this mixing is of-1673

ten characterized by the eddy diffusion coefficient, which we will denote by K, Kz or K(z).1674

The value of K(z) in the vicinity of the homopause, Kh, is critical in determining the1675

onset of the importance of molecular diffusion. Estimates of Kh for the outer planets have1676

been obtained by various means: e.g., analyses of the H Lyman-α albedo (Wallace and1677

Hunten, 1973; Atreya, 1982; Ben Jaffel et al., 1993; Ben Jaffel et al., 1994), the fall-off1678

in hydrocarbon profiles, as measured against an H2 background, using solar and stellar1679

occultation data (Atreya et al., 1981; Festou & Atreya, 1982; Romani et al., 1993), the1680

He 584 Å albedo (McConnell et al., 1981; Sandel et al., 1982; Vervack et al., 1995; Parkin-1681

son et al., 1998) and the CH4 fluorescence (Drossart et al., 1999).1682

3.3.1.3 Thermospheric-ionospheric simulations The modeling of a thermosphere-1683

ionosphere is slightly different than the deeper layers of the atmosphere: a density pro-1684

file has to be taken into account for each different neutral species, since they follow their1685

own scale height. Supra-thermal species can exist, such O in the upper atmosphere of1686

Mars, resulting from O+
2 dissociation. For the ionized species, a different temperature1687

has to be computed (and it changes with the species in the most complicated simula-1688

tions). Finally electron temperatures have to be addressed. The full description of these1689

models is outside the scope of this paper. We refer the reader to the following studies1690

and their included references Johnstone et al. (2018); Bougher et al. (2005).1691

3.3.1.4 Importance of the 3-D modeling Three dimensional models (3-D) mod-1692

els provide a broad characterization of the whole atmosphere that couple chemistry, dy-1693

namics, and energy balance. These numerical tools, while not capable of including the1694

details of their one-dimensional (1-D) counterparts, can capture the effects of global dy-1695

namics, diurnal chemistry, and the resulting energy balance. It has been shown that the1696

approximations made with 1-D modeling are not able to fully reflect the reality of a plan-1697

etary climate. For example, the presence of clouds, ice sheets, oceans, etc. have large ef-1698
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fect able to change a non-habitable planet into one (Way et al., 2016, 2018). For thermospheres-1699

ionospheres, the 3-D effects of transport and cooling lead to different results as well, which1700

may change our view of an exoplanet.1701

3.3.2 Exospheric temperature1702

The exospheric temperature, Texo is one of the most important parameters in the1703

study of non-hydrodynamic atmospheric escape. It is the temperature at the base of the1704

exosphere. Its effects on atmospheric escape are numerous. First, a higher Texo means1705

a higher thermal escape. Secondly, with a warmer thermosphere, the exobase increases1706

with altitude thereby increasing the exobase surface. This in turn implies a higher to-1707

tal escape from the planet and a greater cross section to non-thermal escape. Thirdly,1708

a high Texo means that non-thermal processes can be more efficient.1709

The exospheric temperature depends upon (a) the UV flux (photon heating), (b)1710

the chemical heating, (c) the electromagnetic energy (Joule heating), and (d) precipi-1711

tation (auroral heating) in the atmosphere. The rate of cooling, primarily by infrared1712

radiation, depends upon the composition and the adiabatic expansion. The equilibrium1713

between the heating and cooling factors gives the temperature. Since wind and UV heat-1714

ing are important factors, major dayside-nightside exospheric temperature differences1715

can occur. Full 3-D models such as the Global Ionosphere-Thermosphere Model (GITM)1716

(Ridley et al., 2006) are therefore necessary to obtain a correct value for the exospheric1717

temperature. A 1-D approximation of the temperature can be made, but, in the case of1718

the study of non-thermal escape, it may become a major problem. This is because the1719

day-night asymmetry from the escape processes is correlated with the asymmetry from1720

the exospheric temperature, which could lead to severe errors in the determination of1721

the magnitude of the escape.1722

The exospheric temperature is determined by the equilibrium between heating and1723

cooling. Since these processes are altitude dependent, it is often necessary to determine1724

the structure of the thermosphere and compute the exospheric temperature from the ba-1725

sic equations. Empirical models exist, for example, for Earth (Weimer et al., 2011). In1726

the planets of the Solar system, heating is dominated by (1) photoexcitation and cool-1727

ing by (2) thermal conduction (González-Galindo et al., 2009). The photoexcitation/photodissociation1728

heating is due to the kinetic energy left in these processes: the difference between the1729

threshold Et,k of the kth reaction on a species, s, and the energy, E, of the photon is trans-1730

formed into heat. When the flux of photon per unit energy is Φ(E) we have:1731

QUV,k =

∫ ∞
Et,k

(E − Et,k)nkσk(E)Φ(E)dE (72)

The thermal conduction is solved through the following equation (González-Galindo et1732

al., 2009):1733

∂T

∂t
=

1

ρcp

∂
(
k ∂T∂z

)
∂z

(73)

k = AT 0.69 (74)

With ρ being the density (kg/m3), cp the heat capacity, and A the weighted average of1734

the thermal conductivities.1735

Two major parameters are to be carefully determined when estimating the exospheric1736

temperature, and are the most complicated to address to date: (3) the chemical heat-1737

ing/cooling, (4) the radiative cooling.1738

The chemical heating, due to the exothermic reactions, and cooling, due to the en-1739

dothermic ractions, follow the ionization and dissociation by precipitating particles (in-1740

cluding photons). Evaluating this contribution requires to carefully evaluate the chem-1741
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ical reactions chains and their energies. Those are atmospheric-composition dependent1742

and can be quite complex and not well understood (e.g. Titan).1743

The radiative cooling is mainly due to the de-excitation of molecular species in a1744

rotational or vibrational state. Simple approximations of that cooling can be made if the1745

cooling species is in low quantity in the atmosphere and if it is excited only by thermal1746

processes; i.e. if it is in a local thermodynamic equilibrium (LTE) and if the emission1747

line (or band) is optically thin. More complex cases exist in the atmospheres (such as1748

non-LTE processes that are known to happen in auroral regions and optically thick cases),1749

that require precise radiative transfer calculations (Mertens et al., 2008, 2009). In ad-1750

dition, very complex cases such as state inversion and MASER can be obtained, such1751

as those occurring at Mars and Venus at 10 µm (Mumma, 1993) and probably at some1752

exoplanets (Cosmovici & Pogrebenko, 2018). Finally, some of the radiative species can1753

be obtained by chemical reactions when the system is out of equilibrium, e.g. NO cool-1754

ing at Earth (Weimer et al., 2015). For the extrapolation of Solar system planets’ sit-1755

uation to other stellar systems, it is important to validate such approximations .1756

Other important parameters have to be considered depending on the cases stud-1757

ies: (5) NIR heating, important in the case of CO2-rich planets, (6) dynamic cooling -1758

from winds or expansion-, and (7) heating from gravity waves dissipation (Hargreaves,1759

1992).1760

3.3.3 The exobase altitude1761

The exobase is the altitude at which the scale height is equal to the mean free path1762

of a thermalized particle (at Texo). Above this altitude, the mean free path is greater1763

than the scale height, and a particle with sufficient energy is likely to escape without any1764

collision.1765

One can approximate the density in the thermosphere by n(z) = no × e(−
z−zo
H )

1766

(nb: this is valid for a thermosphere with one constituent; if multi-constituent a H will1767

have to be defined for each of those, but the exobase is usually defined for the main con-1768

stituent). At the exobase, we have nexo = H
σ with σ being the collision cross section1769

between the main molecules. If we suppose an isothermal thermosphere, i.e. H does not1770

vary with altitude, it is possible to easily retrieve the exobase altitude: zexo = z0−Hln(nexon0
).1771

For multi-component atmospheres and varying temperature, the evaluation becomes more1772

complex since H and σ (and therefore nexo) vary with altitude.1773

3.4 Time dependence and creation of observable markers1774

Once the main processes leading to atmospheric escape are known, the study of their1775

influence in time requires evaluating the evolution of the stellar forcing parameters. If1776

possible, the study of the isotopic ratio in the planetary atmosphere will be a major in-1777

put for validating the calculations and estimating the influence of other processes such1778

as outgassing, etc.1779

3.4.1 Evolution in time of the stellar forcing parameters1780

Stellar rotation drives the magnetic activity responsible for UV to X-ray emission1781

from Sun-like stars through a dynamo mechanism thought to be seated near the bottom1782

of the stellar convection zone. In turn, this magnetic activity influences rotation itself1783

through angular momentum loss to a magnetized wind that leads to a gradual slow down1784

of the rate of spin.1785

Stars are born with a natural spread in their rotation periods and these initially1786

evolve quite rapidly with time due to changes in moment of inertia as stars contract on1787

to the main sequence. This initial rotational evolution then involves spin up, rather than1788
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Figure 8. Evolution of the rotation period of a 1M� star as a function of age for different

initial periods during the disk-locked T Tauri phase based on the rotation evolution model of

Garraffo et al. (2018).

spin down. All newly-formed Sun-like stars are thought to possess a residual disk of gas,1789

called a protoplanetary disk, within which planets form. In the early, so called “T Tauri”,1790

phase of evolution (named after the representative prototype) lasting a few million years,1791

the protoplanetary disk is expected to prevent them from spin up through a mechanism1792

known as disk-locking (Rebull et al., 2002, 2004). While the detailed physics behind this1793

is still poorly understood, the underpinning of the idea is that there is angular momen-1794

tum exchange between the star and the disk modulated by magnetic fields that connect1795

them—in essence, the disk applies a magnetic brake. After anything from a few Myr up1796

to 10 Myr, the disk gets dispersed and stars then freely spin-up as a consequence of con-1797

traction. Once on the main-sequence, contraction has stopped and magnetic braking through1798

the stellar wind results in an efficient spin-down process.1799

Magnetic braking is determined by the magnetic fields on their surfaces (Weber &1800

Davis, 1967; Kawaler, 1988). This self-regulating mechanism results in the rotation pe-1801

riod evolving with time following the Skumanich law for spin-down Prot ∝ t1/2 (Skumanich,1802

1972). This is the foundation of Gyrochronology (Meibom et al., 2015), a very power-1803

ful tool that enables the conversion of rotation periods into stellar ages. Studies of the1804

rotation periods of stars in young open clusters have revealed a bimodal distribution, re-1805

cently attributed to different magnetic evolutionary paths of stars with different initial1806

rotation periods (Garraffo et al., 2018). Stars that start off spinning faster will have smaller1807

Rossby numbers, and this is expected to result in a more complex geometry of the sur-1808

face magnetic fields. This, in turn, has the effect of closing otherwise open field lines, pre-1809

venting the stellar wind to escape removing angular momentum. As a consequence, stars1810

with short initial rotation periods will remain rotating fast for longer than their initial1811

slow rotators counterparts (see Figure 8 for an illustration of the effect of different ini-1812

tial periods in the spin evolution of a 1M� star). The period of time for which the ini-1813

tially fast rotators will remain rotating fast is larger the lower the stellar mass is. Even-1814

tually, at an age that depends on the stellar mass (∼ 600 Myrs for solar mass stars),1815

initial conditions have been erased and all stars follow the Skumanich law, making Gy-1816

rochronology fairly reliable. However, the activity history of these stars can be quite dif-1817

ferent depending on their initial rotation history, and that can potentially make a dif-1818

ference in the survivability of their planets’ atmospheres and habitability.1819
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Figure 9. X-ray to bolometric luminosity ratio, LX/Lbol, as a function of the Rossby num-

ber, Ro = Prot/τ , for both partly convective and fully convective stars. The best-fitting activ-

ity–rotation relations found for fully convective stars by N. J. Wright et al. (2018) (β = −2.3 and

Rosat = 0.14, solid line) and from N. J. Wright et al. (2011) (β = −2.7 and Rosat = 0.16, dotted

line) are shown. From N. J. Wright et al. (2018); see text for details.

The establishment of rotation (or more correctly, differential rotation) as the driver1820

for the magnetic dynamo activity that gives rise to UV, EUV and X-ray emission that1821

drive planetary atmospheric ionization and loss processes can be traced back to the 1960s1822

when it was noticed that Ca II H & K emission fluxes of stars declined linearly with stel-1823

lar rotation velocity. The magnetic nature of stellar coronae was essentially established1824

a decade later by the Einstein observatory and the realization that X-ray luminosity was1825

highly correlated with stellar rotation (Vaiana, 1981; Pallavicini et al., 1981; Walter et1826

al., 1980). Some fraction of the magnetic energy created within the star by dynamo ac-1827

tion and subject to buoyant rise is dissipated at the stellar surface and converted into1828

particle acceleration and plasma heating. Although none of these processes are fully un-1829

derstood, the dependence of activity diagnostics and stellar UV and X-ray fluxes on ro-1830

tation shows a very simple empirical relation in terms of a magnetic “Rossby” number1831

illustrated in Figure 9. The Rossby number in this case is the ratio of the rotation pe-1832

riod and convective turnover time near the base of the convection zone, Ro = Prot/τconv1833

(see also Noyes et al. (1984)).1834

Figure 9 shows stellar X-ray luminosities normalized to the total stellar bolomet-1835

ric output, LX/Lbol, as a function of the Rossby number for late-type stars ranging from1836

spectral type F down to mid-M, including fully-convective M dwarfs. At slower rotation1837

rates, LX/Lbol ∝ Roβ , where N. J. Wright et al. (2018) find β = −2.3, up until a thresh-1838

old at which point X-ray emission saturates, LX/Lbol ∼ 10−3, close to a Rossby num-1839

ber Ro = 0.13. This saturation behavior was already apparent from data obtained by1840

the Einstein observatory (Vilhu, 1984; Micela et al., 1985), although its origin is still de-1841

bated. It is likely that it represents saturation of the dynamo itself (see, e.g., the discus-1842

sion in N. J. Wright et al. (2011) and Blackman and Thomas (2014)). The rotation pe-1843

riod at which saturation sets in increases for decreasing stellar mass. For a solar mass1844

main-sequence star, X-ray emission saturates at a ∼ 1.25 days period, while it can be1845

more than 100 days for an early M dwarf. (N. J. Wright et al., 2011). This means that1846

lower mass stars are expected to be saturated, and therefore comparatively more active1847

and UV and X-ray bright, than higher mass stars for much longer.1848

–50–



manuscript submitted to JGR: Space Physics

Lin Tu et al.: The EUV and X-ray Sun in Time
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Fig. 2. Left: predicted rotational evolution tracks for stars at the 10th (red), 50th (green), and 90th (blue) percentiles of the rotational distribution.
The solid and dotted lines show the envelope and core rotational evolution, respectively, and the horizontal solid lines show the observational
constraints on the percentiles. The dashed black line shows the time dependent saturation threshold for Ṁ, Bdip, and LX calculated assuming a
constant saturation Roand the τ⋆ values of Spada et al. (2013). Right: predicted LX along each of our rotation tracks and comparisons to observed
LX values of single stars in several clusters with upper limits shown by ▽ symbols. The solid horizontal lines show the 10th, 50th, and 90th
percentiles of the observed distributions of LX at each age calculated by counting upper limits as detections. The two solar symbols at 4.5 Gyr
show the range of LX for the Sun over the course of the solar cycle. The scale on the right y-axis shows the associated LEUV.

our predictions from rotation, we do not attempt to homogenise
the M⋆ and LX determinations for each cluster. Our quantitative
determinations of the LX tracks are based on the relation from
W11 where this homogenisation was done.

4. Results

Johnstone et al. (2015) combined rotation period measurements
of four young clusters with ages of ∼150 Myr and used a rota-
tional evolution model to predict the evolution of the resulting
distribution of Ω on the MS. The sample contains 1556 stars in
the 0.4−1.1 M⊙ mass range. In Fig. 1, we show predictions for
the distributions of LX based on these Ω distributions at ages
of 150 Myr and 620 Myr comparing them with observed values
in the Pleiades and Hyades. There is good overall agreement,
although intrinsic X-ray variability (typically factors of 2−3) in-
troduces some additional scatter such as is visible for stars ex-
ceeding the saturation threshold.

