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Abstract

Experiment and observation have established the centrality of oxygen fugacity (fO2) to determining the course of igneous

differentiation, and so the development and application of oxybarometers have proliferated for more than half a century. The

compositions of mineral, melt, and vapor phases determine the fO2 that rocks record, and the activity models that underpin

calculation of fO2 from phase compositions have evolved with time. Likewise, analytical method development has made new

sample categories available to oxybarometric interrogation. Here we compile published analytical data from lithologies that

constrain fO2 (n=860 volcanic rocks - lavas and tephras and n=326 mantle lithologies- the majority peridotites) from ridges,

back-arc basins, forearcs, arcs, and plumes. Because calculated fO2 varies with choice of activity model, we re-calculate fO2

for each dataset from compositional data, applying the same set of activity models and methodologies for each data type.

Additionally, we compile trace element concentrations (e.g. vanadium) which serve as an additional fO2-proxy. The compiled

data show that, on average, volcanic rocks and mantle rocks from the same tectonic setting yield similar fO2s, but mantle

lithologies span a much larger range in fO2 than volcanics. Multiple Fe-based oxybarometric methods and vanadium partitioning

vary with statistical significance as a function of tectonic setting, with fO2 ridges < back arcs < arcs. Plume lithologies are

more nuanced to interpret, but indicate fO2s ? ridges. We discuss the processes that may shift fO2 after melts and mantle

lithologies physically separate from one another. We show that the effects of crystal fractionation and degassing on the fO2 of

volcanics are smaller than the differences in fO2 between tectonic settings and that effects of subsolidus metamorphism on the

fO2 values recorded by mantle lithologies remain poorly understood. Finally, we lay out challenges and opportunities for future

inquiry.
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Oxygen Fugacity Across Tectonic Settings

Elizabeth Cottrell1, Suzanne K. Birner2, Maryjo Brounce3, Fred A. Davis4, Laura E. Waters5,
and Katherine A. Kelley6

ABSTRACT

Experiment and observation have established the centrality of oxygen fugacity (fO2) to determining the course
of igneous differentiation, and so the development and application of oxybarometers have proliferated for more
than half a century. The compositions of mineral, melt, and vapor phases determine the fO2 that rocks record,
and the activity models that underpin calculation of fO2 from phase compositions have evolved over time. Like-
wise, analytical method development has made new sample categories available to oxybarometric interrogation.
Here we compile published analytical data from lithologies that constrain fO2 (n=860 volcanic rocks – lavas
and tephras – and n=326 mantle lithologies – the majority peridotites) from ridges, back-arc basins, forearcs,
arcs, and plumes. Because calculated fO2 varies with choice of activity model, we recalculate fO2 for each data-
set from compositional data, applying the same set of activity models and methodologies for each data type.
Additionally, we compile trace element concentrations (e.g., vanadium) which serve as an additional fO2-proxy.
The compiled data show that, on average, volcanic rocks and mantle rocks from the same tectonic setting yield
similar fO2s, but mantle lithologies span a much larger range in fO2 than volcanics. Multiple Fe-based oxybaro-
metric methods and vanadium partitioning vary with statistical significance as a function of tectonic setting,
with fO2 ridges < back arcs < arcs. Plume lithologies are more nuanced to interpret, but indicate fO2s ≥ ridges.
We discuss the processes that may shift fO2 after melts and mantle lithologies physically separate from one
another. We show that the effects of crystal fractionation and degassing on the fO2 of volcanics are smaller
than the differences in fO2 between tectonic settings and that effects of subsolidus metamorphism on the
fO2 values recorded by mantle lithologies remain poorly understood. Finally, we lay out challenges and oppor-
tunities for future inquiry.

3.1. INTRODUCTION

The role that oxygen fugacity (fO2) plays in producing
the unique topography of Earth’s surface, defined by
high-standing continents and low-lying ocean basins,
was recognized in the 1950s, when workers such as Ken-
nedy (1955), Eugster (1957,1959), and Osborn (1959)
established the link between fO2 and the course of igneous
differentiation. Crystallization under high fO2 leads to the
calc-alkaline magmatic series common on the continents,
while crystallization under low fO2 results in the tholeiitic
magma series common in ocean basins. In order to
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connect these laboratory-based insights to natural rocks,
petrologists began to develop proxies for fO2, and to apply
them in earnest. Through seminal contributions such as
Eugster (1959), Haggerty (1976), Christie et al. (1986),
Carmichael (1991), Wood et al. (1990), Frost and Linds-
ley (1992), Ballhaus (1993), Canil (1997), and innumera-
ble others, petrologists began to quantify and map the
link between tectonic environment and oxygen fugacity.

3.1.1. Theoretical Background

Oxygen fugacity, or fO2, describes the potential for an
element to occur in an oxidized or reduced state – that is,
with a higher or lower charge. If oxygen were an ideal gas,
its chemical potential (μ) would simply be related to its
partial pressure (P) via

μO2
= μO2

+ RTln
P
P0

(3.1)

Where μO2
is the standard state chemical potential of

O2, R is the gas constant, T is the temperature in Kelvin,
and P0 is the standard state pressure of pure O2. Because
no gas, and certainly no rock, behaves as an ideal gas, we
substitute fugacity (f) for partial pressure, which corrects
pressure for non-ideality, much as chemical activity cor-
rects concentration for non-ideality. The chemical poten-
tial of oxygen is then

μO2
= μO2

+ RTln
f O2

f O2

= μO2
+ RTlnf O2

(3.2)

when f O2
= 1 (the fugacity of pure O2 at 1 bar and T of

interest). In this way, we can relate the free energy of
any equilibria of pure phases involving O2 to oxygen
fugacity via the change in Gibbs free energy (ΔGreaction

ΔGreaction = −RTlnKeq (3.3)

where Keq is the equilibrium constant. When P and T are
specified, such equilibria of pure phases fix the activity of
O2, or “buffer” the fO2.

3.1.2. Fe-Based Oxybarometry

Equilibria involving iron are useful because iron is the
most abundant multivalent element in the solid Earth and
is present in the common rock-forming minerals. For
example, the oxygen fugacity of the equilibrium reaction
of the pure phases fayalite goes to ferrosilite plus
magnetite:

6Fe2SiO4

fayalite
+ O2

oxygen
3Fe2Si2O6
ferrosilite + 2Fe3O4

magnetite

(3.4)

can be calculated from the free energy change of the reac-
tion using Equation 3.3. The equilibrium constant can be
written:

Keq =
aopxFe2Si2O6

3
asplFe3O4

2

aolvFe2SiO4

6
f O2

(3.5)

where amineral
component represents the activity of the end-member

component (e.g., ferrosilite) within the mineral phase
(e.g., orthopyroxene). In the case of pure phases, the activ-
ity is equal to unity, and so the following relationship
holds true:

logKeq = − logf O2
=

6ΔGFe2SiO4
−2ΔGFe3O4

−3ΔGFe2Si2O6

ln 10 RT

(3.6)

In experimental systems, oxygen fugacity can be
imposed by an invariant buffer reaction involving pure
phases (activities equal to unity, for example nickel [Ni]
and nickel oxide [NiO]). In natural systems, oxygen fugac-
ity is determined by equilibria involving multi-component
silicate minerals, melts, and gases; mineral phases are
rarely found as pure end-member compositions. This
requires us to relate mineral compositions to component
activities. Accurate activity-composition models are
therefore important when comparing the fO2 recorded
by a single equilibrium reaction across a wide range of
compositions, and even more so when comparing the
fO2 recorded by different fO2 equilibria – when the accu-
racy, and not just the precision, of each equilibrium reac-
tion is paramount. We relate the measured compositions
of natural phases to the activities of end-member compo-

nents (e.g., the activity of pure magnetite in spinel, aspinelFe3O4
)

via equations like

− logf O2
=

ΔGreaction P,T

ln 10 RT
−2logaspinelFe3O4

−3logaopxFe2Si2O6

+ 6logaolivineFe2SiO4
(3.7)