To predict the range of possible LX evolution tracks, we cal-
culate rotation models for solar-mass stars at the 10th, 50th, and
90th percentiles of the Ω distributions, shown in Fig. 2a. Our
models fit well the observational constraints on the percentiles,
except for a slight underestimation of the 10th percentile track
in the first 20 Myr. This might cause us to underestimate the age
by a few Myr when stars on the 10th percentile track come out
of saturation. Figure 2b shows predicted tracks for LX and LEUV
together with observed LX for stars in the 0.9−1.1 M⊙ range for
each cluster listed in Sect. 3. Because of the low number of ob-
servations in NGC 2547 (30 Myr), we extend the mass range to
0.8−1.2 M⊙. The tracks correspond very well to the observed
percentiles in the individual clusters given the somewhat limited
observational samples. The solar LX (6 × 1026−5 × 1027 erg s−1,
Ayres 1997; Peres et al. 2000; Judge et al. 2003) has been in-
cluded as well and fits our models excellently.

Stars on our rotation tracks drop out of saturation at ≈6 Myr
(10th percentile, red), ≈20 Myr (50th, green), and ≈300 Myr
(90th, blue), i.e. either as young PMS stars, as near-ZAMS stars,

or as slightly evolved MS stars. The spread in LX amounts to as
much as 1.5 orders of magnitude for several 100 Myr.

Figure 3 gives the age when a star falls out of saturation, tsat,
as a function of initial Ω, derived from our rotation model. This
saturation time can be approximated by

tsat = 2.9Ω1.14
0 , (2)

where tsat is in Myr and Ω0 is the rotation rate at 1 Myr in units
of the solar rotation rate. Assuming that the saturation level,
LX,sat ≈ 10−3.13 Lbol,⊙, is constant in time, which is approxi-
mately true, we obtain log LX,sat = 30.46. If we approximate LX
by a power law after tsat (see Fig. 2b), for a given Ω0 we obtain

LX =

⎧⎪⎪⎨⎪⎪⎩
LX,sat, if t ≤ tsat,

atb, if t ≥ tsat.
(3)

We require that the power law also fits the Sun with
LX,⊙ = 1027.2 erg s−1 at an age of t⊙ = 4570 Myr. We thus find

b−1 = 0.35 logΩ0 − 0.98, a = LX,⊙t−b
⊙ . (4)

For the 10th, 50th, and 90th percentiles in Ω0, corresponding to
Ω0 ≈ 1.8Ω⊙, 6.2Ω⊙, and 45.6 Ω⊙ with tsat ≈ 5.7 Myr, 23 Myr,
and 226 Myr, respectively, we find

LX =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2.0 × 1031t−1.12

2.6 × 1032t−1.42

2.3 × 1036t−2.50
LEUV =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

7.4 × 1031t−0.96 10th

4.8 × 1032t−1.22 50th

1.2 × 1036t−2.15 90th

where the luminosities are in erg s−1. The slope of the median LX
track, b= −1.42, is very close to the values reported from linear
regression to the Sun in Time sample (Güdel et al. 1997; Ribas
et al. 2005). These power-law fits, valid for t > tsat, thus describe
the range of possible evolutionary tracks for LX and LEUV.

L3, page 3 of 4

Figure 10. The X-ray and EUV luminosities, LX and LEUV , for a solar mass star as a func-

tion of time. Shown are the luminosity trajectories for three different rotation evolution tracks,

together with observed X-ray luminosities for single stars in open clusters. Upper limits are indi-

cated by inverted triangles. Solid horizontal lines indicate 10th, 50th, and 90th percentiles of the

observed distributions of LX at each age calculated by counting upper limits as detections. Two

solar symbols at 4.5 Gyr show the range in LX for the Sun over the solar cycle. From Tu et al.

(2015).

The X-ray luminosities and cumulative X-ray doses for a 1M� star as a function1849

of age for the different rotation histories shown in Figure 8 based on the rotation-activity1850

relations of N. J. Wright et al. (2018) are illustrated in Figure 10.1851

3.4.2 Isotopic Fractionations and Retrieving the History of Planetary1852

Atmospheres1853

The study of isotopes is the major tool to study the history of planetary systems.1854

In planetary atmospheres, it allows to create an history of the escape. Unfortunately,1855

it is usually a ill-posed problem, and hypothesis are required, such as an atmosphere with1856

basically the same composition over eons, and it allows to retrieve the fraction lost to1857

space, without any other data about the fraction lost to e.g. surface; which prevents one1858

to have a good idea of the surface pressure in the past as explained in D. Brain et al. (2016);1859

the situation is complicated once surface processes are able to perform isotopic fraction-1860

ation (Parai & Mukhopadhyay, 2018). Once productions/outgassing are taken into ac-1861

count, it is possible to reach a steady state for isotopic fractionations, which complicates1862

the interpretation (Mandt et al., 2009).1863

3.4.2.1 Theory for hydrodynamic fractionation we have seen in Section 2.1.4 how1864

to retrieve the differential flux of a species nb dragged by a species na in hydrodynamic1865

escape. Considering Nb, the total content of the species b in the atmosphere, it is pos-1866

sible to estimate the variation of Nb in function of the history of the hydrodynamic es-1867

cape of the atmospheric species a. Following Pepin (1992), we assume no replenishment1868

and that the escaping flux of a in function of time, Fa(t), follows Fa(t) = F 0
a f(t), with1869

f being a decreasing function with time. In that case, we find that:1870

dNb
Nb

= −F
0
a

Na

[
f(t)− mb −ma

m0
c −ma

]
dt (75)
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Solving this equation allows to evaluate the total amount of b that escaped. The most1871

interesting conclusion that we can make from this equation, while having no knowledge1872

of f(t), it that the escape of Nb stops at the time t2 such that f(t2) = mb−ma
m0
c−ma

.1873

3.4.2.2 Theory for Jeans/non-thermal fractionation When discussing fraction-1874

ation with respect to an escaping atmosphere, the Rayleigh fractionation/distillation law1875

and its notation are often used (Jakosky, 1994; Johnson et al., 2000; Mandt et al., 2009).1876

In this nomenclature, R, the ratio of two species –often isotopes–, is the main param-1877

eter. First, it is important to not make a confusion between the observed ratio of species1878

b and a, R(z) = nb(z)/na(z), and the total ratio R = Nb(z)/Na(z) ≈ Nb(zi)/Na(zi)|zi <1879

zhomopause. The observed ratio is fractionated in altitude above the homopause. The main1880

hypothesis of the Rayleigh distillation law is that any species i is lost proportionally to1881

its total amount: dNi = kiNi. Therefore we have:1882
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The Rayleigh distillation equation 79 allows to evaluate the total loss of a species1883

through escape provided the fractionation factor f and the initial isotopic ratio R0 and1884

the current one R. If one considers an escape flux F proportional to N , it is easy to see1885

that k = F/N , and therefore that fe = Fb
Fa
× 1
R . Using equation 5, it appears that the1886

fractionation factor for Jeans escape is:1887

fJeans =

√
ma

mb

1 + λex,b
1 + λex,a

eλex,a−λex,b (80)

3.4.2.3 Outstanding problems related to fractionation The observation and mod-1888

eling of fractionation highlighted major events in the evolution of planetary atmospheres.1889

The D/H ratio observed at Venus, >∼ 1.6 × 10−2 (Donahue et al., 1982; Marcq et al.,1890

2018), suggests that the loss of water at Venus may be consistent with the loss of a Earth’s1891

ocean (Shizgal & Arkos, 1996).1892

The enrichment of 15N over 14N at Mars can be explained by non-thermal processes1893

(Shizgal & Arkos, 1996). Since Ar does not reacts chemically, Jakosky et al. (2017) used1894

the 38Ar/36Ar ratio to determine that Mars lost 66% of its atmosphere to space. It is1895

to be noted that the location and timing at which an isotopic ratio is measured can have1896

an effect: Livengood et al. (2020) has shown that surface adsorption at Mars performs1897

isotopic fractionation that can be highlighted by daily variations (temperature changes1898

the amount of gas adsorbed).1899

At Earth, the fractionation of noble gases have been explained by hydrodynamic1900

escape processes (Shizgal & Arkos, 1996), except for xenon. Xenon is depleted by one1901

order of magnitude relative to other noble gases and other volatile elements when nor-1902

malized to the chondritic composition (e.g.Marty (2012)) and is largely enriched in its1903

heavy isotopes relatively to Solar or chondritic xenon. This peculiarity of xenon com-1904

pared to other noble gases is known as the “xenon paradox”. The specific electronic struc-1905

ture of xenon which makes it the most reactive element among noble gases with the low-1906

est ionization potential (12.13 eV or 102.23 nm) and an extended photoabsorption cross1907

section covering part of the VUV spectrum (up to about 150 nm). From this consider-1908

ation and because of the difficulty to explain Xe depletion and fractionation with other1909
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mechanisms, the escape of Xe+ driven by H+ ion escape is considered as a plausible ex-1910

planation of the xenon paradox (Zahnle et al., 2019). On the other hand, Hébrard and1911

Marty (2014) proposed a scenario combining the trapping of heavy xenon isotopes in haze1912

with an efficient escape of Xe+ ions which is both consistent with the Xenon depletion1913

and fractionation. The time history of Xe isotope fractionation has been investigated in1914

detail by Avice et al. (2018), and showed that it started evolving at least 3.5 Ga ago un-1915

til it reached the modern-like atmospheric Xe composition at around 2.1 Ga ago. They1916

concluded that termination of the isotopic fractionation of Xe may coincide with the end1917

of the hydrogen escape which has previously been suggested to explain the progressive1918

oxygenation of the Earth’s atmosphere (Zahnle et al., 2013). However, such significant1919

escape of Xe+ ions with no associated loss of other noble gases is challenging due to the1920

large mass of Xe+ and its associated large gravitational binding energy (∼85 eV). The1921

work of Parai and Mukhopadhyay (2018) shows that xenon can be trapped in the crust1922

from the oceans, but is basing its atmospheric fractionation on the work of (Pepin, 1991)1923

who does not consider that xenon can be trapped back into the Earth. It may be that1924

the xenon paradox could be solved not by escape physics, but by crustal absorption. This1925

is in agreement with the organic haze scavenging of Xe hypothesis, investigated in Avice1926

et al. (2018), that solves the paradox without requiring atmospheric escape. An inter-1927

esting point is the requirement for atmospheric hazes in that hypothesis: specific atmo-1928

spheric conditions, similar to the present Titan (McKay et al., 2001), are required to cre-1929

ate those, and therefore Xe isotopic fractionation may be an indicator of the atmospheric1930

conditions of the Archaean Earth. Such a solution has the potential to reconcile the con-1931

clusions of Parai and Mukhopadhyay (2018), i.e. no plate tectonics before 2.5 Gyr ago1932

or extremely dry tectonics, with the observation of ancient plate tectonics with excess1933

water before 3.3 Gyr by Sobolev et al. (2019).1934

4 Escape at Solar System’s Planets and Bodies1935

The atmospheric escape in the Solar system shaped most of the planets and dwarf1936

planets’ atmospheres, as well as those of some satellites. Mercury may have had a proto-1937

atmosphere above its magma ocean, like the Moon (Greenwood et al., 2018), but, un-1938

like the Moon, no sample from the surface are available and a detailed study of the his-1939

tory of Mercury’s atmosphere lacks too much experimental evidence. Mars, Venus, the1940

Earth, and Titan have on the contrary a large quantity of data showing an atmosphere1941

that has been transformed by escape. Currently H and He are the most important species1942

escaping for these objects. We are also observing other escape processes, such as O, and1943

we try to understand the pathways of escape of CO2 at Mars, so we can understand the1944

evolution of its atmosphere in time. Non-thermal escape processes at Jupiter and Sat-1945

urn are known to fill a part of their plasmaspheres and leads to some minor escape. Over-1946

all, the giant planets are too big for efficient escape to take part and change drastically1947

their atmospheric evolution. Uranus and Neptune are similar in that their mass prevents1948

a lot of escape. In addition, the ice giants have only been visited by the Voyager probes1949

and have not had a Galileo or Cassini-like mission allowing study of their atmospheres1950

as comprehensively as Jupiter or Saturn. A recent work by DiBraccio and Gershman (2019)1951

has shown that, as for Jupiter and Saturn, plasmoids have been observed at Uranus. How-1952

ever, a large quantity of these plasmoids’ loss can come from the satellite of the giant1953

planets. Finally, relatively small loss are suspected to come from polar wind (Glocer et1954

al., 2007).1955

Understanding the current escape processes allows to perform some interpolation1956

back in time, thanks to a better understanding of the conditions (especially the solar forc-1957

ing in time), and of the important parameters for each escape process. Such work nec-1958

essary to understand how the atmosphere could evolve into an habitable one. To have1959

a control point to these interpolations, it is necessary to know about the isotope ratio.1960

Unfortunately, surface processes (volcanism, adsorption) and other events such as comet1961
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falls or cosmic ray spallation processes [e.g. A. Pavlov et al. (2014)] can affect these re-1962

sults and possible concurrent models leads to the currently observed state.1963

4.1 The Solar forcing in time1964

The solar magnetic activity forcing changed substantially over the lifetime of the1965

Sun, as discussed in the general stellar context in Section 3.4.1. In its early stages, the1966

rotation of the young Sun was faster than its present rotation, with rotation periods of1967

only few days compared to its present 27 days period. During this time, the Sun’s ra-1968

tio of X-ray to bolometric luminosity declined by a factor of about 1000. Thus, in gen-1969

eral, the most important aspect of the evolution of solar forcing is that the EUV and X-1970

ray fluxes were much higher during the early Solar system than today, with related con-1971

sequences for earlier planetary atmospheric escape rates. This time evolution is shown1972

in Figure 10.1973

In addition to the solar radiation, the solar wind also plays a role in planetary at-1974

mospheric escape. However, the change of the solar wind in time is much less well-defined1975

than the solar radiation, since it is almost impossible to measure the signatures of weak1976

winds of solar analogs. In general, the magnetic activity paradigm suggests that a more1977

active Sun should produce a stronger solar wind. However, no clear evidence of that as-1978

sumption has been discovered so far. Scaling laws have been developed based on obser-1979

vations of the neutral Hydrogen absorption line generated at the edge of stellar astro-1980

spheres, where the stellar wind collides with the Inter Stellar Medium (ISM) (Wood, 2006;1981

Wood et al., 2014). Some modeling work was done to characterize the winds of Sun-like1982

stars (e.g., Cohen et al. (2010); Cohen and Drake (2014)). In both cases, the winds of1983

young stars were not found to be dramatically stronger than older stars, and many of1984

the observed systems were found to deviate from the scaling low and present weaker winds1985

than expected.1986

Understanding the young Sun is important in the context of solving the Faint Young1987

Sun Paradox (Section 7.1.1). However, it is important to note that if the hypothesis on1988

the atmosphere composition and pressure is off, no conclusion can be made only from1989

the star parameters.1990

4.2 Coupling with the world below1991

The escaping region of an atmosphere does not exist in isolation. Once the primor-1992

dial atmosphere of a telluric planet has eroded, the hydrogen and other light elements1993

that escape ultimately come from the interior of the planet and pass through the lower/middle1994

atmosphere to reach the region of escape. Just to understand hydrogen escape, it is cru-1995

cial to understand the basic processes that control: (1) the flux of hydrogen-bearing species1996