Equation 3.7 describes the spinel oxybarometer
(Ballhaus et al., 1991; O’Neill & Wall, 1987; Wood &
Virgo, 1989) and its form prompts a review of several
important points.
Any calculation of fO2 assumes that all phases that fix the

activity of oxygen are present and in equilibrium. For
example, fO2 is not constrained by the spinel oxybarometer
if orthopyroxene is absent from the assemblage (unless the
activity of silica can be constrained by some other means).
Likewise, the composition of magnetite records fO2 only in
the presence of ilmenite (Buddington&Lindsley, 1964).We
can also see from the above equations that the activity of
oxygen will rise with temperature such that it is convenient
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to refer to a reference buffer. In this contribution we refer-
ence the quartz-fayalite-magnetite (QFM) buffer (Frost,
1991) because its pressure-dependence parallels adiabatic
melt ascent (Kress andCarmichael, 1991), facilitating com-
parison of magmas equilibrated at different pressures and
temperatures.
It also follows from the thermodynamic treatment

above that the bulk rock ratio of ferric to total iron
(Fe3+/ΣFe = Fe3+/[Fe3+ + Fe2+]) in crystalline rocks can-
not be equated to oxygen fugacity, because the former
varies with mineral mode (extensive property) whereas
the latter varies with component activity (intensive prop-
erty). In melts (and glasses), steric effects are greatly
reduced, such that melt (glass) Fe3+/ΣFe ratios can be
related to fO2; however, this does not mean that the
Fe3+/ΣFe ratios of melts vary systematically with fO2

independent of composition. With melts too, Fe3+/ΣFe
ratios must be related to fO2 after considering composi-
tion because oxide components in the melt can stabilize
or destabilize Fe3+ relative to Fe2+ at given fO2 (e.g.,
Borisov et al., 2018; Kress & Carmichael, 1991; O’Neill
et al., 2018).
Based on iron’s role in both setting and monitoring fO2

(Frost, 1991; D. J. Frost & McCammon, 2008), prior
Fe-based compilations of fO2 as a function of tectonic set-
ting have relied on either spinel oxybarometry (e.g., Ball-
haus, 1993; Wood et al., 1990), magnetite-ilmenite
equilibria (e.g., Frost & Lindsley, 1992), or bulk rock
and/or sediment Fe3+/ΣFe ratios (e.g., Carmichael,
1991; Lecuyer & Ricard, 1999). In this chapter, we do
not compile fO2 calculated for bulk “glass” Fe3+/ΣFe
ratios because in most cases the metadata provided in
publications are absent or insufficient to ensure that the
samples have not suffered post-eruptive oxidation or are
free of phenocrysts, both of which have been shown to
compromise the fidelity of fO2 proxies (Bezos & Humler,
2005; Brounce et al., 2017; Cottrell & Kelley, 2011;
Grocke et al., 2016; Stolper & Bucholz, 2019; Bezos et
al., 2021). Further, while very convenient for generating
large datasets and informing box models (e.g., Brounce
et al., 2019; Canil & Fellows, 2017; Evans, this volume;
Evans & Tomkins, 2011; Evans et al., 2012; Lecuyer &
Ricard, 1999; Stolper & Bucholz, 2019), applications of
bulk “glass” or whole rock Fe3+/ΣFe ratios are limited
because the Fe3+/ΣFe ratios of crystalline rocks and mix-
tures (like cumulates and sediments) cannot be directly
equated to fO2 – as detailed above.

3.1.3. Trace-Element Oxybarometry

In addition to iron, the periodic table offers us a wealth
of elements that undergo valence state changes in response
to changes in fO2. The theory that underpins trace element

oxybarometry is that fO2-driven valence state changes will
result in changes to mineral-melt partition coefficients.
Thus, the concentration of a multivalent trace element
in melt should reflect the residual mineralogy, the melt
composition, and the pressure, temperature, and oxygen
fugacity of the system during melting. In this way, the
power of redox-sensitive minor and trace element parti-
tioning can be harnessed to monitor the fO2 of geologi-
cally relevant lithologies, and can offer advantages over
Fe. Trace element concentrations offer advantages
because they are (i) relatively straightforward to measure
and (ii) should be less susceptible than formal valence
state to modification after the melt separates from the res-
idue. A wide range of redox-sensitive elements (e.g., Ti, V,
Cr, Ce, Eu, U, Mo, W, Re) are discussed separately by
Mallmann et al. (2021) within this volume, and we refer
the interested reader to that chapter. Several trace ele-
ments, however, have been employed to infer the fO2 of
basalt source rocks (the mantle) as a function of tectonic
setting (e.g., Bali et al., 2012; Bucholz & Kelemen, 2019;
Canil, 1997; Laubier et al., 2014; Lee et al., 2005; Lee
et al., 2010; Lee et al., 2012; Mallmann & O’Neill,
2009; Mallmann & O’Neill, 2013; Shervais, 1982).
A review of all of these studies and proxies is beyond
the scope of this chapter; however, we will discuss vana-
dium (V) – the most widely applied of these proxies. Vana-
dium valence can be V2+, V3+, V4+, or V5+ in geologically
relevant systems. The incompatibility of V3+ in mantle
minerals is similar to many other trivalent elements, such
as the rare earth elements, Sc, Y, and Ga, while V4+ and
V5+ are more highly incompatible. Therefore, with all
other parameters equal, melting peridotite at higher fO2

should result in systematically higher melt
V concentrations relative to other trivalent trace elements
(Canil, 1997; Lee et al., 2003, 2005).

3.1.4. Other Oxybarometers

We emphasize that there are many additional, and very
valuable, proxies for fO2 that are not yet widely applied to
volcanics from arc, ocean island, and mid-ocean ridge set-
tings, but may be in the future, such as stable isotope prox-
ies (Dauphas et al., 2009; Nebel et al., 2015;Williams et al.,
2005). Similarly, microprobe peak energies (e.g., Carroll &
Rutherford, 1988) and S X-ray Absorption Near Edge
Structure spectra (e.g., Fleet et al., 2005) can determine sul-
fur oxidation state, but analyses from both techniques can
be compromised by beam damage during analysis (e.g.,
Klimm et al., 2012; Rowe et al., 2007; Wilke et al.,
2008), leaving only a handful of vetted analyses. For these,
we point the interested reader to other chapters in this vol-
ume that describe some of these approaches in detail.

OXYGEN FUGACITY ACROSS TECTONIC SETTINGS 35



3.2. SAMPLE SELECTION, METHODOLOGY,
AND DESIGN OF THIS STUDY

We can envision many valid approaches for compiling
fO2 determinations from the literature. In this contribu-
tion, we focus on the oxybarometric approach and apply
oxybarometers that have all been cross-calibrated at 1
atmosphere under controlled atmosphere conditions at
known fO2. We compile published compositions from
Earth’s ridges, back arcs, forearcs, arcs, and plumes and
recalculate the fO2 values recorded by these volcanics
(lavas and tephras) and mantle lithologies (mostly perido-
tites). We have opted to include samples wherein the orig-
inal publications provide sufficient information to
recalculate fO2 (e.g., microprobe analyses) such that we
may apply a single set of activity models and methodolo-
gies to all of the compositional data collected in disparate
studies. This is essential, because the fO2 calculated from a
given composition may vary by up to a log unit depending
on the activity model employed (e.g., Birner et al., 2017;
Herd, 2008; Wood, 1990). Further, many publications do
not report the formulation of the reference buffer (for
example, QFM from O’Neill [1987] vs Frost [1991] vs
Myers & Eugster [1983]), such that reported fO2s may
not be comparable.
We describe our methods, including chosen activity

models, in detail in our methods appendix. In brief, we
include widely applied oxybarometric techniques that
have documented intra-technique consistency, and which
require minimal metadata: magnetite-ilmenite pairs, spi-
nel-oxybarometry, and glass spectroscopy. For example,
Davis and Cottrell (2018) show that both the spinel oxy-
barometric method ofWood andVirgo (1989) and the Fe3
+/Fe2+ activity model of Kress and Carmichael (1991)
return the experimentally imposed fO2 of gas-mixing
experiments containing spinel, olivine, and orthopyrox-
ene in basaltic andesite liquid. Likewise, Fe3+/ΣFe ratios
of glasses converted to fO2 via the Kress and Carmichael
(1991) algorithm are consistent with magnetite-ilmenite
oxybarometry using the activity model of Ghiorso and
Evans (2008) (Crabtree & Lange, 2011; Waters & Lange,
2016). Table 3.1 summarizes the oxybarometric methods
we apply and the studies we include. A more detailed dis-
cussion of alternative parameterizations for fO2 can be
found in the methods appendix. The compiled dataset
can be downloaded as a data library (Cottrell et al.,
2021). The dataset is unique in that we aggregate fO2 data
from different studies, different authors, and with differ-
ent proxies, but we reprocess and quality check the data
to facilitate global comparisons. This exercise also identi-
fies which regions and tectonic settings lack direct fO2

constraints (Figure 3.1).
We first present the Fe-proxy-based fO2s recorded by

rocks from each tectonic setting (ridge, back arc, arc,

and plume). We discuss the processes that may perturb
these proxies and the extent to which the fO2 recorded
by rock samples is representative of the mantle source.
We then compare Fe-based proxies to the inferences
that can be drawn from magmatic V concentrations
across tectonic settings. Like all elements, the V concen-
trations of basaltic liquids change as fractional crystalli-
zation proceeds, necessitating the normalization of
V concentration to another trace element. Althoughmany
studies normalize V concentrations to Scandium (Sc),
Mallmann and O’Neill (2009) and Laubier et al. (2014)
critically evaluate candidate trivalent cations and con-
clude that the V/Sc ratio does not remain constant as frac-
tionation proceeds. V/Sc begins to rise asMgO falls below
8 wt.%, making this ratio unsuitable to evaluate primitive
arc basalts (Laubier et al., 2014). Following Laubier et al.
(2014) we choose Yb for normalization because it
remains constant during crystallization of typical basalts
down to < 6 wt.% MgO. We use the compilation of Gale
et al. (2013a) for MORB and BABB chemistry, which
ensures that samples derive from on-axis locations and
that trace element analyses are of high quality. We use
the compilation of Turner and Langmuir (2015) for arc
basalt chemistry, which ensures that samples derive from
arc-front volcanoes and, again, that trace element ana-
lyses are of high quality. Following Laubier et al.
(2014), we filter these compilations for 6 wt.% < MgO
< 12 wt.% to ensure that we are evaluating compositions
that represent liquids (not cumulates) and that magnetite
has not yet begun to crystallize (V is compatible in mag-
netite). We only evaluate compositions with Dy/Yb < 2 to
avoid residual garnet in the source (Laubier et al., 2014).
With these filters in place, we compile trace element data
for 1294 MORB and 225 BABB, as well as 317 basalts
from 37 arc-front volcanoes. We did not include plume-
derived basalts in this comparison because the residual
garnet in plume sources complicates interpretation of V/
Yb. Yb (and Sc) are highly compatible in garnet, and
the relationship between V/Yb (or V/Sc) and fO2 is poorly
defined (Canil, 2002; Davis et al., 2013; Lee et al., 2005).

3.3. RESULTS

Calculated fO2 for each sample in this study is available
in the data library associated with this publication
(Cottrell et al., 2021).

3.3.1. Fe-Based Oxybarometry

Mid-Ocean Ridges. Mid-ocean ridges sample Earth’s
convecting mantle and represent the majority
of volcanism on the planet. Both melts and mantle
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Table 3.1 Results and Method Summary.

Tectonic setting δQFM (s) Lithology n Method
Activity-composition models
and other method notes

Method error in fO2 in
log units Notes Data included

mid-ocean ridge –0.17 (0.15) basalt pillow glass 160 XANES At 1atm. Kress & Carmichael,
1991; parameterization of
fO2 as a function of
composition

0.27 Fe oxidation state determined
using the Mössbauer
calibration of Zhang et al.,
2018

Cottrell & Kelley, 2011; Le Voyer et al., 2015
(except the 6 analyses of hydrothermally
altered dredge 16D); Birner et al., 2018

mid-ocean ridge 0.19 (0.36) basalt pillow glass 42 XANES At 1atm. O’Neill et al., 2018;
parameterization of fO2 as a
function of composition

0.52 Fe oxidation state determined
using the Mössbauer
calibration of Berry et al.,
2018

O’Neill et al., 2018

mid-ocean ridge 0.16 (–) lava 1 mag-ilm pairs fO2 at T recorded and 1 atm.
Ghiorso & Evans 2008

0.25∗∗ passes Bacon & Hirschmann,
1988, test for equilibrium

Mazzullo & Bence, 1976

mid-ocean ridge 0.31 (0.73) peridotite 72 sp-oxybarometry fO2 at T and 0.6GPa.
Mattioli &Wood, 1988; and
Wood & Virgo, 1989; with
aFe3O4 from Sack &
Ghiorso, 1991a, 1991b;
http://melts.ofm-research.
org/CalcForms/index.html;
Temperature from spinel-
olivine Fe-Mg exchange
thermometer of Li et al.,
1995

Between about +0.6/–1.0 and
±0.2 depending on spinel
Fe3+/ΣFe ratio of spinel (see
Methods Appendix and
Davis et al., 2017)∗∗∗

see Davis et al., 2017; and
Birner et al. 2017; for
discussions of a-X model
choices

Bryndzia & Wood, 1990; Birner et al., 2018

back arc basin
spreading center

0.22 (0.30) submarine lava 37 XANES at 1atm and 1200 C. Kress &
Carmichael, 1991

0.27 Kelley & Cottrell, 2009; Brounce et al., 2014

arc front 0.96 (0.39) basalt glass in
olivine-hosted
inclusions,
basalt pillow
glass

119 XANES at 1atm and 1200 C. Kress &
Carmichael, 1991

0.27 Bonnin-Mosbah, 2001; Kelley & Cottrell,
2009; Kelley & Cottrell, 2012; Brounce
et al., 2014; Brounce et al., 2016 (data from
Gaetani et al., 2012, excluded from average
due to oxidative beam damage)

arc front 1.28 (0.64) volcanics (lavas
and tephra)

114 mag-ilm pairs fO2 at T recorded and 1 atm.
Ghiroso & Evans, 2008

0.25∗∗ passes Bacon & Hirschmann,
1988, test for equilibrium

Carmichael, 1967; Luhr & Carmichael, 1980;
Wallace & Carmichael, 1994; Rutherford &
Devine, 1996; Mandeville et al., 1996;
Luhr, 2000; Coombs & Gardner, 2001;
Devine et al., 2003; Costa et al., 2004;
Grove et al., 2005; Larsen, 2006; Toothill
et al., 2007; Izbekov et al., 2002; Browne
et al., 2010; Baggerman & Debari, 2011;
Crabtree & Lange, 2011; Stelten & Cooper,
2012; Arce et al., 2013; Waters & Lange,
2013; Howe et al., 2014; Frey & Lange,
2011; Muir et al., 2014;Waters et al., 2015;
Grocke et al., 2016; Crabtree & Waters,
2017; Waters & Frey, 2018

arc front 0.96 (0.81) peridotite
xenoliths

47 sp-oxybarometry fO2 at T and 0.6GPa.
Mattioli &Wood, 1988; and
Wood & Virgo, 1989; with
aFe3O4 from Sack &
Ghiorso, 1991a, 1991b;
http://melts.ofm-research.
org/CalcForms/index.html;
Temperature from spinel-
olivine Fe-Mg exchange
thermometer of Li et al.,
1995

Between about +0.6/–1.0 and
±0.2 depending on spinel
Fe3+/ΣFe ratio of spinel (see
Methods Appendix and
Davis et al., 2017)∗∗∗

see Davis et al., 2017; and
Birner et al., 2017; for
discussions of a-X model
choices

Wood & Virgo, 1989; Canil, 1990; Brandon &
Draper, 1996; Parkinson et al., 2003;
Bénard et al., 2018

(continued overleaf )
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Table 3.1 (Continued)