(e.g. water, methane, H2) from their source regions at the surface throughout the atmo-1997

sphere; and (2) the flux of hydrogen-bearing species to the atmosphere.1998

Accurate modeling of hydrogen-bearing species are particularly important for un-1999

derstanding potentially habitable exoplanets. First, methane is a potential biosignature.2000

Second, the chemistry of these species is often connected with the chemistry of O2, O3,2001

CO2, and CO through the HOx reactions in the atmosphere and through analogous re-2002

actions in the interior (e.g., Kasting et al. (1993)). Third, sufficient hydrogen escape can2003

modify the redox state of the atmosphere, surface and interior (e.g. Kasting et al. (1993);2004

D. C. Catling and Claire (2005)).2005

4.2.1 The Present: A Focus on Hydrogen-Bearing Species2006

The vertical temperature structure of the atmosphere is a critical control on the2007

ability of condensible species to move upward from the warm troposphere to where it2008
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can escape. The stratospheric water trap on present-day Earth is the classical example2009

of such a control. Transport across such barriers may be accomplished diffusively or dy-2010

namically by means of atmospheric moist convection. The effectiveness of the cold trap2011

for water may depend on the presence of other hydrogen-bearing species, such as methane.2012

4.2.1.1 Earth On present day Earth, the dominant sources of hydrogen-bearing2013

species are evaporation from the Earth’s oceans (H2O) and anthropogenic sources of methane.2014

Non-anthropogenic, biogenic sources of methane remain significant and probably greatly2015

exceed geological sources (Dlugokencky et al., 2011), though (Etiope & Klusman, 2002)2016

argue that natural geological sources may be currently accounted to anthropogenic emis-2017

sions in error. Atmospheric water poorly mixes into the middle atmosphere. There is a2018

strong contrast between water vapor mixing ratios typical of the troposphere (≈ 10002019

ppmm) and water vapor mixing ratios near the Earth’s mesopause (≈ 5 ppmm), where2020

the photodissociation of water by solar radiation at Lyman α wavelengths takes place2021

(Roell, 2012). A parallel contrast exists between water vapor concentrations near the sur-2022

face and in the upper troposphere (≈10000 ppmm vs. ≈ 100 ppmm in the tropics: (Sun2023

& Lindzen, 1993)). The region of rapid fall-off in water vapor mixing ratio is known as2024

the hygropause.2025

The contrast in humidity between the troposphere and the mesosphere results from2026

the large-scale temperature structure of the atmosphere, in which the atmospheric tem-2027

perature minimum is at the tropopause and lower stratosphere. Any excess water be-2028

yond the point of saturation will condense to liquid and ice, which may precipitate. Thus,2029

moist air is freeze-dried to the equilibrium water vapor concentration at the ambient tem-2030

perature. At the temperature minimum of the tropopause and the lower stratosphere,2031

an “atmospheric cold trap” forms. The contrast in humidity between the surface and the2032

upper troposphere partly arises from the same mechanism. Therefore, relatively slow ver-2033

tical mixing of water vapor by large-scale processes such as the Hadley cell or synoptic-2034

scale systems will be set by the vertical thermal structure of the atmosphere, which radiative-2035

convective models can estimate approximately (A. A. Pavlov et al., 2000).2036

Mesoscale processes also have some impact on water vapor transport. Strong ver-2037

tical motions in buoyant moist convection can transport ice to higher altitudes, evad-2038

ing “cold trap” effects. In some cases, moist convection can “overshoot” the tropopause,2039

injecting large amounts of water ice into the stratosphere over an areally limited region.2040

If this water ice sublimates in the stratosphere, the stratosphere is hydrated locally by2041

the same order as the background stratospheric water vapor concentration (Grosvenor2042

et al., 2007; Liu et al., 2010). If overshooting moist convection were more intense and/or2043

more efficient at transporting water ice to the stratosphere, the contrast between tro-2044

pospheric and mesospheric water vapor concentrations could be reduced. (We assume2045

that the increase in water vapor due to overshooting convection is greater than the de-2046

crease in water vapor due to mixing resulting from downdrafts of overshooting convec-2047

tion.)2048

Methane does not condense at atmospheric temperatures, which reduces the surface–2049

mesosphere contrast considerably (1.8 ppm vs. 0.1 ppm) (Summers et al., 1997). It is2050

slowly dissociated in the stratosphere and mesosphere, so its composition in the upper2051

atmosphere will be controlled by the relative balance between chemistry and vertical trans-2052

port in the stratosphere and mesosphere as well as the intensity of stratospheric-tropospheric2053

exchange.2054

4.2.1.2 Mars On present day Mars, the vertical structure of water vapor differs2055

greatly from that of the Earth. The main source and sink of water vapor is sublimation2056

from and condensation on the polar caps. A seasonally varying hygropause is apparent2057

at a characteristic height of 40 km above the surface in the tropics (Clancy et al., 2017;2058

Heavens et al., 2018). Yet detached water vapor layers are frequently observed as high2059

as 80–90 km above the surface (Maltagliati et al., 2013). This structure partly reflects2060
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differences in the atmospheric temperature structure. The tropical middle atmosphere2061

is not separated from the lower atmosphere by a strong thermal inversion analogous to2062

the stratosphere (except perhaps in global dust storms, when the entire atmosphere is2063

effectively inflated by the heating of dust). Thus, to first order, the depth of the Hadley2064

cell sets the hygropause height (Richardson & Wilson, 2002). Detached water vapor lay-2065

ers originate from mesoscale transport processes, such as injection within dust plumes2066

in Mars’s well-known dust storms (Heavens et al., 2011; Maltagliati et al., 2013; Spiga2067

et al., 2013; Heavens et al., 2015; Heavens et al., 2018; Fedorova et al., 2018) or associ-2068

ated with topographically-driven circulations, with or without dust storm activity (Rafkin2069

et al., 2002; Michaels et al., 2006; Heavens et al., 2015; Heavens et al., 2018). In regional2070

and global dust storms, convective transport of water to the middle atmosphere within2071

dusty air can be so strong that we cannot really speak of detached water vapor layers;2072

the mean hygropause of the planet can rise to 80 km (a change mostly caused by ascent2073

in the tropical hygropause) (Fedorova et al., 2018; Heavens et al., 2018).2074

While a variety of observations suggest the presence of atmospheric methane, suf-2075

ficiently little is known about it to make discussion of its surface sources and transport2076

to the upper atmosphere entirely speculative (Formisano et al., 2004; Mumma et al., 2009;2077

Webster et al., 2015).2078

4.2.1.3 Venus On present day Venus, the main sources of water to the atmo-2079

sphere are believed to be cometary and meteoritic impacts and volcanic outgassing in2080

uncertain proportions (F. Taylor & Grinspoon, 2009). The possibility of ongoing volcanic2081

outgassing has been bolstered by observations of temporal and spatial variability in at-2082

mospheric SO2 and transient NIR emission from a prominent rift zone (Marcq et al., 2013;2083

Shalygin et al., 2015).2084

Estimated lower atmospheric (5–45 km) water vapor concentrations from spectro-2085

scopic observations range from 25–50 ppmv with typical uncertainties at the 20% level2086

(S. Chamberlain et al., 2013). There is an outlier estimate of 200 ppmv in the 30–45 km2087

altitude range (J. F. Bell et al., 1991). While this value is consistent with some in situ2088

measurements by entry probes, the entry probe data is mutually inconsistent and gen-2089

erally mistrusted (Meadows & Crisp, 1996). Current observations are unable to probe2090

water vapor concentrations within 5 km of the surface, but it is speculated that water2091

vapor might be depleted near the surface because of reactions with surface rocks (Fegley,2092

2003; S. Chamberlain et al., 2013).2093

Water vapor concentrations above the troposphere are 3–11 ppmv near the top of2094

the sulfuric acid cloud deck at 60–70 km altitude and likely decrease to 1 ppmv at 1002095

km (Fedorova et al., 2008, 2016). Water vapor at these altitudes would be vulnerable2096

to photochemical loss processes. Water vapor in the middle atmosphere is most abun-2097

dant near the Equator, a phenomenon that suggests convective transport of water va-2098

por from the lower atmosphere into the middle atmosphere (Fedorova et al., 2016). Oth-2099

erwise, the water vapor distribution in the middle atmosphere appears quite sensitive2100

to the altitude of the cloud deck, suggesting that the sulfuric acid cloud deck is an ef-2101

fective hygropause for Venus due to the formation of sulfuric acid from H2O and SO2.2102

Venus’s atmosphere does not contain measurable amounts of methane at present2103

measurement sensitivities (F. Taylor & Grinspoon, 2009). Early in situ measurements2104

by Pioneer Venus suggested atmospheric methane concentrations were up to 6000 ppmv,2105

but these measurements likely were contaminated by reactions within the measurement2106

apparatus itself (Donahue & Hodges, 1993). Yet some methane input from meteoritic2107

and cometary sources is possible. If the mantle of Venus has remained sufficiently reduc-2108

ing, a source of methane from volcanic outgassing is possible as well.2109

4.2.1.4 Titan The principal hydrogen-bearing species in the present day atmo-2110

sphere of Titan is CH4. The total amount in the atmosphere as vapor exceeds the amount2111
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present on the surface as liquid by at least a factor of 2 (Lorenz et al., 2008). Most hydrogen-2112

bearing species in Titan’s atmosphere, such as H2 and various organic compounds, are2113

likely derived from photochemical reactions involving CH4 (Owen & Niemann, 2009; D. F. Stro-2114

bel, 2012; Krasnopolsky, 2014), though an H2 source derived from serpentinization also2115

has been proposed (e.g. Atreya et al. (2006)). An exception is H2O, which is likely sup-2116

plied to Titan by ablation of micrometeorites and/or plume material from Enceladus (Lara2117

et al., 1996; Coustenis et al., 1998; Dobrijevic et al., 2014). The ultimate source of methane2118

on Titan is believed to be episodic outgassing from Titan’s deep interior (Lorenz et al.,2119

1997; Tobie et al., 2009; Wong et al., 2015).2120

CH4 concentrations near the surface are ≈ 50000 ppmv, decrease to ≈ 15000 ppmv2121

in Titan’s stratosphere (above 32 km) (Niemann et al., 2005) and remains uniformly mixed2122

at that up to altitudes near the homopause region ≈ 850 - 1000 km where diffusive sep-2123

aration causes the relative fraction of methane to increase with altitude up to the exobase2124

(Yelle et al., 2008; Johnson et al., 2010; J. M. Bell et al., 2014). The major barrier to2125

transport is an atmospheric cold trap occasionally broken by deep convective clouds of2126

CH4 (Griffith, 2009).2127

4.2.2 The Past: Coupling, Unusual Escape Regimes, and Current Ev-2128

idence for Atmospheric Mass and Upper Atmospheric Composi-2129

tion2130

4.2.2.1 Earth In the course of the Earth’s early history, the upper mantle was2131

gradually oxidized by means of coupled pathways: (1) reductants in the upper mantle2132

were emitted into the atmosphere by volcanic processes, were transported into the up-2133

per atmosphere by processes at mesoscale to planetary scales, and escaped the Earth sys-2134

tem by a mixture of physical and chemical processes in the upper atmosphere, result-2135

ing in an unbalanced loss of reducing power from the upper mantle; and (2) weathered2136

(hydrated) or even oxidized crust was recycled into the mantle, where water reacted with2137

mantle material to form hydrogen, a light, readily escaping reductant (Holland, 1984).2138

This period of mantle oxidation closed when the mantle was sufficiently oxidized that2139

water-hydrogen conversion in the mantle ceased (Kasting et al., 1993).2140

These processes are mediated by escape itself. Water that is vertically transported2141

into the upper atmosphere photodissociates, leading to the production of H2 and O2 abi-2142

otically (Lewis et al., 1983). The H2 is highly vulnerable to escape, transporting reduc-2143

ing power out of the system, while the O2 may mix down into the lower atmosphere and2144

oxidize the crust. Simultaneously, precipitation of atmospheric water to the surface hy-2145

drates the crust.2146

Planets like present day Earth exchange water with the mantle in the course of plate2147

tectonic processes such as subduction, which are relatively efficient. If Venus’ surface were2148

wetter, some exchange would take place during putative resurfacing events (Strom et al.,2149

1994). Similar speculations on might be made about Mars’ volcanic activity. However,2150

crustal recycling on both Mars and Venus are thought to be much weaker than the Earth2151

and, on average, weaker in the past (S. R. Taylor & McLennan, 2009).2152

However, there are signs from the extant record of early Earth history that plate2153

tectonics may not be the upper limit for crustal recycling rates on the Earth. Instead,2154

the Earth may have experienced a “heat-pipe” phase (W. B. Moore & Webb, 2013). In2155

this phase, persistent mafic to ultramafic volcanism regularly re-surfaced the Earth. Both2156

crustal material and surface water are cycled back into the mantle through repeated erup-2157

tion and burial of older flows. The heat pipes were associated with greater eruptive vol-2158

umes of volcanic material as well as faster crustal recycling than plate tectonics. Obser-2159

vations of the other terrestrial bodies in the Solar system are also consistent with heat2160

pipe operation in their early phases (Moore et al., 2017).2161
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Therefore, the upper mantle of the Earth began in a far more reduced state than2162

today and may have degassed far more intensely than today. An important consequence2163

of the reduced state of the Earth’s early mantle (without enhanced degassing) would have2164

been higher proportional degassing of carbon from the interior in the form of CH4 as op-2165

posed to CO2. In addition, formation of H2 from H2O in the mantle would have resulted2166

in significant emission of H2 to the atmosphere (Kasting et al., 1993). High concentra-2167

tions of atmospheric H2 would have interrupted the OH radical pathway for CH4 oxi-2168

dation. Both gases have a demonstrable greenhouse effect (A. A. Pavlov et al., 2000; Wordsworth2169

& Pierrehumbert, 2013), which enhances near-surface water vapor abundance. And ab-2170

sorption of visible/near-infrared radiation by CH4 strongly heats the lower stratosphere2171

(A. A. Pavlov et al., 2000). Based on radiative-convective simulations with variable CH42172

values, (A. A. Pavlov et al., 2000) argued that there would be a direct relationship be-2173

tween a more reduced mantle, a warmer “cold trap”, deeper vertical mixing of water va-2174

por, weaker contrast in water vapor concentrations across the hygropause, enhanced wa-2175

ter vapor photolysis, and oxygen production in the upper atmosphere.2176

As in the present day, CH4, unlike H2O, would not condense at Earth atmosphere2177

temperatures. Therefore, under a variety of “cold trap” conditions, CH4 from the pu-2178

tative reduced mantle source would diffuse or advect beyond the hygropause to altitudes2179

at which it will photolyze to produce H2 (but not O2).2180

Speculations that H2O and CH4 would react to form an organic haze (e.g., C4H22181

and C5H4), which would oppose any CH4 or H2 greenhouse effect, challenge this picture2182

(Pavlov et al., 2001; Haqq-Misra et al., 2008). However, recent simulations of this aerosol2183

suggest that it would be optically thin in the visible but optically thick in the ultravi-2184

olet. The haze would have little effect on greenhouse warming but shield the atmosphere2185

below it from photolysis (Wolf & Toon, 2010) (and may affect the Xenon isotopic ratio,2186

Section 3.4.2.3).2187

At the same time, A. A. Pavlov et al. (2000)’s simulations greatly simplify quan-2188

titative treatment of chemistry, transport, and hydrogen escape. As is noted, “[a figure2189

which shows the relationship between CH4 flux and atmospheric concentration] is some-2190

what deceptive in that it implies that atmospheric CH4 concentrations can be calculated2191

by specifying the surface CH4 flux.” One example of a complication is that higher wa-2192

ter vapor abundance in the atmosphere will reduce the atmospheric concentration of CH42193

by providing an abundant source of OH radical. The source of CH4 of the Early Earth2194

has also been suggested as being biological of origin, and a possible biosignature (Arney2195

et al., 2016).2196

Another distinct type of hydrogen escape regime might occur if the entire surface2197

were glaciated, as is speculated to have occurred during portions of Paleoproterozoic and2198