Tectonic setting δQFM (s) Lithology n Method
Activity-composition models
and other method notes

Method error in fO2 in
log units Notes Data included

forearc 0.22 (0.75) trench wall
peridotite and
peridotite
xenoliths

64 sp-oxybarometry fO2 at T and 0.6GPa.
Mattioli &Wood, 1988; and
Wood & Virgo, 1989; with
aFe3O4 from Sack &
Ghiorso, 1991a, 1991b;
http://melts.ofm-research.
org/CalcForms/index.html;
Temperature from spinel-
olivine Fe-Mg exchange
thermometer of Li et al.,
1995

Between about +0.6/–1.0 and
±0.2 depending on spinel
Fe3+/ΣFe ratio of spinel (see
Methods Appendix and
Davis et al., 2017)∗∗∗

see Davis et al., 2017; and
Birner et al., 2017; for
discussions of a-X model
choices

Parkinson & Pearce, 1998; Pearce et al.,
2000; Birner et al., 2017

plume 0.10∗ (0.71) basalt pillow glass 334 XANES at 1atm and 1200 C. Kress &
Carmichael, 1991

0.59 Studies using the standard
glasses of Cottrell et al.,
2009, are recalculated using
the Fe3+/Fe2+ ratios
reported by Zhang et al.,
2018

Brounce et al., 2017; Moussallam et al., 2014;
Helz et al., 2017; Moussallam et al., 2016;
Shorttle et al., 2015; Hartley et al., 2017;
Moussallam et al., 2019

plume –0.25 (0.55) lavas 47 mag-ilm pairs fO2 at T recorded and 1 atm.
Ghiorso & Evans, 2008

0.25∗∗ passes Bacon & Hirschmann,
1988, test for equilibrium

Carmichael, 1967a,b; Anderson & Wright,
1972;Wolfe et al., 1997; Hasse et al., 1997;
Gunnarsson et al., 1998; Beier et al., 2006;
Genske et al., 2012; Portnyagin et al., 2012

plume 0.82 (1.40) at
0.6 GPa
and 0.10
(1.42) at
2.5 GPa

peridotite and
pyroxenite
xenoliths

143 sp-oxybarometry fO2 at T and 0.6GPa.
Mattioli &Wood, 1988; and
Wood & Virgo, 1989; with
aFe3O4 from Sack &
Ghiorso, 1991a, 1991b;
http://melts.
ofm-research.org/
CalcForms/index.html;
Temperature from spinel-
olivine Fe-Mg exchange
thermometer of Li et al.,
1995

Between about +1.2/–2.0 and
±0.4 depending on spinel
Fe3+/ΣFe ratio of spinel (see
Methods Appendix and
Davis et al., 2017)∗∗∗

see Davis et al., 2017; and
Birner et al. 2017; for
discussions of a-X model
choices

Abu El-Rus et al., 2006; Bonadiman et al.,
2005; Davis et al., 2017; Grégoire et al.,
2000; Hauri & Hart, 1994; Kyser et al.,
1981; Neumann, 1991; Neumann et al.,
1995; Neumann et al., 2002; Ryabchikov
et al. 1995; Sen, 1987; Sen, 1988; Sen &
Leeman, 1991; Sen & Presnall, 1986; Tracy,
1980; Wasilewski et al., 2017; Wulff-
Pedersen et al. 1996

Note: ∗Authors of these studies infer higher fO2 for primitive, near primary, melts based on these data: Mauna Kea >QFM 0.6 (Brounce et al., 2017); Kilauea QFM+0.4 to 0.7 (Helz et al., 2017, Moussallam et al., 2016); Iceland ~QFM+
0.4 (Shorttle et al., 2015; Hartley et al., 2017); Erebus ~QFM + 1.4 (Moussallam et al., 2014); Canary Islands ~QFM + 1.0 (Moussallam et al., 2019)
Note: ∗∗Magnetite-Ilmenite oxygen barometery errors reflect the average residual of model calcluations and the calibration dataset: (Ghiroso & Evans [2008] oxygen barometer-derived fO2 – known fO2 from calibration dataset),
presented in supplemental material of Waters & Lange (2016)
Note: ∗∗∗Uncertainty in fO2 calculated from spinel oxybarometry is asymmetrical and decreases in magnitude as Fe3+/ΣFe ratio of spinel increases. Spinels that have Fe3+/ΣFe = 0.05 have an uncertainty in log fO2 at the high end listed
and those with Fe3+/ΣFe ≥ 0.4 at the low end. Hotspot residues, except four from Davis et al. (2017), are samples with spinel Fe3+/ΣFe ratios determined without Mössbauer correction standards, which roughly doubles uncertainty
compared to corrected analyses (Davis et al., 2017).

http://melts.ofm-research.org/CalcForms/index.html
http://melts.ofm-research.org/CalcForms/index.html
http://melts.ofm-research.org/CalcForms/index.html
http://melts.ofm-research.org/CalcForms/index.html
http://melts.ofm-research.org/CalcForms/index.html


lithologies offer opportunities for oxybarometry. We
begin with the volcanics.
Early estimates based on wet chemistry and magnetite–

ilmenite pairs indicated that mid-ocean ridge basalts
(MORBs) record fO2s similar to QFM (Carmichael &
Ghiorso, 1986; Haggerty, 1976). However, upon reexa-
mining data from the literature compiled by Haggerty
(1976), we found only one sample with multiple pairs of
magnetite and ilmenite in equilibrium at magmatic tem-
peratures according to Bacon and Hirschmann (1988),
and that sample (15.6m cooling unit from DSDP
Leg34: site 319A) records QFM+0.16 (±0.1) at 1232
(±37) C (Mazzullo & Bence, 1976). Subsequent wet
chemical work found that MORBs record fO2s low
enough to suggest graphite is a stable phase in the MORB
source (i.e., ~QFM-1, Christie et al., 1986), but more
recent wet-chemical work and Fe K-edge XANES ana-
lyses have revised average MORB fO2 estimates back
upwards to QFM (Bezos &Humler, 2005; Cottrell & Kel-
ley, 2011; O’Neill et al., 2018; Zhang et al., 2018). Five
recent studies determine Fe3+/ΣFe ratios spectroscopi-
cally by XANES to determine the fO2 of average MORB

60 (a)

Volcanics

Ridge
(XANES)

BAB
(XANES)

Arc
(XANES)

Plume
(XANES)

Arc
(Mag-Ilm)

Plume
(Mag-Ilm)

(b)

(c)

(d)

(e)

(f)

40

20

60

40

20

10

5

0
–3 –2 –1 0 +1

log (fo2), ΔQFM

+2 +3 +4

N
N

N
N

N
N

7.5

5.0

2.5

0.0
30

20

10

10

5

15
0

0

0

Figure 3.2 Distribution of fO2 recorded by volcanics globally in
different tectonic settings and by multiple methods of
oxybarometry. We have recalculated the fO2 recorded by
each sample based on the reported chemical analyses except
for the separate light gray dataset in panel (a), which are the
observations as reported by O’Neill et al. (2018). The O’Neill
et al. (2018) dataset was collected using a different set of
primary standards, as described in our methods appendix.
Vertical, dashed lines reflect calculated average values of fO2.
Note that volcanics in (e) include plume-affected ridge
segments, which cause them to record bimodal fO2; the fO2s
inferred for primitive plume magmas are higher than the
average and we represent each plume’s primitive magma fO2

as a filled orange circle (as reported by those authors). See
Table 3.1 and text for details.
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Figure 3.1 Locations of samples compiled in this study as a
function of tectonic setting, lithology, and methodology.
Symbol size scales linearly with the number of samples at a
given locality.
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(Fig. 3.1, Fig. 3.2a) (Birner et al., 2018; Cottrell & Kelley,
2011; Le Voyer et al., 2015; O’Neill et al., 2018; Zhang
et al., 2018). Determinations for 166 MORB glasses that
use the calibration of Zhang et al. (2018) find a narrow
distribution around QFM –0.17±0.15 (all uncertainty is
1 standard deviation [σ] unless otherwise noted). Determi-
nations for 42 MORB using the calibration of Berry et al.
(2018) by O’Neill et al. (2018) return a mean of QFM
+0.19 ±0.36. It is notable that O’Neill et al. (2018)’s cor-
responding Fe3+/ΣFe ratios for average MORB are lower
by ~0.04 than those from the global survey of Zhang et al.
(2018), despite their equation to higher fO2. The difference
stems from O’Neill et al. (2018)’s application of a new
compositional parameterization of fO2, which we choose
not to apply in this study (see Methods Appendix for a
description and assessment of parameterizations). The
important point for our purpose here is that, regardless
of the value of the Fe3+/ΣFe ratio of natural MORB,
the Fe-XANES spectra of natural MORB glasses resem-
ble the spectra of experimental MORB-composition
glasses equilibrated at fO2 similar to the QFM buffer
(see Methods Appendix, Fig. S1), and there is general
agreement among all recent spectroscopic studies that
MORB glasses record QFM. The fO2s recorded by aver-
age MORBs (7.58 wt.% MgO, Gale et al., 2013b) will be
maxima with respect to the fO2 of the mantle from which
they derive, because Fe3+ is moderately incompatible dur-
ing low-pressure fractional crystallization and average
MORBs are not primary melts of the mantle (Fe3+/ΣFe
ratios increase by 0.03 as MgO falls from 10 to 5 wt.%;
Cottrell & Kelley, 2011).
Oxybarometry of mid-ocean ridge peridotites has only

been investigated in two studies (Birner et al., 2018 and
Bryndzia & Wood, 1990) and in a handful of localities
(Fig. 3.1). Global ridge peridotites record fO2 = QFM
+0.31 (±0.73), but we note that more than half of these
data derive from a single ridge segment (Fig. 3.1,
Fig. 3.3a). Birner et al. (2018) found that n=41 peridotites
dredged from the Southwest Indian Ridge (SWIR) record
QFM +0.61 (±0.63) at 0.6 GPa and the closure tempera-
ture of olivine-spinel exchange. This is significantly higher
than the fO2 recorded by basalts on the same segment
(p-value < 0.01); however, the discrepancy disappears
once the peridotites’ conditions of last equilibration with
basalt are considered (Birner et al., 2018). The method of
projecting peridotite fO2 to the PTX conditions of last
equilibration with basalt considers three sub-solidus reac-
tions that may alter the fO2 recorded by the rock: Mg–Fe
exchange between olivine and spinel, Al–Cr exchange
between spinel and orthopyroxene, and a Tschermak
reaction that produces spinel at the expense of olivine
and Al-rich orthopyroxene during cooling. Although a
dearth of knowledge as to ferric iron partitioning behavior
between spinel and pyroxenes during cooling leads to
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Figure 3.3 Distribution of fO2 recorded by mantle lithologies
(peridotites and olivine-orthopyroxene-spinel-bearing
pyroxenites) globally in different tectonic settings. We have
recalculated the fO2 recorded by each sample at 0.6 GPa (2.5
GPa in [e]) and temperature recorded by spinel-olivine
thermometry using the methodology of Birner et al. (2018)
and Davis et al. (2017) based on the reported chemical
analyses. All samples are peridotites except for (d) where the
overlain histogram in red are pyroxenites. We caution against
overinterpreting the wide range of xenolith fO2s recovered at
plumes due to (i) the near absence of samples from this
setting characterized using Mössbauer-characterized spinel
standards or Mössbauer spectroscopy; (ii) uncertainty in the
barometry and metamorphic history of these samples (which
will alter the fO2 they record); and (iii) limited data by which
we may judge the extent to which these lithospheric xenoliths
record ridge versus plume fO2.
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significant uncertainty in the magnitude of projection
(±0.5 log units, Birner et al., 2018), the direction of the
model is to decrease recorded peridotite fO2 values when
projecting back to high temperature-pressure source con-
ditions. This projection thus brings peridotite fO2 values
into closer agreement with basalt fO2 values, suggesting
that fO2 values recorded by peridotites, without these cor-
rections, may systematically overestimate the redox con-
ditions of MORB-source mantle (Birner et al., 2018).
We highlight that peridotites along SWIR record five

times greater range in fO2 when compared to basalts
dredged from the same segment. On the global scale,
Bryndzia andWood (1990) investigated the fO2 of 35 ridge
peridotites from 12 localities. When filtered to exclude
four samples from two anomalous locations (the sub-
aerial St. Paul’s Rocks and the tectonically complex
Mid-Cayman Rise), and recalculated according to the
methods presented here, this sample set records fO2 of
QFM -0.08 ±0.68 and spans a range of nearly 2.5 orders
of magnitude in fO2 (Birner et al., 2018).When comparing
Fig. 3.2a and 3.3a, we observe that global mid-ocean ridge
volcanics display low variance relative to ridge perido-
tites. These limited data suggest that basalts may homog-
enize kilometer-scale redox heterogeneity in the upper
mantle (Birner et al., 2018). Globally, ridge peridotites
calculated at 0.6 GPa and the temperature of olivine-
spinel closure record average fO2s about half a log unit
higher than basalts calculated at 1 bar and 1200 C.
Because we have not attempted here to account for subso-
lidus processes in the peridotites globally, comparisons
between the two distributions should not be overinter-
preted. A more comprehensive global peridotite dataset
is required to evaluate the response of mantle residues
to melt extraction and subsolidus re-equilibration.

Arcs and Back Arcs. Subduction influences the compo-
sition of mantle melts and arc volcanics, generating conti-
nental crust in the process (e.g., Elliott et al., 1997; Gill,
1981; Grove et al., 2012; Kelemen et al., 2003; Kelemen
et al., 2007; Osborn, 1959; Plank & Langmuir, 1988; Stol-
per & Newman, 1994; Turner & Langmuir, 2015; Zimmer
et al., 2010). Bothmelts andmantle lithologies offer oppor-
tunities for oxybarometry. We begin with the volcanics.
Seminal contributions by Carmichael (1991) and Frost

and Lindsley (1992) surveyed the fO2s recorded by arc
rocks using wet-chemistry and magnetite-ilmenite pairs,
respectively, and found that arc rocks record fO2s up to
several orders of magnitude higher than MORBs. Our
compilation of 5 XANES spectroscopic studies (n=119
samples, Figure 3.2c) of olivine-hosted melt inclusions
and submarine pillow glasses shows that arc basalts rec-
ord, on average, QFM +0.96 (±0.39). One set of outliers
from Cerro Negro record QFM +4.75 (±0.40) (Gaetani
et al., 2012), but spectra from these hydrous samples have

suffered from radiation-induced beam damage (Cottrell
et al., 2018, Gaetani, pers. comm.) and are not included
in our statistical analysis. Nearly 90% of samples with
XANES measurements erupted through the thin crust
(~25 km, Takahashi et al., 2007) of the active Mariana
arc front (Fig. 3.1a), and thus there is significant location
bias in this dataset.
Globally, magnetite–ilmenite pairs, from 114 arc lavas

sampling 11 different arcs, record QFM +1.28 (±0.64)
(Figure 3.2d; see methods appendix and the online data
library associated with this contribution, Cottrell et al.,
2021, for citations). These samples contain Fe–Ti oxides
with compositions that record a range of temperatures
(700–1085 C), span a wide range of compositions (basal-
tic andesite to rhyolite) but are predominantly dacitic, and
erupt through crust ranging from 25 to 66km thick.
The mean fO2 recorded by olivine-hosted melt inclu-

sions and submarine arc-front glasses (ΔQFM = 0.96
±0.39, n=119) is slightly lower than that recorded bymag-
netite-ilmenite pairs (ΔQFM = 1.28±0.64 n=114) at the
95% confidence level (tstatistic = 4.6, tcritical = 2.0, degrees
of freedom [DF] = 186, p-value < 0.001). (When we com-
pare distributionmeans in this contribution,wewill always
apply a two-sample student’s t-test with α= 0.05 [Krzy-
winski & Altman, 2013] for samples of unequal variance.)
We caution that the datasets are not directly comparable
because of the limited geographic distribution of the melt
inclusionand submarine glass dataset; because there areno
samples in common between the two distributions; and
because the melt inclusions may reflect magma composi-
tions that precede magnetite and ilmenite saturation.
Thus, to first order, our global result is not inconsistent
with the results of Waters and Lange (2016) and Crabtree
and Lange (2011) who found congruence when they com-
pared magnetite-ilmenite oxybarometry to wet-chemical
titration on the same suite of very fresh aphyric lavas.
Amore direct comparison can be made between the oli-