Neoproterozoic time on the Earth. This regime has been invoked to explain mysterious2199

rises in atmospheric pO2 (O2 partial pressure) during the deglaciation from Snowball events.2200

pO2
climbed to 10% or even close to present-level pO2

in the aftermath of the Pa-2201

leoproterozoic Snowball (Barley et al., 2005). However, the connection between an in-2202

crease in atmospheric oxygen and the Paleoproterozoic glaciation is disputed (Hoffman,2203

2013). It is entirely possible that the glaciations preceded the rise in oxygen by ≈ 1002204

million years. pO2 then dropped to 1-3% before rising again to 5-18% in the Neoprotero-2205

zoic, a time when the connection between deglaciation and the oxygen rise is better es-2206

tablished (Fike et al., 2006; Scott et al., 2008; Canfield et al., 2007, 2008; Halverson et2207

al., 2009; Sahoo et al., 2012). This higher level of pO2
coincided with the first appear-2208

ance of metazoans in the rock record at around 600 Ma (Canfield et al., 2007), and with2209

the end of the Cryogenian era of Snowball Earth glaciations.2210

Simple models of atmospheric chemistry suggest that the unusually cold conditions2211

of an entirely ice-covered Earth would favor the production of H2O2 in the atmosphere2212
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(Liang et al., 2006). As in present day Antarctica, this H2O2 would be incorporated into2213

ice. During deglaciation, this H2O2 would enter an ocean rich with Fe and Mn, poison-2214

ing existing anaerobic organisms while creating the selection pressure for the develop-2215

ment of oxygenic photosynthesis (Kopp et al., 2005; Liang et al., 2006). Oxygen limi-2216

tation thereafter then would be due to oxidation and precipitation of Fe and Mn out-2217

competing oxygen production by nitrogen-limited early photosynthetic autotrophs (Liang2218

et al., 2006). The dependence of this mechanism on the composition and emission rate2219

of mantle effluents (and thus geological activity/upper mantle oxidation state) is unknown.2220

And this question does figure in interpreting and extrapolating from the Snowballs, be-2221

cause the Earth’s mantle was likely more oxidized during Neoproterozoic time than Pa-2222

leoproterozoic time.2223

An additional variable to consider for the past is the identity and abundance of the2224

principal atmospheric constituent (N2 at present). Models consistent with abundant liq-2225

uid water that assume a Faint Young Sun either assume higher atmospheric pressure from2226

gases such as N2 (e.g. Goldblatt et al. (2009)) or assume higher concentrations of green-2227

house gases such as CH4, H2, and CO2, whose ability to warm climate is strongly de-2228

pendent on pressure broadening (e.g. Kasting et al. (1984)). Higher atmospheric pres-2229

sure also can reduce surface temperature as a result of increased molecular scattering2230

of incoming solar radiation (Goldblatt et al., 2009; Poulsen et al., 2015). However, the2231

sign of the net effect is unclear. Radiative-convective model simulations suggest that in-2232

creased N2 or O2 will result in net positive radiative forcing even at pCO2
much less than2233

at present (Goldblatt et al., 2009; Payne et al., 2016). Simulations with a GCM that in-2234

cluded clouds suggest that the net radiative forcing can be negative as a result of cloud2235

feedback effects at higher atmospheric pressure (Poulsen et al., 2015).2236

Data from the geological record about past atmospheric pressure has wide uncer-2237

tainties but may argue against the Earth’s atmosphere being much thicker in the Archean.2238

A recent study of gas bubbles in an Archean (2.7 Ga) lava flow near paleo-sea level by2239

Som et al. (2016) suggests that the Earth’s atmospheric pressure was no more 50% of2240

present and most likely ≈ 25% of present at that time. Raindrop-based reconstructions2241

also have been attempted. Som et al. (2012) suggested an upper bound for atmospheric2242

density of approximately twice present, but Kavanagh and Goldblatt (2015) argued that2243

raindrop size was more sensitive to rainfall rate than atmospheric pressure and suggested2244

an upper bound for atmospheric density of approximately 11 times present. It is to be2245

noted that the work of Airapetian et al. (2016) and its extension (Gronoff et al. in. prep.)2246

consider an alteration of the atmospheric chemistry by SEP events to create N2O, which2247

increase the temperature of the Early Earth even for atmospheric pressure lower than2248

0.5 bars.2249

Modeling suggests that if were possible to keep liquid water stable in a low pres-2250

sure N2 atmosphere (200 hPa), water transport by moist convection to the middle and2251

upper atmosphere would be extremely efficient, resulting in high rates of water photol-2252

ysis (Kleinböhl et al., 2018). The resulting atmosphere evolves to a state in which abi-2253

otic oxygen dominates the atmosphere, unless there is a strong sink of oxygen at the sur-2254

face (Kleinböhl et al., 2018). Such a mechanism could explain bursts of oxygenation co-2255

incident with the formation of banded iron formations, but the model relies on a one-2256

dimensional parameterization of moist convective adjustment (Kasting, 1988) that re-2257

quires testing in a framework that more explicitly resolves the physical processes.2258

4.2.2.2 The Moon The exosphere of the Moon is interesting in several ways: 1-2259

it is easier to experiment on it: we can study the decay of artificial gases released on it2260

by lunar lander in function of the solar activity (Vondrak, 1974; Vondrak et al., 1974;2261

Vondrak, 1992); 2- it has the same solar wind conditions as the one measured for space2262

weather at Earth, and therefore studies such as the impact of CME on it are easier (Killen2263

et al., 2012); 3- we have samples from the Moon, and we can study the possibilities of2264

ancient atmosphere from it.2265
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The hypothesis of a secondary atmosphere due to volcanic activity at the moon has2266

been proposed in (Needham & Kring, 2017) based on the analysis of samples from the2267

Apollo mission. It is possible that an an atmosphere with up to a few mb at the surface2268

was created and stable for 1000s of years. In Aleinov et al. (2019), a study of the ther-2269

mal escape was made, showing the limitations of the creation of such an atmosphere, as2270

well as the climatic conditions an atmosphere would have had. These conditions are in-2271

teresting since they show the transport of volatiles to the poles. it would be possible to2272

find some clues of that atmosphere in samples from the poles.2273

4.2.2.3 Mars When Mars had an intrinsic magnetic field early in its history, its2274

hydrogen-bearing species fluxes to the upper atmosphere likely occupied a phase space2275

that could be described by the early Earth or even present day Earth phase spaces (Alho2276

et al., 2015). Transition to the regime observed today may have depended on the tim-2277

ing of magnetic field loss. This transition has so far been modeled as a primarily CO22278

atmosphere condensing to form at least one permanent ice cap (Soto et al. (2015) and2279

references therein). The principal unknown about the last billion years or so is how fluc-2280

tuations in Mars’ obliquity have changed the location of surface and sub-surface ice reser-2281

voirs, which could affect the water cycle, the total atmospheric mass, and the dust cy-2282

cle (Fastook et al., 2008; Madeleine et al., 2009). A lot of questions have also been asked2283

about the effect of the magnetic field in the loss of the atmosphere. Since observation2284

shows that similar amount of heavy ions are lost above magnetic fields at the current2285

Mars than above non-magnetized parts (Sakai et al., 2018), it may be that it influence2286

has been greatly exaggerated in previous studies.2287

Like Earth, there are some constraints on past atmospheric mass for Mars. The2288

atmosphere filters the impact crater population by ablating the lower end of the bolide2289

size distribution (Jakosky et al., 2017). On this basis, (Kite et al., 2014) proposed that2290

Martian paleopressure was never higher than ≈ 3 bar (and likely much less). A higher2291

palopressure would have led to a collapse of the atmosphere. From meteoritic observa-2292

tion constraints, and considering that some isotopic reservoirs can be replenished by me-2293

teoritic/cometic falls Kurokawa et al. (2018) slightly modified the history presented in2294

Jakosky et al. (2017) and suggested a minimum paleopressure of 0.5 bar. Jakosky et al.2295

(2018) suggested that Mars lost more than 0.8 bar of CO2 or the equivalent of 28 m of2296

water.2297

An interesting point at Mars is the observation of solar-wind H deposition in the2298

thermosphere (Halekas et al., 2015), this deposition follows a charge-exchange process,2299

and could have led to changes in D/H ratio if large enough in the Early Solar system;2300

however, it is probable that this deposition would have been counteracted by hydrody-2301

namic escape.2302

4.2.2.4 Venus Venus, at some point during its history, likely occupied an addi-2303

tional phase space with respect to coupling between the surface and the exosphere: that2304

of the runaway greenhouse (Ingersoll, 1969). However, this regime is somewhat analo-2305

gous to the elimination of the “cold trap” by absorption of visible/near-infrared radi-2306

ation by CH4. The twist is that it is the infrared greenhouse effect of H2O that breaks2307

the cold trap.2308

The effect can be conceptualized semi-quantitatively. Consider a layer of the at-2309

mosphere at which vertical mixing from the surface is relatively efficient. Now raise the2310

surface temperature by some amount by introducing a higher amount of solar insulation.2311

To first order, the relationship between water vapor concentration and temperature should2312

be exponential, following the Clausius-Clapeyron relation that defines the saturation curve.2313

In the Earth’s atmosphere, however, it is observed that the effects of vertical mixing and2314

pseudo-adiabatic precipitation processes reduces the sensitivity of mean pH2O to surface2315

temperature in the lower troposphere (Held & Soden, 2006) but may enhance it in the2316

upper troposphere (Gettelman & Fu, 2008). Thus, water vapor concentration will increase2317
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exponentially in response to the increase in surface temperature. The layer’s tempera-2318

ture likely will increase as well in response to the increase in surface temperature. (This2319

is easiest to visualize at the surface itself.)2320

At the same time, the increase in water vapor will increase the infrared opacity of2321

the layer, reducing outgoing longwave radiation from the layer (and below the layer). Yet2322

the increase in the layer’s temperature will result in increased outgoing longwave radi-2323

ation according to Stefan-Boltzmann’s Law. At low temperatures and water concentra-2324

tions, it is easy to see that the principal change in outgoing longwave radiation will be2325

due to the increase in layer temperature. However, as temperatures increase, the expo-2326

nential dependence of water vapor on temperature eventually will overcome the quar-2327

tic dependence of outgoing longwave radiation on temperature. Thus, for any sufficiently2328

abundant infrared absorber condensing and evaporating, there is some critical point at2329

which outgoing longwave radiation in the layer will decrease rather than increase with2330

surface temperature, initiating a runaway positive feedback loop. Warming of the tro-2331

posphere eventually results in its expansion and enhancement of vertical transport in the2332

middle and upper atmosphere. For water, this runaway loop is slowed by UV hydroly-2333

sis of water in the middle and upper atmosphere and stopped by exhaustion of the sur-2334

face reservoir, a process that Ingersoll (1969) argued had occurred on Venus (rather than2335

Earth or Mars) as a result of the former’s higher insulation.2336

This escape regime has been simulated by Kasting and Pollack (1983); Kumar et2337

al. (1983); Chassefière (1996a, 1996b). None of these simulations challenge the basic mech-2338

anism but emphasize: (1) that hydrolysis rates will be dependent on the oxidation state2339

of the atmosphere and buffering by chemical reactions in the crust and (2) that the EUV2340

flux of the Sun (a major unknown early in its lifetime) is the principal control on the rate2341

of escape. Another interesting conclusion is that the present D/H ratio in Venus’ atmo-2342

sphere must be a consequence of a period of reduced escape rates that closed the run-2343

away greenhouse phase. In the ideal runaway greenhouse escape regime for Venus, D would2344

have been stripped off as easily as H (Kasting & Pollack, 1983). The question of when2345

that runaway escape happened is difficult as it was suggested that Venus could have been2346

able to sustain liquid water up to a ≈Gyr ago (Way et al., 2016).2347

4.2.2.5 Titan The large size of the atmospheric reservoir of methane in compar-2348

ison with the surface reservoir of methane and methane’s photochemical products (Lorenz2349

et al., 2008) strongly suggests that a methane-rich atmosphere for Titan has been a rel-2350

atively unusual condition during Titan’s history (Lorenz et al., 1997). Once a sufficient2351

amount of time has passed, photochemistry will refine methane to organic compounds2352

that will form surface deposits of liquid and solid higher order hydrocarbons. The re-2353

sulting atmosphere will lose the portion of its greenhouse effect driven by pressure broad-2354

ening of methane, and Titan will lose its stratosphere (Wong et al., 2015). Any hydro-2355

gen escape presumably will be restricted to photochemical loss of water derived from mi-2356

crometeorite ablation, etc.2357

Yet the presence of CH4 in Titan’s atmosphere likewise implies occasional, episodic2358

release of methane into the atmosphere by volcanism (Tobie et al., 2009). Depending on2359

the exact nature of this volcanism, Titan could have experienced a more intense hydro-2360

gen escape regime in the past.2361

5 Escape at Exoplanets2362

Since their first detections around stars in the mid-late 1990s (Mayor & Queloz,2363

1995), a particular interest has been set to the atmospheric escape of exoplanets. In par-2364

ticular, the intense heating and radiation at close-in orbit planets, such as the planets2365

orbiting M-dwarfs in the Habitable Zone (HZ), or the giants close to their host stars (the2366

so-called “hot-Jupiters” that we name close-in giant in the following since the nature of,2367
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notably, their atmospheric escape cannot be considered as Jupiter-like), may lead to very2368

high atmospheric mass-loss rate and potentially a complete evaporation of the planetary2369

atmosphere (in addition to potential atmospheric stripping by the stellar wind) (e.g. Lammer,2370

Selsis, et al. (2003); Cohen et al. (2015)).2371

5.1 Current observations and modeling2372

5.1.1 Close-in giants2373

Observations of the close-in giant planet HD 209458 have revealed absorption in2374

the Lyman α line, which associated with the existence of neutral Hydrogen (H I) at or2375

above the estimated Rosch lobe (Vidal-Madjar et al., 2003, 2004). The fractional differ-2376

ence of in- and out-of-transit flux was wavelength dependent, with much of the flux de-2377

crease occurring at wavelengths more than 100 km s−1 from line center. Though the atom-2378

photon cross section is much larger at line center, and one would expect much larger tran-2379

sit depths there, interstellar absorption and geocoronal emission contaminate wavelengths2380

< 50 km s−1 from line center, and only measurements further from line center may be2381

trusted. Later observations have indicated the existence of heavier atoms, such as Ca2382

II and O I at this altitude (Ehrenreich et al., 2008; Linsky et al., 2010). These observa-2383

tions suggest that the planet has an inflated atmosphere with a high mass-loss rate of2384

the order of 107 kg s−1, and an escape velocity of the order of 100 km s−1.2385

The current paradigm assumes that close-in giants lose mass from their atmospheres2386

due to hydrodynamic escape (Ben-Jaffel, 2007, 2008; Vidal-Madjar et al., 2008; Linsky2387

et al., 2010). However, it is not obvious what is the mass-loss rate and the escape speed,2388

what is the altitude of the observations, and what is the overall structure of the inflated2389

atmosphere. It has also been suggested that due to the fast orbital motion, the extended2390

atmosphere may have a comet-like tail (Linsky et al., 2010; Cohen et al., 2011).2391

A number of models have been developed to study atmospheric escape from close-2392

in giants (Baraffe et al., 2004; Yelle, 2004; Garćıa Muñoz, 2007; Lecavelier Des Etangs,2393

2007; Schneiter et al., 2007; Penz et al., 2008; Murray-Clay et al., 2009; Tian, 2009; Stone2394

& Proga, 2009; Adams, 2011; Trammell et al., 2011; Koskinen et al., 2014), where most2395

of the models assumed that the intense hydrodynamic escape is due to photo-evaporation2396

by the intense stellar radiation. The models listed above (partial list) vary in the equa-2397

tions they solve, their assumptions about the energy sources and distributions, their com-2398

plexity, and the way they are solved. The mass-loss rate obtained by these models cov-2399

ers few orders of magnitude. Therefore, despite of the vast modeling effort, the nature2400

of atmospheric escape from these close-in giants is not fully understood yet. The efforts2401

by (Tanaka et al., 2014, 2015) to model atmospheric escape from close-in giants have to2402

be noticed since the model is based on MHD wave heating leading to ionospheric out-2403

flow. This is a case of the more general ionospheric outflow described in section 2.4.2404

In the case of HD 209458b, the implies the existence of a large “corona” or “cloud”2405

of atomic hydrogen. This cloud must be optically thick to Lyman-α at wavelengths >2406

100 km s−1 from line center out to several (optical continuum) planetary radii, approach-2407

ing the planet’s Hill radius, beyond which stellar tides dominate over the planet’s grav-2408

ity. There are two models to account for this large hydrogen density at such high alti-2409

tudes.2410

The first model (Yelle, 2004) is that the absorption is due to thermal particles in2411

the planet’s upper atmosphere. Photoelectric heating from hydrogen ionization, balanced2412

by slow adiabatic expansion, raises the temperature to T ∼ 104 K. The resulting large2413

scale height implies a slow outward decrease of the density and hence large density at2414

high altitude. In this model, the thermal speed of the atoms is vth ∼ 10 km s−1 and2415

absorption at > 100 km s−1 implies a large column of hydrogen is needed to overcome2416

the small cross section at > 10 Doppler widths from line center.2417
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The second model (Holmström et al., 2008) relies on fast hydrogen atoms (ENA),2418

which must move at speeds comparable to the line width. The large atomic speeds im-2419

ply that vastly smaller columns are needed to attain optical depth unity. The thermal2420

hydrogen speeds, and bulk velocity in hydrodynamic escape, are expected to be only ∼2421

10 km s−1. The production of fast hydrogen atoms is through charge exchange with vth '2422

vbulk ∼ 100 km s−1 stellar wind protons. There are variants of this model in which atoms2423

are ballistically fired outward from the planet and interact with the stellar wind (Holmström2424

et al., 2008) and also models in which the mean free paths of the atoms are small, and2425

the interaction occurs in a hydrodynamic mixing layer (Tremblin & Chiang, 2013).2426

These models are in a sense not independent, but rather focus on two separate as-2427

pects of the same problem, since both thermal and non-thermal hydrogen may contribute2428

to the absorption. In particular, the density of hydrogen atoms which may interact with2429

the stellar wind (model 2) is set by the outer limit of the upper atmosphere (model 1).2430

It has to be noted that, even if the models are complementary, the conclusion drawn from2431

a peculiar aspect are not totally the same: the ENA model is consistent with a much smaller2432

escape than the thermal escape model.2433

5.1.2 Rocky planets2434

In the case of atmospheric escape from terrestrial/rocky planets, some modeling2435

work has been done (Tian, 2009; Wordsworth & Pierrehumbert, 2013; Kislyakova, John-2436

stone, et al., 2014; Cohen et al., 2015; Gao et al., 2015; Dong et al., 2017), but no reli-2437

able observations have been obtained so far, mainly due to the large size of the telescopes2438

needed for the measurements (Gronoff, Maggiolo, et al., 2014), except in the case of ex-2439

tremely close-in rocky planets such as the disintegrating planet KIC 12557548b (Rappaport2440

et al., 2012).2441

Major efforts went to model the planets in the HZ of Proxima Centauri B and Trap-2442

pist 1. The work of Garcia-Sage et al. (2017) shows that a Earth-like planet at the lo-2443

cation of these planets would suffer an enhanced ion escape, leading to the loss of the2444

equivalent of the Earth’s oceans over a billion years; the location of many of the plan-2445

ets inside the Alfvén surface (section 5.2) further prevents the existence of a sustainable2446

atmosphere. It means that, to sustain habitability in the sense of liquid water existing2447

at the surface, such planets would require a large amount of volatiles in their initial in-2448

ventory, and that they should not lose them in the active young years of their host star.2449

To that extent, work has been done to look at the hydrodynamic escape of planets in2450

the habitable zone of their active stars showing that even N2 would be hydrodynamic2451

(Johnstone et al., 2019). This theoretical work has been confirmed by the recent work2452

of Kreidberg et al. (2019) that was able to show, using NASA/Spitzer observations, that2453

the exoplanet LHS 3844b has no thick atmosphere: such an atmosphere would have been2454

able to reduce the temperature difference between the nightside and the dayside of the2455

planet compared to the observations. The conclusion of that problem is that, while their2456

are the easiest target for detecting habitable exo-atmospheres with instruments such as2457

the James Webb Space Telescope (JWST), planets in the HZ of red-dwarfs may not be2458

able to sustain them and therefore would be the worst target.2459

5.2 The Stellar Wind and the Alfvén Surface2460

The classical HZ of stars fainter than the Sun resides closer to the star. In partic-2461

ular, the HZ of M-dwarf stars is located at planetary orbits of less than 0.1AU. While2462

the size of M-dwarf stars is about 0.1−0.3R�, their magnetic fields seemed to be over-2463

all stronger than the field of K, and G stars (Reiners & Basri, 2007). As a result, their2464

Alfvén surface, at which the stellar wind exceeds the Alfvén speed and open the coro-2465

nal field lines into the interplanetary space, is more extended than that of the Sun.2466
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Figure 11. Dots represent the average Alfvén Surface size as a function of average magnetic

field strength from MHD simulations. The line represents the trend derived from them.

Since the Alfvén surface can be a measure to the boundary between the stellar corona2467

and the interplanetary space (filled with the fully developed stellar wind), planets resid-2468

ing within the Alfvén surface could be considered to be inside the corona. In addition2469

to the extreme temperatures that can exceed a million degrees, planets in this regime2470

will orbit in densities and magnetic fields that can reach 2-4 orders of magnitude higher2471

than those at Earth (Garraffo et al., 2016b) and, as a result, experience extreme dynamic2472

and magnetic pressures at the planetary orbit. Such space environment conditions (Garraffo2473

et al., 2017) may lead to an Alfvén wings (Io-like) topology of the planetary magneto-2474

sphere, at which a significant fraction of the planetary field is open to the stellar wind.2475

As a result, the planetary atmosphere may be exposed to intense heating due to the in-2476

coming stellar wind energy in the form direct particle precipitation, and Alfvén wave en-2477

ergy that is transmitted by the stellar wind. Additionally, since the planets reside in the2478

sub-Alfvénic corona, some of the Alfvén wave heating that is deposited in the corona may2479

be transferred to the planet. While essentially no work has been done on these processes2480

in exoplanets, the scenario described above may suggest that it is unlikely that these plan-2481

ets are habitable. Therefore, the Alfvén surface might serve as an inner limit2482

at which the HZ can be placed for a given stellar system. The result of the sim-2483

ulations of the distance of the Alfvén surface from its parent star as a function of the2484

average magnetic field of that star is given in Figure 11. The spread in distance for a given2485

magnetic field strength arises from possible differences in the geometric distribution of2486

the magnetic field on the stellar surface. The Alfvén surface is smaller for complex field2487

structures (i.e. higher order in the multipolar expansion) (Garraffo et al., 2016a).2488

6 Developments Needed in Measurements and Modeling of Atmospheric2489

Escape2490

In the context of astrobiology, developments are needed in modeling, observations,2491

and laboratory measurements for being able to observe and characterize rocky exoplan-2492

ets’ atmospheres and for reconstructing the history of the atmospheres of the planets in2493

the Solar system. We review here some of the planned and suggested improvements. For2494

a more comprehensive list of suggestion, white papers submitted to the National Academy of Sci-2495

ence (2019) have a comprehensive list. The JWST, being the astrophysics flagship of the2496

2020s, is shaping the direction of astrobiology research and therefore many currently pro-2497
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posed studies and developments are linked to its targets of choice, the exoplanets around2498

M-dwarfs.2499

6.1 Measurements/Observations2500

The detection of a technosignature, currently searched in radio-waves, would be the2501

ultimate proof of a life that developed outside Earth (J. T. Wright, 2019). The devel-2502

opment of observatories for such endeavor is outside the scope of this study since a mere2503

detection would not provide data on how life developed there, under which conditions,2504

and how it started. To answer these questions, better measurements are needed to un-2505

derstand the Sun and other Stars, laboratory measurements and sophisticated measure-2506

ments are needed for better interpreting our planetary observations, and better instru-2507

ments are needed for looking at exoplanets.2508

Space missions such as CHEOPS (Broeg et al., 2014) and Transiting Exoplanet Sur-2509

vey Satellite (TESS) (Ricker et al., 2015) are expected to find thousands of transiting2510

planets with many terrestrial-like planets including hundreds of super-Earths over the2511

next few years (Fridlund et al., 2016). With the ability to discover transiting exoplan-2512

ets, efforts are being pursued for spectroscopic observations of exoplanetary atmospheres.2513

The National Academy of Sciences (NAS) “Exoplanet Science Strategy” report mandated2514

by the US Congress recommends a direct-imaging telescope as a follow-on to the Wide2515

Field InfraRed Survey Telescope (WFIRST) mission scheduled to fly in the mid-2020’s2516

after the launch of the James Webb Space Telescope (JWST). Large amounts of time2517

are being dedicated on the Hubble and Spitzer space telescopes, as well as major ground-2518

based telescopes (e.g. VLT, Keck, Gemini, Magellan, CFHT, etc.) (Madhusudhan et al.,2519

2016). JWST and European-Extremely Large Telescope (E-ELT) will revolutionize ex-2520

oplanetary spectroscopy. M dwarfs are prime targets for the detection and characteri-2521

zation of terrestrial exoplanets by the JWST, as they are abundant in the solar neigh-2522

borhood and their small radii allow for greater transit signals from Earth-sized exoplan-2523

ets (e.g., (Quintana et al., 2014)). Future spectra with JWST would be of unprecedented2524

precision and resolution which will enable us to derive precise chemical abundances for2525

transiting exoplanets. Our modeling can help constrain future observations in making2526

precise determinations of detectable key species abundances, distributions and under-2527

standing of their processes. The NAS report also recommends that the US National Sci-2528

ence Foundation (NSF) invest more in the future Giant Magellan telescope (GMT) and2529

proposed Thirty Metre Telescope (TMT) now being built in Hawaii and Chile, respec-2530

tively. These telescopes would provide more focused study of exoplanets by using spec-2531

troscopy to seek out signs of free oxygen in their atmospheres. Such a study would be2532

perfect suited for the goals of the astrobiology community.2533

For F and G stars, much of the observing is likely to initially be in the IR so the2534

lower bound to some of the observations are likely to be near the tropopause (outside2535

of H2O bands). For Venus-like exoplanets, this does not present a problem, but for Earth-2536

like exoplanets it may be for F type stars. However, for all K and M type stars, processes2537

of interest governing distribution of key species in atmospheres for these types of detec-2538

tions may be directly observed in the mesosphere and thermosphere. Additionally, there2539

are spectral regions in the UV (and possibly in the visible to IR) where O2 and O3 in2540

the mesosphere/upper stratosphere would dominate remote measurements. Those spec-2541

tral regions would be an ideal target for future observations.2542

6.1.1 Solar and Stellar measurements2543

The capabilities of the JWST mean that the search for biosignature with that ob-2544

servatory is mainly limited to M dwarfs. The increased risk of atmospheric escape due2545

to joule heating in the classical HZ around these stars(Garraffo et al., 2016b) means that2546

it is extremely important to study the activity of these stars. The best way to perform2547
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this is with UV instruments such as STIS on the HST (France et al., 2013). The HST2548

being on its end of life, with no repair mission planned, a mission dedicated to the EUV-2549

XUV measurements on close stars (such measurements would be less affected by inter-2550

stellar H absorption) would be critical to support the modeling and observations of plan-2551

etary atmospheres that could harbor life.2552

The recent observation of a CME around another star (Argiroffi et al., 2019) shows2553

the possibilities of such measurements. However, they should be improved to have a bet-2554

ter idea of the fluxes of particles at other stars and to validate the semi-empirical laws2555

linking flares and CME (Moschou et al., 2019). See also Section 3.4.1.2556

6.1.2 For planets2557

As already emphasized, the knowledge of accurate cross sections is of critical im-2558

portance for the precise evaluation of escape processes. For charge transfer, including2559

double charge exchange, electron capture and stripping, it has been customary to study2560

these processes in the laboratory in two main directions: (i) under the wide umbrella of2561

nuclear research, radiation dosimetry, and the effect of radiation on living tissues (Nikjoo2562

et al., 2012), especially in water and carbon, and (ii) in astrophysics and heliophysics stud-2563

ies, especially rather recently with respect to X-ray production (Wargelin et al., 2008;2564

Dennerl, 2010). In (i), one of the goals is to calculate the stopping power of particles in2565

matter using so-called track-structure Monte Carlo models. In (ii), the applications are2566

numerous, from interstellar medium to cometary X-ray emissions. This has resulted in2567

a rather well-understood behaviour of charge-transfer cross sections at energies typically2568

above 10 keV/amu impactor energy and peaking in the MeV range (Uehara & Nikjoo,2569

2002). At low energies, from a few tens of eV/amu to 10 keV/amu, which are the typ-2570

ical energies for solar wind charge exchange and in planetary ionospheres, the informa-2571

tion is usually fragmented and one is often forced to extrapolate, more or less arbitrar-2572

ily, the shape of the cross sections, leading to high uncertainties (Simon Wedlund, Be-2573

har, Kallio, et al., 2019).2574

Over the two last decades, experimental physicists have punctually studied aspects2575

of solar wind charge exchange. Several international groups have specialised on differ-2576

ent aspects (Dennerl, 2010), for example the UV spectroscopy group at the University2577

of Groningen (Netherlands) for cometary environments (Juhász, 2004; Bodewits et al.,2578

2004; Bodewits, 2007), motivating studies of impacts of fast solar-wind like ions with sev-2579

eral neutral species of planetary atmosphere relevance. The examples of H2O, CH4, CO2580

and CO2 are particularly relevant: (Greenwood et al., 2000, 2004) and (Bodewits et al.,2581

2006) have recently measured with good accuracy charge-transfer cross sections of pro-2582

tons and helium ions on H2O, CH4, CO and CO2 for astrophysics applications. How-2583

ever, these cross sections were not measured in the very low-energy range (below 50 eV2584

for helium ions, below 1.5 keV for protons). Moreover, certain electron capture and strip-2585

ping reaction cross sections have yet to be altogether measured by any group. For ex-2586

ample, the stripping reaction involving hydrogen or helium fast atoms and H2O ((H,He)2587

+ H2O → (H+,He+) + H2O + e−) has never been measured below 20 keV/amu energy;2588

it may prove an important sink for the produced ENAs, and hence may play a role in2589

the escape of such particles into space.2590

A few online databases exist for several charge transfer cross-sections. Despite on-2591

going work made to create online database and recommended sets of cross sections (e.g.2592

Lindsay and Stebbings (2005)), it is left for a supplementary critical review of charge-2593

transfer cross sections in planetary and cometary atmospheres to list all of the available2594

cross sections, their energy range, evaluate their uncertainties and the gaps in our present2595

knowledge and provide a final recommendation that can be used in models and data anal-2596

ysis. Such a specific review is outside the scope of the present article, and we will here2597
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only point out one direction that experimental physics teams are encouraged to further2598

study, that is, the solar wind charge transfer with a neutral atmosphere.2599

Further studies will have to choose colliding species, such as:2600

• Neutrals of interest (non-exhaustive list by increasing atomic/molecular weight):2601