vine-hostedmelt inclusions and submarine glasses erupted
along the active Mariana Arc, and back arc basin (BAB)
glasses erupted at depth along the associated back arc
spreading center: the Mariana Trough. Both datasets
apply the same method (XANES) to arrive at fO2 esti-
mates, and both sample suites comprise basaltic to
basaltic andesite glasses representing similar stages of dif-
ferentiation in thin crust (similar MgO). The Mariana arc
front samples record fO2s that are on average 0.73 log
units higher than the Mariana trough samples (Mariana
arc: QFM+0.95±0.36 for n = 107 vs Mariana trough:
QFM+0.22±0.30 for n=37, respectively) (Brounce
et al., 2014; Kelley & Cottrell, 2009).
Another direct comparison can be made between sub-

marine basalts in ridge (MORB) and BAB tectonic set-
tings. Here we find that BAB from the Mariana trough
(n=37) record significantly higher fO2s than MORB
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globally (n=160) by 0.4 log units (tstatistic = 7.8, tcritical = 2.0,
degrees of freedom [df] = 41, p-value << 0.001). This com-
parison is particularly germane for inferring the effect of
subduction on mantle fO2 because submarine back-arc
ridges and mid-ocean ridges are tectonically similar and
differences in their melt chemistry can be largely attributed
to the influence of subduction (Stolper & Newman, 1994).
As indices of subduction influence inMariana trough lavas
go from negligible to significant (e.g., as H2O contents and
the ratios of fluid mobile to fluid immobile incompatible
trace elements increase), Fe3+/ΣFe ratios (and fO2s) also
increase (Brounce et al., 2014; Kelley & Cottrell, 2009,
2012). In the Marianas, volcanics erupted over the course
of the arc’s maturation also record increasing fO2 with
increasing subduction influence. Modern arc tholeiites rec-
ord similar fO2s to the boninites that erupted during the
early stages of slab influence on themantlewedge; and both
lithologies are more oxidized than the forearc basalts that
tapped the mantle prior to slab influence (Brounce et al.,
2021; Brounce et al., 2015). The volatile and trace element
signals of subduction appear intimately tied to elevated
fO2s in space and in time.
Mantle lithologies recovered from arc settings com-

prise primarily forearc and arc peridotites. Forearc peri-
dotites are exposed on trench walls and may sample
ancient lithospheric mantle (Parkinson & Pearce,
1998), mantle wedge metamorphosed by the subducting
slab (Fryer et al., 1985), or processes associated with sub-
duction initiation (Birner et al., 2017). In comparison,
arc peridotites rapidly ascend to the surface as xenoliths
encased within their basaltic hosts at arc front volcanoes.
The mean fO2 recorded by forearc peridotites is statisti-
cally indistinguishable from the mean fO2 recorded by
ridge peridotites (tstatistic = 0.73, tcritical = 2, df = 131,
p-value = 0.47) (Fig. 3.3). As discussed by Birner et al.
(2017), this result contrasts with Parkinson and Pearce
(1998)’s study of forearc peridotites from the Izu-Bonin
subduction zone, primarily because we apply the spinel
activity model of Sack and Ghiorso (1991) instead of
Nell and Wood (1991). Yet, consistent with Parkinson
and Pearce (1998), Birner et al. (2017) show that perido-
tites that have interacted with slab-influenced melts do
yield elevated fO2. This influence is additionally evident
in the distribution of fO2 recorded by arc xenoliths from
five studies (Table 3.1), which lies significantly higher, by
0.65 log units, than ridge peridotites (tstat = 4.4, tcrit =
2.0, df = 90, p-value << 0.001) or forearc peridotites.
Another unique characteristic of sub-arc peridotites is
the extended range of melt extraction they record. Spinel
Cr#, commonly taken as a proxy for melt extraction,
extends to much higher values (> 60) in sub-arc peridotites
than in ridge peridotites. This extended range of melt
extraction may provide an opportunity to investigate
the relationship between extent of melting and fO2. For

example, Benard et al. (2018b) found a weak positive cor-
relation (p-value > 0.06) between fO2 and modal orthopy-
roxene, which they interpreted as evidence of fO2 falling
with melt extraction; however, the positive correlation
between spinel Cr# and fO2 in these same samples sug-
gests the relationship between fO2 and melt extraction
may be more complicated. No correlation exists between
fO2 and orthopyroxene mode or spinel Cr# in the Tonga
peridotites of Birner et al. (2017). More work is needed to
better constrain the effects on fO2 of extracting melt from
the mantle.

Plumes. Mantle plumes are thermal upwellings that
impinge on the lithosphere (French & Romanowicz,
2015;Montelli et al., 2006; Sleep, 1992). Capable of gener-
ating low degreemantle melts that more ably sampleman-
tle heterogeneity, mantle plumes can produce ocean island
basalts (OIB) (Dasgupta et al.;McKenzie &Onions, 1983;
Stracke et al., 2005) and xenoliths wrenched from the lith-
ospheric mantle (Frey & Roden, 1987). Both melts and
xenoliths at ocean islands offer opportunities for oxybaro-
metry; however, it remains challenging to interpret the
relationship between lithospheric mantle peridotites and
OIB. We begin with the volcanics.
Melt inclusions and submarine basalts erupting at and

around the mantle plumes of Hawaii, Erebus, Iceland,
and the Canary Islands record, on average, QFM +0.1
(7 XANES spectroscopic studies with n= 334 samples;
Table 3.1, Fig. 3.2e). The Fe- XANES-based fO2 in this
case is higher than the record of magnetite–ilmenite pairs
(n=47) by 0.35 log units (tstatistic = 3.8, tcritical = 2, df = 69,
p-value = 0.003); however, we emphasize that these data-
sets have no samples in common. There is no meaningful
difference between the fO2s recorded by OIBs and
MORBs. In the case of OIB volcanics, most XANES
studies have either interrogated a geographic gradient in
fO2 (e.g., Shorttle et al., 2015) or the effect of differentia-
tion (crystallization and degassing) on fO2 (e.g. Brounce
et al., 2017; Helz et al., 2017; Moussallam et al., 2016;
Moussallam et al., 2014). We therefore observe a bimodal
distribution of fO2 recorded by plume-affected glasses
(Fig. 3.2e). Glasses erupted along mid-ocean ridges that
approach plumes, and glasses affected by degassing, rec-
ord lower fO2, while primitive and relatively undegassed
melt inclusions record higher fO2 (Fig. 3.2e, and see dis-
cussion). The authors of the detailed studies that have
interrogated the fO2 of plumes and plume-affected ridges
have inferred plume mantle source fO2s anywhere from
0.4 to 2 log units higher than the average fO2 recorded
by the volcanics (filled circles in Figure 3.2e). In all cases,
the authors have suggested that the mantle sources of
these OIBs are more oxidized than those of MORB,
and that this may be due to incorporation of recycled
components (e.g. Brounce et al., 2017; Moussallam