H, H2, He, C, N, O, CH4, OH, H2O, Ne, N2, CO, O2, S, Ar, CO2.2602

• Impactor of interest: H, H+, He, He+, He2+, and high ion states of O and Fe.2603

and to consider the two following points:2604

• Study more systematically all sources and sinks for the ion-ENA system: single2605

and multiple electron capture, single and multiple electron stripping, impact ion-2606

isation by fast atoms and ions.2607

• Measure new energy-dependent cross sections, and uniformly extend current cross2608

section measurements to energies ranging from threshold to 20 keV/amu energy,2609

most relevant for solar wind studies.2610

Other developments are needed for planets, such as Cassini-like missions to the Ice2611

Giants, for a better understanding of the development of these atmosphere and their satel-2612

lite. Such missions would give more insight into the evolution of our Solar system. Im-2613

proved instrumentation could be of use around the Earth to better discriminate the es-2614

caping species: it is currently extremely difficult to know if it is an O or a N that is leav-2615

ing the atmosphere.2616

From that point of view, both for planets and exoplanets, it is interesting to look2617

at the X-Ray emission of the planets: the X-ray halo, created by charge exchange be-2618

tween the exosphere and the incoming solar wind, gives some insight to the composition2619

of escaping species (Krasnopolsky et al., 1997; Dennerl, 2007; Dennerl, 2010). This is of2620

interest both for planets and exoplanets since detecting such an halo in another stellar2621

system would give some direct insight in the composition of the exoplanetary exosphere.2622

6.1.3 For exoplanets2623

Atmospheric escape from exoplanets can be constrained by observations of com-2624

ponents that affect the escape. This includes compositional observations (i.e., transmis-2625

sion spectra), direct observations of escaping material. These observations will pose chal-2626

lenges in the upcoming decades.2627

It is also necessary to observe magnetic fields of exoplanets as they may play a key2628

role in the atmospheric escape. One promising option is to obtain information about ex-2629

oplanets magnetic fields via observed signature star-planet interaction. These signatures2630

include induced chromospheric activity(e.g. Shkolnik et al. (2008); Cauley et al. (2019)),2631

or modulation of coronal radio emissions (Cohen, Moschou, et al., 2018). The direct de-2632

tection of exoplanets magnetic fields (via radio observations of auroral emissions Zarka2633

(2007)) has recently been reported (Vedantham et al., 2020). This has only confirmed2634

the existence of the magnetosphere: more work is needed to be able to estimate (e.g.)2635

the magnetic moment from these observations. The modeling of the interaction of the2636

stellar wind with the planetary magnetosphere of HD 209458b led to the estimation of2637

its magnetic moment (Kislyakova, Holmström, et al., 2014) from the observation of Ly-2638

α. Giant space UV-telescopes would be choice instruments to study the upper atmosphere2639

of rocky exoplanets. Gronoff, Maggiolo, et al. (2014) proposed a technique to detect hy-2640

drodynamic escape of CO2 or O2 rich planets using such laboratories. For the detection2641

of biosignatures, a review of techniques and developments needed can be found in Fujii2642

et al. (2018). The generalization of the detection technique used by Kreidberg et al. (2019)2643
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to detect the absence of an atmosphere around LHS 3844b is also needed to look at the2644

best target for future telescopes.2645

6.2 Modeling2646

To get a comprehensive view of the escape of planetary atmospheres, models have2647

to be developed to take into account all the energetic inputs and all the processes lead-2648

ing to the escape. The outputs of such models have to be compared with observations.2649

Problems lies with inputs parameters for the model (cross sections, observation of e.g.2650

solar flux), the estimation of the uncertainties, but also with the neglected parameters.2651

It is often the case that our instrumentation gives a very detailed view of the conditions2652

on a planet; however, the uncertainties in the input parameters of the models make it2653

challenging to interpret (Sánchez-Cano et al., 2018). The estimation of model uncertain-2654

ties from the different input parameters can be an arduous task (Gronoff, Simon Wed-2655

lund, Mertens, & Lillis, 2012; Gronoff, Simon Wedlund, Mertens, Barthélemy, et al., 2012)2656

and becomes problematic once free parameters are needed, which is often the case in our2657

models of atmospheres, stellar wind, stellar wind interactions, etc. It is possible to be-2658

gin solving the problem by careful comparison with solar system observations, then with2659

extrapolation. On the other hand, the instrumentation may not be sensitive enough to2660

observe interesting phenomenon in exoplanetary atmospheres, or to provide significant2661

model constrains.2662

Future modeling should also include the dynamical response of the planet’s atmo-2663

sphere to dynamic drivers, stellar evolution scale changes of atmospheric escape, as well2664

as self-consistent coupling between the external drivers and the different regions of the2665

atmosphere.2666

6.2.1 Modeling of Solar and Stellar Environments2667

Global models for the solar corona have been developed since the late 1960s by solv-2668

ing the MHD equations. The models are driven by data of the photospheric radial mag-2669

netic field in combination with the potential field method (Altschuler & Newkirk, 1969).2670

In recent years, more self-consistent models have been developed for the solar corona and2671

solar wind (e.g. Lionello et al. (2014); van der Holst et al. (2014); Downs et al. (2016)).2672

These models incorporate coronal heating and wind acceleration in the form of large-2673

scale heating and momentum terms. These large-scale terms are parameterized and tuned2674

to match solar observations, and the models have been successful in reproducing the ob-2675

served density and temperature structure of the solar corona, and the observed struc-2676

ture of the solar wind.2677

The limited availability of observations of photospheric magnetic field of selected2678

stars using the Zeeman-Doppler Imaging technique (Semel, 1980) has led to a growing2679

global modeling in stellar coronae and stellar winds of Sun-like stars (e.g. Cohen et al.2680

(2010); Vidotto et al. (2011); Garraffo et al. (2016b)). However, since the stellar winds2681

of solar analogs cannot be directly measured, the results of these studies are poorly con-2682

straints. Therefore, A better modeling work is needed to constrain the magnitude of the2683

stellar wind, and the coronal structure and temperature for different stars as these pa-2684

rameters define the stellar environments at which exoplanets reside in. In particular, the2685

scaling of the global heating and acceleration parameters needs further investigation and2686

quantification to better understand how these processes scaled with stellar type.2687

6.2.2 Modeling Atmospheric Escape from Exoplanets2688

The current modeling tools for planetary atmospheric escape are built on and tune2689

to known, measurable atmospheres within the Solar system. These tools have already2690

been used to study escape from exoplanetary atmospheres with no significant constraints2691
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of the results. A number of features, which are different from Solar system bodies, has2692

already been identified to be crucial for exoplanetary atmospheric escape, especially in2693

the case of close-orbit planets. However, these features need more self-consistent mod-2694

eling in order to be better defined and quantified.2695

The first notable feature is that atmospheric escape from close-orbit planets may2696

be extremely high, to the point that atmosphere could be completely lost. This is due2697

to extremely high dynamic pressure of the stellar wind near these planets (e.g. Garraffo2698

et al. (2016b); Garcia-Sage et al. (2017); Dong et al. (2017)), the strong orbital varia-2699

tions of the stellar wind conditions, and potential strong heating of the upper atmosphere2700

(e.g. Cohen et al. (2014); Cohen, Glocer, et al. (2018)). A more detailed model is required2701

to quantify the exact energy deposition between the wind and the planetary atmosphere,2702

as current models focus on the stellar wind - magnetosphere interaction, without detailed2703

modeling of the energy and mass transfer to and from the atmosphere itself.2704

The second notable feature is the impact on the planetary upper atmosphere and2705

ionosphere. Current models provided estimation about the Joule Heating assuming spe-2706

cific, constant atmospheric conductance. Since the conductance is the key to determine2707

the heating, further self-consistent modeling is needed to estimate the ionospheric con-2708

ductance. In particular, these calculations are needed for the case where the EUV and2709

X-ray stellar radiation are much higher than the Earth case, and for different atmospheric2710

composition.2711

Finally, close-orbit exoplanets may reside within the Alfvénic point inside the stel-2712

lar corona. Therefore, a direct star-planet interaction is expected to occur. In order to2713

investigate the impact of such a direct interaction between the stellar corona and the planet,2714

a self-consistent modeling that couples the corona and the planetary atmosphere domains2715

is needed.2716

An example of a code in development to address some of these problems could be2717

IAPIC, a particles-in-cell electromagnetic 3D global code, used (Baraka & Ben-Jaffel,2718

2010; Ben-Jaffel & Ballester, 2013, 2014; Baraka, 2016) to produce the magnetosphere2719

(XZ plane) of an earth-like planet. Both plasma density and field lines are shown in Fig-2720

ure 12. It is interesting to see that the PIC simulations naturally recover the field aligned2721

currents (streams of particles appearing between cusps and current sheet in the figure)2722

that drive particles precipitation from the magnetosphere into the polar regions, produc-2723

ing auroral emissions. IAPIC can provide both the angular and energy distributions of2724

the impinging magnetospheric particles into the ionosphere. Charge separation is obtained2725

in the code so that kinetic effects could be obtained while conserving charge (Villasenor2726

& Buneman, 1992). These electrons and ions enter the upper atmosphere to trigger ion-2727

chemistry, heating, and winds. Their fluxes should be used as input in existing ionospheric2728

models to evaluate new species produced and atmospheric inflation due to the extra heat-2729

ing deposit in the auroral region of any exoplanet. The simulation, shown in Figure 12,2730

was carried out with these code parameters for a grid size of 0.1RE and an ion-electron2731

mass ratio of mi
me

= 100.2732

6.2.3 Modeling Exoplanetary Magnetic Field Observations2733

Following the previous sections, it seems like exoplanetary Magnetic fields may play2734

a crucial role in the evolution and sustainability of exoplanets atmospheres. However,2735

these planetary field currently cannot be detected and observed.2736

Modeling of star-planet interaction suggest that this interaction can potentially gen-2737

erate observable signatures that can help to quantify the planetary magnetic field (e.g.2738

the broadening of Ly-α in Kislyakova, Johnstone, et al. (2014) and the soft X-ray emis-2739

sion in Kislyakova et al. (2015)). However, it is clear that a deep understanding of the2740

stellar background field is need for this purpose (Shkolnik et al., 2008; Cohen et al., 2011;2741
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Figure 12. Field aligned current and prototype kinetic simulation of exoplanet. These sim-

ulations are leading to a better understanding of the dynamic within an exoplanetary magne-

tosphere, which is needed for computing both energetic inputs in the atmosphere and loss of

plasma from the magnetosphere.
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Strugarek et al., 2014; Matsakos et al., 2015). In that context, more detailed modeling2742

work on the background stellar environment can support the interpretation of star-planet2743

interaction observations.2744

A number of attempts were made to estimate auroral radio emissions from exoplan-2745

ets (Zarka, 2007; Lazio & Farrell, 2007; Grießmeier et al., 2007; Vidotto et al., 2015; See2746

et al., 2015; Nichols & Milan, 2016; Burkhart & Loeb, 2017; Turnpenney et al., 2018; Lynch2747

et al., 2018). Most of these studies have concluded that such auroral emissions are not2748

detectable with the current radio telescopes. An alternative approach has been recently2749

proposed by (Cohen, Moschou, et al., 2018), who proposed to look for planetary mod-2750

ulations of the ambient coronal radio emission (exoplanet radio transit), instead of look-2751

ing for the planet as a radio source. Using idealized models for the planetary and stel-2752

lar fields, (Cohen, Moschou, et al., 2018) have shown that observing the ambient coro-2753

nal radio intensity, as well as the planetary modulation are more feasible. To better quan-2754

tify and estimate the latter method, further, more detailed modeling work is needed, tar-2755

geting specific planetary systems.2756

7 Discussion and conclusion2757

The problem of atmosphere escape is more complex than just the estimation of Jeans’2758

escape or energy-limited escape. Several outstanding questions in planetary science can2759

be linked to atmosphere escape, from the problem of the faint young Sun to the ques-2760

tion of detection of astrobiological signatures. These problems are leading to a roadmap2761

of future investigations.2762

7.1 Problems still to be resolved2763

7.1.1 The faint young sun paradox2764

The Faint Young Sun paradox was introduced by (Sagan & Mullen, 1972). The para-2765

dox states that based on stellar evolution models, during its earlier stages, the Sun’s lu-2766

minosity was about 30% lower than its current luminosity. As a result, the surface equi-2767

librium temperature of the Earth would be below the freezing point of water. However,2768

many types of geological evidence for the existence of liquid water were found both at2769

Earth and Mars. Therefore, we need to introduce some heating process which increased2770

the average surface temperature of the Earth above zero degrees Celsius.2771

The most prominent solution to the paradox is the existence of greenhouse gases2772

in the atmosphere, which lock the infrared radiation and lead to a global warming of the2773

Earth’s surface (see e.g. Kasting (1993)).An enormous amount of work has been done2774

on this topic in what came to be the science field of “Global Climate Change” (Feulner,2775

2012). It has been suggested tropical cirrus clouds could also enhance the greenhouse2776

effect, being either the main explanation to the FYS paradox or an complementary source2777

to a greenhouse gas (Rondanelli & Lindzen, 2010). Goldblatt and Zahnle (2011) further2778

develop the more general discussion on the effect of clouds on the climate, noting that2779

Rondanelli and Lindzen (2010) base the cirrus solution to the FYS on the “iris theory”2780

which stipulates that the cirrus coverage should increase if the surface temperatures de-2781

crease, which is quite controversial for the current Earth (see e.g. the comparison of the2782

theory with observations by Chambers et al. (2002)), but may be applicable on other at-2783

mospheres. Urata and Toon (2013) applied the theory to the Early Mars, but the work2784

of Ramirez and Kasting (2017) show that there is no room for error when considering2785

cirrus clouds for warming: a large cirrus cloud coverage, greater than 70%, should be present.2786

This explanation is therefore unlikely to be applicable to Mars since such a cloud cov-2787

erage is not realistic: cirrus cloud formation is limited by the parts of the atmosphere2788

that are under-saturated in water. Overall, cloud warming has not been proven to be2789

the solution to the FYS paradox, but it shows the importance of addressing the prob-2790
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lem of cloud formation and humidity transport, and therefore shows the importance of2791

looking at the climate using 3D GCMs. On the other hand, solutions to the FYS para-2792

dox that involve external factors, i.e. particle precipitations or a heavier Sun, are attrac-2793

tive since they could solve the problem both at Mars and the Earth. Some theories sug-2794

gested that cosmic-rays may affect the cloud condensation in the Earth’s atmosphere,2795

with an overall cooling effect when there is fewer GCR (i.e. when the solar activity is2796

higher) (Svensmark & Friis-Christensen, 1997; Shaviv, 2005). Thus, a significant reduc-2797

tion in the cosmic-ray flux may increase the surface temperature of the Earth. These mod-2798

els are controversial both in the cosmic-rays ability to affect the cloud condensation (Kirkby2799

et al., 2011) and the heating efficiency of the process. The results of the CLOUD exper-2800

iment at CERN tend to indicate that the present day cloud formation cannot be effec-2801

tively affected by GCR flux (Dunne et al., 2016; Pierce, 2017): the aerosols responsible2802

for cloud condensation come mainly from the ground, and setting the GCR flux at 0 would2803

only reduce the cloud coverage by ≈10%. It is to be noted that this experiment does in-2804

dicate that GCR can affect aerosol/particle formation (Kirkby et al., 2016; Tröstl et al.,2805