42 MAGMA REDOX GEOCHEMISTRY



et al., 2019; Helz et al., 2017; Moussallam et al., 2016;
Moussallam et al., 2014; Shorttle et al., 2015). Investiga-
tors have drawn such inferences by projecting the glass
Fe3+/ΣFe ratios along compositional trends (e.g., to more
primitive, less degassed, and more enriched compositions)
or geographic trends (e.g., along a ridge toward a plume).
We discuss some of these projections in greater detail in
Section 3.4.1.1.
We have additionally compiled data from 13 studies to

calculate the fO2 of 143 ocean island xenoliths. Unlike all
of the ridge peridotites and most of the arc peridotites,
none of the published spinel compositions, save for Davis
et al. (2017), were obtained using spinel standards with
Fe3+/ΣFe ratios independently characterized. Without
using standards to correct spinel Fe3+/ΣFe ratios, uncer-
tainties in log fO2 are roughly double those of samples cal-
culated from corrected spinel Fe3+/ΣFe ratios (Davis
et al., 2017, see Methods Appendix and Table 3.1).
Despite, or because of, this limitation, we see that ocean
island xenoliths record a wide range of fO2, from QFM
–2 to nearly QFM +4 with a mean equal to QFM
+0.82 (±1.40). This is a much broader range, extending
to lower fO2, than compiled by Ballhaus (1993); the mean
is within error of that compiled byMallmann and O’Neill
(2007), though again the variance is greater in the present
compilation. Of the 143 xenoliths compiled here, 11 were
identified by the original authors as pyroxenites (Sen,
1987; Tracy, 1980) which record a more oxidized mean
fO2 of QFM +1.44 (±0.63) than the whole set of OIB
xenoliths (see red histogram overlain on Fig. 3.3d). The
range of fO2 recorded by OIB lavas falls within the range
recorded by ocean island xenoliths; however, we cannot
draw a genetic relationship between all lithospheric man-
tle xenoliths and the mantle melts that exhume them at
plumes (compare Fig. 3.2e to 3.3d). Presumably, many
of these xenoliths represent lithospheric mantle that has
experienced limited chemical interaction with plume-
derived melts. Others are likely products of melt-rock
reaction between lithospheric peridotite and plume-
generated melts. The pyroxenite xenoliths were especially
likely to have been derived in this way (e.g., Sen & Lee-
man, 1991), but it is unclear how many of the peridotites
were also influenced by plume-sourced melts. There is
another caveat; we do not know the equilibration pressure
at the closure temperature of these plume xenoliths. At
ridges, we can reasonably infer pressure from peridotite
thermometry because geothermal gradients are reasona-
bly well-characterized. That is not the case in plume set-
tings, where thermal gradients are radial as well as
vertical (e.g., Farnetani & Hofmann, 2010). In
Figure 3.3e we demonstrate how equilibration at 2.5
GPa, instead of 0.6 GPa, would shift fO2 down by two
thirds of a log unit. This illustrates our community’s need
for better peridotite mineral barometry.

We venture that a more appropriate comparison might
be drawn between peridotitic ocean island xenoliths and
ridge peridotites. Both may initiate as residues of melting
at ridges, with the former transiting and cooling prior to
interacting with a mantle plume. The range of fO2s
recorded by ocean island xenoliths encompasses the range
of ridge peridotites but skews to higher fO2s by 0.37 log
units if we hold pressure constant at 0.6GPa (tstat = 2.6, tcrit
= 2.0, df= 211, p-value=0.01).Notably, spinel-olivineFe-
Mg exchange (Li et al., 1995) records higher temperatures
in the ocean island xenoliths than in the ridge peridotites.
This difference in temperature could be the result of heat-
ing of the oceanic lithosphere beneath oceanic islands by
the plume (Ballhaus, 1993), or it could result fromexhuma-
tion of these xenoliths from greater depths than the depth
of last equilibration experiencedby ridge peridotites. In the
former case, temperature-dependent exchange reactions
suggest that a mantle parcel preserving a record of hotter
conditions should record lower fO2 than a parcel at the
same pressure that records cooler conditions (Birner
et al., 2018). Consideration of these subsolidus reactions
would thus predict ocean island xenoliths to be more
reduced than ridge peridotites, in contrast to what we
observe. If this interpretation is correct, then the difference
in fO2 between ridge peridotites and OIB xenolith source
mantle prior to plume heating is even greater than the
0.6 GPa plots in Figure 3.3 suggest, perhaps driven by
the interaction of some of these xenoliths with oxidized
plume melts. In the latter case, changes in fO2 due to
changes in pressure would additionally have to be
accounted for to make a direct comparison between ridge
peridotites and OIB xenoliths. If no changes in mineral
composition or mode are considered, the lower average
fO2 calculated assuming a higher pressure of equilibration
(Fig. 3.3) suggests that if OIB xenoliths do generally sam-
ple deeper portions of the lithosphere than ridge peridotite,
then average fO2 of the two are comparable. While
exchange reactions and modal changes during ascension
and cooling may complicate this relationship, at this time,
the data do not suggest that xenoliths recovered from
plumes significantly differ in their fO2 compared to perido-
tites recovered in the ridge setting. Constraints on pressure
and effects of temperature on the fO2 recorded by perido-
tites below their solidus remain poorly understood, and
further work is needed to clarify the fO2 signature of xeno-
liths entrained within plume lavas.

3.3.2. V/Yb Concentrations

V/Yb ratios range from 17–195 in MORB, 60–238 for
BABB, and 65–422 in arcs (excluding one arc basalt with
a ratio of > 800). We find average V/Yb concentrations in
each tectonic setting that are all statistically distinct
(p-values <<< 0.001) with V/Yb of MORB (93 ±17)
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< BABB (107 ±25) < arcs (158 ±60). We illustrate this in
Figure 3.4 with a plot of V/Yb ratios against MgO concen-
trations in ridge, back-arc, and arc settings. Translating
trace element ratios measured in glass (magmatic liquid)
to the oxygen fugacity of the source rock (residue) depends
on having accurate, composition-dependent, mineral-melt
partition coefficients, an accurate knowledge of the source
composition, and an accurate melting model (e.g., Canil,
1997; Lee et al., 2003; Lee et al., 2005; Mallmann &
O’Neill, 2009; Mallmann et al., 2019). Mallmann and
O’Neill (2013), Nicklas et al. (2019), Mallmann et al.
(2019), Bucholz and Kelemen (2019), and others have dis-
cussed the difficulty in translating V/Sc ratios or olivine-
melt partition coefficients into source fO2s. For example,
the fO2 of modern MORB, or Archean mantle, based on
V partitioning is up to a log unit higher than that implied
by modern MORB Fe3+/ΣFe ratios (Mallmann and
O’Neill, 2013; Nicklas et al., 2019). For these reasons,
we do not calculate fO2 for each tectonic setting based
on the V/Yb ratio, but simply infer the relative oxygen
fugacity of each tectonic setting based on the premise that
basalt V/Yb will rise with the fO2 of the mantle source that
generated the basalt. Under these assumptions, it is clear
that fO2 ridges < fO2 back arcs < fO2 arcs.

3.4. DISCUSSION

Our compilation and reprocessing of analytical data
from the literature yields a synoptic picture of the fO2s
recorded by volcanic and mantle rocks across tectonic

settings. Some three decades have passed since the seminal
compilations from last century (e.g., Ballhaus et al., 1991;
Carmichael, 1991; Christie et al., 1986; Frost & Lindsley,
1992; Wood et al., 1990). The volume of data and geo-
graphic coverage have increased tremendously and the
analytical techniques and activity models have evolved;
however, a key finding from those studies remains robust
today. Volcanic and mantle rocks from arc settings record
significantly higher fO2 than those from ridges. Recycling
of oceanic crust and lithosphere back into the Earth at
subduction zones generates arc volcanics and related
mantle lithologies that record higher fO2 relative to those
recovered from ridges. Additional work, particularly in
forearc and back-arc settings, support this observation
by showing that fO2 becomes elevated in proportion to
the rock’s subduction affinity (Benard et al., 2018; Birner
et al., 2017; Brounce et al., 2014; Brounce et al., 2021;
Brounce et al., 2015; Kelley & Cottrell, 2009; 2012; Par-
kinson & Arculus, 1999). This remains true for the
back-arc basin basalts erupted at pressures > 200 bar
and through a comparable crustal column to normal
MORB. Moreover, in both the ridge and arc settings,
melts (lavas and tephras) and mantle (peridotites and pyr-
oxenites) both record an offset in oxygen fugacity of sim-
ilar magnitude between the two settings. While these
observations are robust, the mechanism by which subduc-
tion generates more oxidized lavas and associated mantle
lithologies remains a matter of debate and is beyond the
scope of this contribution to review (e.g., Andreani
et al., 2013; Benard et al., 2018; Canil & Fellows, 2017;
Carmichael, 1991; Chin et al., 2018; Debret et al., 2014;
Evans, this volume; Farner & Lee, 2017; Foden et al.,
2018; Gaillard et al., 2015; Kelley & Cottrell, 2009;
Lecuyer & Ricard, 1999; Lee et al., 2005; Mungall,
2002; Nebel et al., 2015; Parkinson &Arculus, 1999; Tang
et al., 2018; Tollan & Hermann, 2019; Williams et al.,
2004; Wood et al., 1990).