2016), which is something that is also observed on other atmospheres such as Titan (Dobrijevic2806

et al., 2016; Loison et al., 2015). The contentious point is whether or not GCR varia-2807

tion has an influence on the current climate or not. Studies such as Lanci et al. (2020)2808

do not find historical evidence of GCR control of climate while Svensmark et al. (2017)2809

advocates for a strong control of the climate by GCR in the past, with increased GCR2810

leading to aerosols that act as cloud condensation nuclei (CCN), that lead to the forma-2811

tion of clouds, and ultimately heating. It has to be noted that aerosols do not always2812

act as CCN, but can act as coolant (e.g. Trainer et al. (2006)). The work of Airapetian2813

et al. (2016) suggests, on the contrary, that the increased particle flux from the Solar En-2814

ergetic Particle events, more frequent for the Young Sun, led to the creation of green-2815

house gases, that could help resolve the paradox. This interaction between ionizing ra-2816

diation and climate is fundamentally different since it requires extreme radiation rates2817

(compared to present values) to get a significant increase in greenhouse gases. In addi-2818

tion, it does not suppose that CCN is the limiting factor in the creation of clouds: the2819

atmosphere can be under-saturated (Ramirez & Kasting, 2017).2820

In the context of Astrophysics, a solution for the paradox can be found if one can2821

show that the solar mass was about 10% larger than its current mass. This requires the2822

young Sun’s mass loss rate to be very high, with the ability to keep this high mass loss2823

rate for rather long time. As mentioned in Section 4.1, it is unlikely that the mass loss2824

to the ambient solar wind can be sufficient. However, it is possible that due to high ac-2825

tivity levels at early stellar stages, the Sun lost large amount of its mass via CMEs, al-2826

though present estimates also indicate this mechanism is insufficient (Drake et al., 2013).2827

7.1.2 Impact of planetary magnetic field2828

Whether a planet is magnetized or not impacts ionospheric ion outflow processes2829

and the return rate of ions outflowing from the ionosphere. It was believed that a plan-2830

etary magnetic field was shielding its atmosphere from escape, until observations, reported2831

by Barabash (2010), was showing that the escape rate at Earth is higher than the one2832

at Venus and Mars. This was further discussed by R. Strangeway et al. (2010), and ex-2833

plored more in Brain et al. (2013). This later work also discussed the influence of the2834

magnetic field on incoming gases that could also have an effect on climate. Tarduno et2835

al. (2014) and Ehlmann et al. (2016) looked at the effect of magnetospheric escape re-2836

spectively for the Early Earth and exoplanets.2837

Gunell et al. (2018) compiled the effect of the planetary magnetic moment on iono-2838

spheric ions outflow rate in the current solar system, and compared it to other sources2839

of escape. Considering that the observed ionospheric ion outflow rate on Earth, Mars2840

and Venus is of the same order of magnitude (1025 s−1) while only Earth has a strong2841

magnetic field, the authors made empirical models of ion outflow for three hypotheti-2842
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cal planets with atmospheric conditions similar to the Earth, Mars and Venus but with2843

a variable magnetic moment. They show that for each of those planets the mass escape2844

rate, including both oxygen and hydrogen is similar in the unmagnetized range and for2845

high magnetizations. In-between, they identify two maxima where outflow is enhanced2846

by a factor of 2-5, one corresponding to polar cap escape and dominant for hydrogen and2847

another corresponding to cusp escape. The presence of a large magnetosphere around2848

a planet actually diverts part of the stellar wind energy and protects the atmosphere from2849

sputtering and ion pickup. The induced magnetospheres of the unmagnetized planets2850

also provide protection from sputtering and ion pickup but to a lesser extent. However,2851

magnetospheres are much bigger objects than the planets themselves. The presence of2852

a magnetosphere increases the size of the interaction region between the stellar wind and2853

the planet and thus the amount of energy which can potentially be transferred into the2854

ionosphere. For instance the cross section of the Earth magnetosphere with the solar wind2855

is about 100 times higher than the cross section of the Earth itself with the solar wind.2856

Consequently, the amount of energy transferred from the stellar wind to the ionosphere2857

of magnetized planet is not necessarily lower than for unmagnetized planets (Brain et2858

al., 2013).2859

Large-scale magnetospheres enable polar cap and cusp escape, which increases the2860

escape rate. Two outflow processes are enhanced by the presence of a magnetosphere.2861

The first is the polar wind which corresponds to a thermal ion outflow on the open mag-2862

netic field lines at high latitudes, above the polar caps. It maximizes for moderate mag-2863

netic moments when the size of the polar cap is maximum. The second corresponds to2864

outflow from the cusp region where a significant amount of the stellar wind energy is de-2865

posited. This energy deposition increases with the size of the magnetosphere (i.e. with2866

its cross section with the stellar wind) but is limited by the amount of ions available at2867

the ionospheric level.2868

The effect of magnetospheres on the ion return rate is discussed in Section 2.5. In2869

that case the protective effect of the magnetosphere is not related to the outflow itself2870

but to the trapping of outflowing ionospheric ions, even those with high energies well above2871

the gravitational binding energy, which was thought to result in a significant return rate2872

into the atmosphere. However, recent observations in the Earth magnetosphere question2873

the validity of this protective effect. Indeed, that the measured flux of precipitating ions2874

in the ionosphere is well below the measured flux of outflowing ionospheric ions and the2875

escape route above the polar ionosphere, where polar cap and cusp outflows occur, seems2876

to preferentially lead to a direct ion loss to interplanetary space rather than to a return2877

in the atmosphere.2878

On the other hand, the thermospheres of Mars and Venus are called cryospheres2879

because of the cooling effect of CO2: their thermospheric temperature is extremely low,2880

effectively shielding the atmospheres from several escape processes: the Earth’s atmo-2881

sphere without a magnetic field is believed to be escaping more efficiently. In addition,2882

the main species in the ionosphere of Venus is O+
2 , while it is O+ at Earth (Mendillo,2883

2019), and this may affect the amount of ions able to escape via non-thermal processes2884

(Mars is a special case since above ≈200 km O+ is in majority while it is O+
2 below). A2885

recent study by Wei et al. (2014) shows that using an escape model developed for Mars,2886

but with Earth’s upper atmosphere, increases greatly the O escape. This study also sug-2887

gests that there are some correlations between lower content of O2 at Earth and mag-2888

netic field inversions. Such a study could be criticized on the basis that the magnetic field2889

does not seem to disappear during inversions (e.g. Nowaczyk et al. (2012)), or on the2890

basis that the fluxes of O2 at Earth are dominated by the biosphere and the oxidation2891

of the crust. The fluxes of oxygen in Wei et al. (2014) are indeed of the same order of2892

magnitude as the current oxygen losses in the crust (D. Catling, 2014). A reduction of2893

carbon burial –which is a life-controlled process leading to net O2 fluxes – could explain2894

the loss of oxygen without the need for a fast process. It is also in disagreement with the2895
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observation of higher ion escape near magnetic anomalies at Mars (Sakai et al., 2018; Inui2896

et al., 2019).2897

To summarize, while the presence of a magnetosphere has a clear impact on iono-2898

spheric outflow, recent developments in the study of the coupling between stellar wind,2899

magnetospheres and ionospheres challenge the idea of a protective effect of magnetospheres2900

on atmospheric erosion. It could simply be that the question is poorly asked and that2901

a better question is “what kind of atmospheres require a magnetic field to be sustain-2902

able in a given set of solar/stellar activity conditions”. In any case, recent studies such2903

as Brain et al. (2013); Gunell et al. (2018); Airapetian et al. (2017); Garcia-Sage et al.2904

(2017), as well as the case of Mercury, show that an intrinsic magnetic field does not to-2905

tally protect an atmosphere. A contrario, the case of Venus shows that a magnetic field2906

absence does not prevent sustaining a dense atmosphere.2907

7.1.3 Impacts of stellar dynamics2908

In a large fraction of the studies of escape through time, the stellar parameters, i.e.2909

the EUV-XUV fluxes and the stellar wind, are considered as slowly varying with the epoch.2910

The impact of the frequency of intermittent stellar events such as flares, CMEs, and SEPs2911

on the escape is seldom taken into account. This is a major problem for studies of close-2912

in exoplanets since these events can extremely affect the atmosphere as the observations2913

of the variations of escape rate at Mars due to a CME has shown (Jakosky et al., 2015).2914

MAVEN is currently showing that extreme solar events have a very important role in2915

the loss of atmosphere at Mars (Jakosky et al., 2018; Mayyasi et al., 2018). As an ex-2916

ample, the increase in the exospheric temperature due to a flare has been observed (Elrod2917

et al., 2018), along with change in the upper atmospheric ion and neutral composition2918

(Thiemann et al., 2018), and an increase of ≈20% of the escape (C. Lee et al., 2018).2919

The work of Garcia-Sage et al. (2017) has shown that the EUX-XUV flux can lead2920

to extreme absorption at rocky exoplanets around M dwarfs, however, it does not an-2921

swer the question of how much active a G-star an Earth-like planet could survive.2922

7.2 The role of non-atmospheric/stellar processes2923

While it is not generally explicit in the discussion above, the mass of the planet that2924

is experiencing escape is a critical factor. Closely related is its radius, and therefore its2925

density. The planets of the Solar system are there to show that the mass is the first fac-2926

tor to consider when estimating if a body will have an atmosphere or not; the energy re-2927

ceived/distance to the Sun being the second factor. Mass is still challenging to retrieve,2928

especially the mass of small planets, whose signal in radial velocities can be hidden by2929

the natural variations of the star. Once mass and distances are considered, it may be2930

possible that interesting effects come from close-in exoplanets, such as the roche-limit2931

of the star reaching for the planet’s atmosphere. Overall it should not be forgot-2932

ten that the inventory of volatiles, which has be estimated from the density2933

of the exoplanet, will define the lifetime of an habitable world with large es-2934

cape rates.2935

7.3 The future of research on escape processes2936

The study of planetary atmosphere habitability and evolution has, as shown here,2937

three main directions.2938

1. Escape modeling efforts. The approach of this review has been reductionist; we2939

have sought to isolate the individual escape processes and identify simple ad hoc2940

models that can determine whether or not a specific escape process is important.2941

Yet a better approach to escape would be to create so-called “grand-ensemble mod-2942
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els” that are able to examine the interactions between the different processes with-2943

out a priori exclusion of processes. An already invoked example comes from Chassefière2944

(1997), in which comprehensive treatment of multiple types of charge exchange2945

predicted an increased exospheric temperature and therefore, indirectly, higher ther-2946

mal escape. Improved models will allow the evaluation of critical parameters to2947

help people work on the deeper parts of the atmosphere to estimate which species2948

are escaping and at which rate, in order to prevent poor estimates based on energy-2949

limited escape (that do not take diffusion limitation into account). An additional2950

consideration in modeling is to devise a standard procedure for asynchronously2951

coupling climate, chemistry, and escape models at exoplanets to study the evo-2952

lution of climate and composition in tandem with stellar evolution.2953

2. Laboratory work. A major limiting factor of escape models is the quality of the2954

input parameters, such as chemical reaction rates, cross sections, etc. Laboratory2955

experiments and model-laboratory data comparisons such as that of Simon Wed-2956

lund et al. (2011) are needed to refine the accuracy of the physico-chemistry pa-2957

rameters, and, in turn, may help identify the needs of the community for the study2958

of specific processes. Laboratory data are also crucial to retrieve parameters from2959

observational data.2960

3. Observation work. Observations efforts are limited and currently concentrated to2961

what is believed to be the “best known targets” for habitability. Unfortunately,2962

our instrumentation is not optimized for detecting habitability signatures on these2963

targets. Future observations should be designed not just to characterize the bulk2964

properties of the atmosphere but also to consider known or potential observables2965

affecting atmospheric stability. One advantage of doing so is that processes like2966

thermal escape mostly take place above cloud and haze layers and so may not be2967

as challenging as observing lower in the atmosphere. These targets have broader2968

characteristics than current one, and could benefit from the whole range of exist-2969

ing instrumentation to answer questions leading to constrain the conditions re-2970

quired for habitability. Techniques should be improved to better understand the2971

stellar environment of exoplanets, such as the observation of the stellar winds po-2972

tentially impacting exoplanets as well as stellar variability in general, which has2973

a strong potential impact on transit observations of planetary atmospheres (Wakeford2974

et al., 2018). As characterizing the variability of a host star typically requires less2975

sensitive instrumentation than detecting a telluric planet orbiting it (particularly2976

for warmer stars), it may be worth prioritizing observations of variability of types2977

other than those around which telluric planets currently can be observed.2978

Overall, the challenge is thus to couple a grand-ensemble escape model with a com-2979

plex planetary atmosphere model, itself coupled with a planetary interior model. From2980

there it would be possible to obtain the whole story of an empirical planetary atmosphere2981

in time. The uncertainties in each of these sub-models have to be correctly evaluated,2982

so that it is possible to address the overall model validity. This is why a validation strat-2983

egy is also of utmost importance for this kind of work.2984

On the stellar part, the challenge will be to determine the activity history of a star,2985

both from the slowly evolving parameters, such as luminosity, and the discrete events2986

such as flares. From there, it would be possible to evaluate how a given star stresses an2987

atmosphere over time. Finally, it will be necessary to develop observation missions ded-2988

icated to study the UV flux of stars to validate the model of activity in time.2989

7.4 Effects of escape on biosignatures2990

The escape processes reviewed above have significant influence on the composition2991

of the upper atmosphere, and acting over geologic time can affect the bulk composition2992

of the atmosphere, surface and interior. The consequences of atmospheric escape for our2993

search for life via chemical biosignatures in the atmosphere and on the surface must there-2994
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fore be considered (Des Marais et al., 2002; Domagal-Goldman et al., 2014; Airapetian2995

et al., 2016). The alteration of planetary chemistry by escape can result in both false pos-2996

itive and false negative biosignature errors if it is not accounted for (Gao et al., 2015).2997

False positive biosignatures that can be produced by interactions at the top of the2998

atmosphere include oxygen and oxidized species such as NO as well as organics such as2999

the haze materials produced through UV photolysis at Titan and elsewhere. The pref-3000

erential loss of hydrogen from water is one way for oxygen to arise from escape-related3001

abiogenic processes. The processing of sufficient water to influence the bulk oxidation3002

state of the surface materials is likely the cause of high oxidation in the Martian surface3003

(Lammer, Lichtenegger, et al., 2003). False negative biosignatures would result from the3004

masking of true biogenic molecules by escape processes, either through rapid modifica-3005

tion by particle or photon radiation or through chemical interaction with, for example,3006

photolysis-produced oxygen.3007

Biosignatures related to disequilibrium chemistry (Krissansen-Totton et al., 2018)3008

must contend with non-LTE behavior in the upper atmosphere and the potential for dis-3009

equilibrium signatures to be transferred from the upper to the lower atmosphere. Even3010

biosignatures that are based on time variations (Olson et al., 2018) need to contend with3011

seasonal variations in star-planet interaction caused by a tilted magnetic field axis which3012

could produce either false positive or false negative results.3013

This discussion is not intended to be exhaustive or definitive, but instead we seek3014

to highlight the importance of understanding the impact of the stellar environment on3015

the production, destruction, or masking of putative chemical biosignatures. In general,3016

although space weather processes involve small fractions of the planetary mass they can,3017

like biological reactions, be quite selective in their reactants and products and over time3018

can yield significant signals that must be differentiated from biological ones.3019

7.5 Final thoughts3020

We have reviewed the different escape processes considered so far in the literature,3021

and summarized in Figure 13. Understanding these processes, and also ones that are still3022

to be discovered, makes it possible to understand how a planetary atmosphere evolves.3023

This is however not enough to understand the whole history of an atmosphere: change3024

in the atmosphere composition, change in the stellar activity, and change of the outgassing3025

from the planetary interior are examples of processes that affect the development of an3026

atmosphere, and can lead to very different pathways. To that extent, life is one of the3027

major modifiers of Earth’s atmosphere. It would be easy to consider an atmosphere that3028

is out of equilibrium, or that is very difficult to model/undertand by our current means,3029

as harboring life; this is the idea behind the concept of biosignatures. However, the de-3030

tection of a Titan-like atmosphere outside our Solar system may lead to life detection3031

claims that are not (at least to date) consistent with Titan’s observations. On the other3032

hand, the atmosphere of an Early Earth may be detected, but considered as sterile.3033

Since this paper has been showing that habitability is a dynamic process, and that3034

the habitability of a planet is the result of its history, and not just of its location with3035

respect to its star, it is important to extend that notion to biosignatures. In this respect,3036

it would be preferable to announce the detection of molecules relevant to pre-biotic chem-3037

istry instead of directly announce biosignatures, so that no extraordinary claim is made3038

without extraordinary evidence.3039

Acronyms3040

CME Coronal Mass Ejection3041

DSMC Direact Simulation Monte Carlo3042

–76–



manuscript submitted to JGR: Space Physics

Charged
Exchange

(Magnetized)

Polar Wind
Joule Heating
(Magnetized
Ionospheric

Outflow)

Jeans Escape
(Thermal)

O*

O+

Ion Plume
(Bulk Ion
Escape)

Magnetized
Escape

Hydrodynamic
(Thermal)

Charge
Exchange

(Unmagnetized)

Unmagnetized
Bulk Ion
Escape

Pickup
and

Sputtering

O2
+ + e—  2O* 

hν + O2
  2O* 

H+* + X  X+ (pickup) + H*

E
Field

X*

X+* (trapped) + O  X* + O+

Photochemical
Escape and

Photodissociation

Neutral
Sputtering

Ion Acceleration

Stellar Wind

Figure 13. Overview of the escape processes, along with an example of a planet where they

are major/important. The Earth’s main escape processes are Jeans’, charge-exchange, and polar

wind. At Venus, interaction with the solar wind; at Mars, photochemical escape and ion escape;

at some exoplanets/comets hydrodynamic escape.
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ENA Energetic Neutral Atom3043

ESA European Space Agency3044

EUV Extreme Ultraviolet3045

FAC Field Aligned Currents3046

FYS Faint Young Sun (typically for speaking about the Faint Young Sun paradox)3047

GCM Global Circulation Model3048

HZ Habitable Zone3049

KHI Kelvin-Helmholtz instability3050

MAVEN NASA / Mars Atmosphere and Volatile and EvolutioN mission3051

MEX ESA / Mars Express3052

MHD Magneto-Hydro Dynamic3053

NASA National Aeronautics and Space Administration3054

SEP Solar Energetic Particle3055

UV Ultraviolet3056

VEX ESA / Venus Express3057

XUV X-Ultraviolet3058

Notation3059

k the Boltzman constant3060

m the average molecular mass3061

g the gravitational acceleration (typically dependent upon the altitude)3062

z the altitude3063

~x the location in space3064

Θ, Φ angles in spherical coordinates3065

T the temperature (of neutral constituents, the subscript can show if it is of electrons3066

or ions, and it is generally dependent upon the altitude)3067

Texo the exospheric temperature3068

n the density of the considered species or of the gas (typically dependent upon the al-3069

titude). na is usually used to note the total density. A typical unit is species.cm−3.3070

Xi = ni

na
mole fraction of the gas i.3071

H = kT
mg

The scale height.3072

Hexo is the scale height at the exosphere, so when T = Texo3073

R radius of the planet. Sometimes the radius of the exosphere Rexo = R+ zexo3074

λ photon wavelength3075

l = 1√
2nσ

the characteristic length between collisions.3076

vesc =
√

2GM/R the escape speed.3077

Kn = l/H the Knudsen number: characteristic parameter for the transition between3078

collisionless and fluid regimes. If Kn → 0, the collisions are dominant, we are in3079

a fluid regime. If Kn > 1, we are in a collisionless regime.3080

λex = Rexo/Hexo is the characteristic number for the thermal escape. In other work,3081

such as Selsis (2006), this parameter is designed by χ.3082

γ =
Cp

CV
heat capacity ratio, or adiabatic index. directly linked to the degree of free-3083

dom f of the molecule/atom by the equation γ = 1 + 2
f .3084

Acknowledgments3085

The Living Breathing Planet team is funded by the NASA Nexus for Exoplanet System3086

Science under grant NNX15AE05G. Work at the Royal Belgian Institute for Space Aeron-3087

omy was supported by PRODEX/Cluster contract 13127/98/NL/VJ(IC)-PEA90316. The3088

–78–



manuscript submitted to JGR: Space Physics

work of C.S.W. has been partially funded by the Austrian Science Fund under project3089

number P 32035-N36. We thank Mary Pat Hrybyk-Keith at NASA/GSFC for her graph-3090

ics work on the summary figures. We would like to thank N. Wright (Keele University)3091

for his assistance in providing additional figures. The authors would like to thank the3092

Institut d’Astrophysique de Paris (IAP), France and Ben Jaffel for the IAPIC contin-3093

uous development.3094

References3095

Adams, F. C. (2011, March). Magnetically Controlled Outflows from Hot Jupiters.3096

Astrophys. J., 730 , 27. doi: 10.1088/0004-637X/730/1/273097

Airapetian, V. S., Barnes, R., Cohen, O., Collinson, G. A., Danchi, W. C., Dong,3098

C. F., . . . Yamashiki, Y. (2019, july). Impact of space weather on climate and3099

habitability of terrestrial-type exoplanets. International Journal of Astrobiol-3100

ogy , 1–59. doi: 10.1017/S14735504190001323101

Airapetian, V. S., Glocer, A., Gronoff, G., Hébrard, E., & Danchi, W. (2016, June).3102
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Garćıa Muñoz, A. (2007, July). Physical and chemical aeronomy of HD 209458b.3676

Plan. Sp. Sci., 55 , 1426-1455. doi: 10.1016/j.pss.2007.03.0073677

Garcia-Sage, K., Glocer, A., Drake, J. J., Gronoff, G., & Cohen, O. (2017, July). On3678

the Magnetic Protection of the Atmosphere of Proxima Centauri b. Astrophys.3679

J. Let., 844 , L13. doi: 10.3847/2041-8213/aa7eca3680

Garraffo, C., Drake, J. J., & Cohen, O. (2016a, November). The missing magnetic3681

morphology term in stellar rotation evolution. Astronomy and Astrophysics,3682

595 , A110. doi: 10.1051/0004-6361/2016283673683

Garraffo, C., Drake, J. J., & Cohen, O. (2016b, December). The Space Weather of3684

Proxima Centauri b. Astrophys. J. Let., 833 , L4. doi: 10.3847/2041-8205/833/3685

1/L43686

Garraffo, C., Drake, J. J., Cohen, O., Alvarado-Gómez, J. D., & Moschou, S. P.3687
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D. J., . . . Shirley, J. H. (2015). Extreme detached dust layers near Martian3861

volcanoes: Evidence for dust transport by mesoscale circulations forced by3862

high topography. Geophysical Research Letters, 42 (10), 3730–3738. Retrieved3863

from http://dx.doi.org/10.1002/2015GL064004 (2015GL064004) doi:3864

10.1002/2015GL0640043865
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Güdel, M. (2019). Extreme hydrodynamic losses of Earth-like atmospheres in3997

the habitable zones of very active stars. Astronomy & Astrophysics, 624 , L10.3998
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versity of Magnetic Interactions in Close-in Star-Planet Systems. Astrophys. J.,4870

795 , 86. doi: 10.1088/0004-637X/795/1/864871

Su, Y.-J., Horwitz, J. L., Wilson, G. R., Richards, P. G., Brown, D. G., & Ho,4872

C. W. (1998, February). Self-consistent simulation of the photoelectron-driven4873

polar wind from 120 km to 9 Re altitude. Journal of Geophysical Research,4874

103 , 2279-2296. doi: 10.1029/97JA030854875

Summers, M. E., Siskind, D. E., Bacmeister, J. T., Conway, R. R., Zasadil,4876

S. E., & Strobel, D. F. (1997). Seasonal variation of middle atmospheric4877

CH4 and H2O with a new chemical-dynamical model. Journal of Geo-4878

physical Research: Atmospheres, 102 (D3), 3503–3526. Retrieved from4879

http://dx.doi.org/10.1029/96JD02971 doi: 10.1029/96JD029714880

Sun, D.-Z., & Lindzen, R. S. (1993, June). Distribution of Tropical Tropospheric4881

Water Vapor. Journal of Atmospheric Sciences, 50 , 1643-1660. doi: 10.1175/4882

1520-0469(1993)050〈;1643:DOTTWV〉2.0.CO;24883

Sundberg, T., Boardsen, S., Slavin, J., Blomberg, L., & Korth, H. (2010).4884

The Kelvin–Helmholtz instability at Mercury: An assessment. Plane-4885

tary and Space Science, 58 (11), 1434 - 1441. Retrieved from http://4886

www.sciencedirect.com/science/article/pii/S0032063310001819 doi:4887

https://doi.org/10.1016/j.pss.2010.06.0084888

Svensmark, H., Enghoff, M. B., Shaviv, N. J., & Svensmark, J. (2017, December).4889

Increased ionization supports growth of aerosols into cloud condensation nu-4890

clei. Nature Communications, 8 , 2199. doi: 10.1038/s41467-017-02082-24891

Svensmark, H., & Friis-Christensen, E. (1997, July). Variation of cosmic ray flux4892

and global cloud coverage-a missing link in solar-climate relationships. Jour-4893

nal of Atmospheric and Solar-Terrestrial Physics, 59 , 1225-1232. doi: 10.1016/4894

S1364-6826(97)00001-14895

Takasumi, N., & Eiichi, T. (2002). Climate change of mars-like planets due to4896

obliquity variations: implications for mars. Geophysical Research Letters,4897

30 (13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/4898

abs/10.1029/2002GL016725 doi: 10.1029/2002GL0167254899

Tam, S. W. Y., Yasseen, F., & Chang, T. (1998, August). Further development4900

in theory/data closure of the photoelectron-driven polar wind and day-4901

–111–



manuscript submitted to JGR: Space Physics

night transition of the outflow. Annales Geophysicae, 16 , 948-968. doi:4902

10.1007/s00585-998-0948-24903

Tam, S. W. Y., Yasseen, F., Chang, T., & Ganguli, S. B. (1995). Self-consistent ki-4904

netic photoelectron effects on the polar wind. Geoph. Res. Let., 22 , 2107-2110.4905

doi: 10.1029/95GL018464906

Tanaka, Y. A., Suzuki, T. K., & Inutsuka, S.-i. (2014). Atmospheric Escape by Mag-4907

netically Driven Wind from Gaseous Planets. ApJ , 792 (1), 18. Retrieved4908

2016-01-27, from http://stacks.iop.org/0004-637X/792/i=1/a=18 doi: 104909

.1088/0004-637X/792/1/184910

Tanaka, Y. A., Suzuki, T. K., & Inutsuka, S.-i. (2015). Atmospheric Escape by4911

Magnetically Driven Wind from Gaseous Planets. II. Effects of Magnetic Diffu-4912

sion. ApJ , 809 (2), 125. Retrieved 2016-01-27, from http://stacks.iop.org/4913

0004-637X/809/i=2/a=125 doi: 10.1088/0004-637X/809/2/1254914

Tapping, K. F., & Detracey, B. (1990, June). The origin of the 10.7 CM flux. Solar4915

Physics, 127 , 321-332. doi: 10.1007/BF001521714916

Tarduno, J. A., Blackman, E. G., & Mamajek, E. E. (2014, Aug). Detecting the4917

oldest geodynamo and attendant shielding from the solar wind: Implications4918

for habitability. Physics of the Earth and Planetary Interiors, 233 , 68-87. doi:4919

10.1016/j.pepi.2014.05.0074920

Tasker, E., Tan, J., Heng, K., Kane, S., Spiegel, D., Brasser, R., . . . Wicks, J. (2017,4921

February). The language of exoplanet ranking metrics needs to change. Nature4922

Astronomy , 1 (2), 0042. Retrieved 2017-02-06, from http://www.nature.com/4923

articles/s41550-017-0042 doi: 10.1038/s41550-017-00424924

Taylor, F., & Grinspoon, D. (2009). Climate evolution of Venus. Journal of Geo-4925

physical Research: Planets, 114 (E9), n/a–n/a. Retrieved from http://dx.doi4926

.org/10.1029/2008JE003316 (E00B40) doi: 10.1029/2008JE0033164927

Taylor, S. R., & McLennan, S. M. (2009). Planetary crusts: Their composition, ori-4928

gin, and evolution. Cambridge, UK: Cambridge University Press.4929

Terada, N., Machida, S., & Shinagawa, H. (2002). Global hybrid simulation of the4930

Kelvin-Helmholtz instability at the Venus ionopause. Journal of Geophys-4931

ical Research: Space Physics, 107 (A12), SMP 30-1-SMP 30-20. Retrieved4932

from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/4933

2001JA009224 doi: 10.1029/2001JA0092244934

Thiemann, E., Andersson, L., Lillis, R., Withers, P., Xu, S., Elrod, M., . . . others4935

(2018). The Mars topside ionosphere response to the X8. 2 solar flare of 104936

September 2017. Geophysical Research Letters, 45 (16), 8005–8013.4937

Thissen, R., Witasse, O., Dutuit, O., Simon Wedlund, C., Gronoff, G., & Lilensten,4938

J. (2011). Doubly-charged ions in the planetary ionospheres: a review. Physical4939

Chemistry Chemical Physics, 13 (41), 18264–18287.4940

Tian, F. (2009, September). Thermal Escape from Super Earth Atmospheres in the4941

Habitable Zones of M Stars. Astrophys. J., 703 , 905-909. doi: 10.1088/00044942

-637X/703/1/9054943

Tian, F., Chassefière, E., Leblanc, F., & Brain, D. (2013). Atmospheric Escape and4944

Climate Evolution of Terrestrial Planets. In Comparative Climatology of Ter-4945

restrial Planets (pp. 567–581). University of Arizona Press. Retrieved 2016-01-4946

29, from http://adsabs.harvard.edu/abs/2013cctp.book..567T4947

Tian, F., Kasting, J. F., Liu, H.-L., & Roble, R. G. (2008, May). Hydrodynamic4948

planetary thermosphere model: 1. Response of the Earth’s thermosphere to ex-4949

treme solar EUV conditions and the significance of adiabatic cooling. Journal4950

of Geophysical Research (Planets), 113 , E05008. doi: 10.1029/2007JE0029464951

Tian, F., Solomon, S. C., Qian, L., Lei, J., & Roble, R. G. (2008, July). Hy-4952

drodynamic planetary thermosphere model: 2. Coupling of an electron4953

transport/energy deposition model. Journal of Geophysical Research4954

(Planets), 113 , 07005. Retrieved 2012-04-02, from http://adsabs.org/4955

2008JGRE.11307005T4956

–112–



manuscript submitted to JGR: Space Physics

Tian, F., & Toon, O. B. (2005, September). Hydrodynamic escape of nitrogen from4957

Pluto. Geophys. Res. Lett., 32 , 4 PP. Retrieved 2012-03-07, from http://4958

www.agu.org/pubs/crossref/2005/2005GL023510.shtml doi: 200510.1029/4959

2005GL0235104960

Tian, F., Toon, O. B., Pavlov, A. A., & De Sterck, H. (2005). A hydrogen-rich early4961

Earth atmosphere. Science, 308 (5724), 1014–1017.4962

Tobie, G., Choukroun, M., Grasset, O., Le Mouélic, S., Lunine, J., Sotin, C., . . .4963
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G. E., Ehrenreich, D., . . . Parkinson, C. D. (2004, March). Detection of5039

Oxygen and Carbon in the Hydrodynamically Escaping Atmosphere of the5040

Extrasolar Planet HD 209458b. Astrophys. J. Let., 604 , L69-L72. doi:5041

10.1086/3833475042

Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.-M., Ballester, G. E., Ferlet,5043
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