3.4.1. Linking the fO2 of Volcanics and Mantle
Lithologies

Linking magmatic fO2 to melt residue fO2 and, ulti-
mately, to the fO2 of the subsolidus convecting mantle
presents a grand challenge to the fields of petrology,
experimental petrology, and modeling. When the mantle
first begins to melt at infinitesimally small melt fractions,
the composition of residual silicate phases will not change
significantly, and the fO2 of the unmelted, solid mantle
source will impose fO2 on low degree partial melts
(whether silicate melts or carbonated silicate melts), and
set the melt’s Fe3+/ΣFe ratio. However, at some point
during adiabatic ascent, the melt fraction will grow to
an extent that the composition of the solid phases
are themselves modified, and the fO2 of the assemblage
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(solid + melt) changes. Examples of anticipated changes
during melting that could affect fO2 include the exhaus-
tion of reduced carbon or sulfur phases from the solid
assemblage (Lee et al., 2012; Stagno et al., 2013), and
an increase of the Fe3+/ΣFe ratio of spinel resulting from
Al/Fe3+ exchange with the melt that favors concentrating
Fe3+ in the spinel (Ballhaus et al., 1991; Davis & Cottrell,
2018). At this point, the fO2 of the mantle will change in
ways that experiments and models have not yet eluci-
dated. Indeed, experiments that investigate fO2 as a vari-
able in the context of partially melting the mantle are
nascent (Ballhaus et al., 1991; Davis &Cottrell, 2018; Sor-
badere et al., 2018), and stand as a challenge for the future
(see Section 3.5). However, once melt and residue sepa-
rate, melt fO2 changes little relative to the QFM buffer
during volatile-undersaturated adiabatic ascent
(Kress &Carmichael, 1991). Thus, at ridges, near primary
basaltic melts should serve as accurate proxies for average
mantle source conditions (e.g., Carmichael, 1991); how-
ever, such accuracy may not extend to mantle rocks,
and volcanic rocks from other settings.
Once melts become volatile saturated or begin to

undergo assimilation-fractional crystallization processes
within the crust, the relationship between mantle source
and magmatic fO2 may become more tenuous. Here we
briefly review processes that may modify melt fO2 signal
from source to surface: degassing and crystal fractiona-
tion within thick crust.

Degassing. Observational studies that have investi-
gated the relationship between degassing and magmatic
fO2 have thus far observed reduction of melt Fe3+/ΣFe
ratios in response to degassing. For example, numerous
XANES studies on natural glasses have captured the
potential for sulfur degassing to reduce melt Fe3+/ΣFe
ratios (Brounce et al., 2014; Brounce et al., 2017; Hartley
et al., 2017; Helz et al., 2017; Kelley & Cottrell, 2012;
Moussallam et al., 2016; Moussallam et al., 2014; Mous-
sallam et al.; Shorttle et al., 2015). In order to gain further
insight into the effect of C–O–H–S degassing on mag-
matic fO2, we present results from the gas-melt equilib-
rium model D-Compress of Burgisser et al. (2015) (see
Methods Appendix). Detailed explanations of how D-
Compress treats fO2 during degassing can be found in
Burgisser et al. (2015), Moussallam et al. (2016), and
Brounce et al. (2017). A general feature of the model out-
put is a prediction of modest changes in fO2 (< 0.2 log
units), both positive and negative, as degassing proceeds
until pressures fall below ~250 bar, at which point fO2 falls
sharply in all tectonic settings (Fig. 3.5). D-Compress
therefore predicts that the fO2 of MORB is negligibly
affected by degassing (Fig. 3.5, gray line) owing to the fact
that MORBs erupt at pressures greater than 200 bar and
the dominant degassing volatile is, which has limited

power to shift magmatic fO2 so long as the MORB source
is more oxidized than graphite saturation (Cottrell and
Kelley, 2011). Degassing-fO2 pathways at arcs and sub-
aerial plume volcanoes have greater potential to shift
fO2 because lavas and tephras can degas to 1 atmosphere
total pressure. However, melt inclusions may be trapped
at nearly any point along the degassing pathway, which
may spare some arc and plume sample sets from recording
strong modification. Typical water contents of arc melt
inclusions yield a conservative estimate of entrapment
pressures of 400–3000 bar (Plank et al., 2013). At these
entrapment pressures, arc magmas with typical volatile
concentrations may be slightly more or less oxidized,
but within ~0.2 log units of their source, depending on
their initial fO2 (Fig. 3.5). The fact that arc melt inclusions
become progressively reduced during degassing (e.g., Helz
et al., 2017; Kelley & Cottrell, 2012; Moussallam et al.,
2014; Moussallam et al., 2019) strongly indicates that
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the arc source is significantly more oxidized than MORB
(compare teal arc degassing pathways initiated at QFMvs
QFM +1.5 in Figure 3.5).
The much higher ratios of sulfur to water in undegassed

OIB magmas lead to a larger magnitude of reduction as
degassing proceeds in OIB settings compared to arc set-
tings, because the reducing effects of degassing ~2000
ppm S are not as strongly offset by the slightly oxidizing
effects of degassing H2O, as is the case for H2O-rich arc
magmas (Fig. 3.5, orange lines). The model predictions
in Fig. 3.5 that link degassing to reduction are consistent
with observations of natural glass and melt inclusion
suites, as reviewed above, and implies that the fO2

recorded by plume-source glasses is typically a minimum
(Brounce et al., 2017; Helz et al., 2017; Moussallam et al.,
2019). Corroborating evidence is found when we compare
the more primitive and less degassed plume glasses
(orange circles, Fig. 3.2e) to magnetite–ilmenite oxybaro-
metry in plume lavas (Fig. 3.2f ). The latter record lower
fO2 on average, and we speculate that this may reflect
magnetite and ilmenite crystallization further along the
liquid line of descent, after significant degassing. Further,
if fractional crystallization acts to oxidize iron in typical
plume lavas, its effect is either counterbalanced by degas-
sing or is not on display here as we compare these two
proxies. The caveat is that these are global compilations;
Fig. 3.2e and 3.2f do not have samples in common, and we
need targeted studies to untangle these competing effects.
If we look to themantle for further insights about plume

fO2, we find additional evidence that plumes may be oxi-
dized, but the story remains nuanced. Pyroxenite xeno-
liths from OIB localities have been interpreted as the
products of extensive refertilization of the lithosphere
by plume-derived melts (Sen & Leeman, 1991). The rela-
tively oxidized fO2 recorded by these pyroxenite xenoliths
provides further evidence that OIB source regions are
more oxidized than the MORB source (Figure 3.3d).
The opportunity to investigate the Fe3+/ΣFe ratios of sub-
marine and melt inclusion suites from arcs and plumes
holds great future promise for reconstructing primitive
melt compositions from partially degassed samples.

Crystal Fractionation. Cottrell and Kelley (2011) and
numerous studies since (Birner et al., 2018; O’Neill
et al., 2018; Shorttle et al., 2015), have shown how
Fe3+/ΣFe ratios increase during low-pressure crystal
fractionation by a few percent, and that the fO2 of
MORB glass spans a smaller range of fO2 (e.g.,
Fig. 3.2a) than indicated by wet-chemistry. However,
extensive crystal fractionation and crustal assimilation
are commonly observed in magmas that transit thick
arc crust, and this has been invoked to shift magmatic
fO2 away from its mantle source (e.g., Chin et al., 2018;
Grocke et al., 2016; Lee et al., 2005; Tang et al., 2018).

The dearth of fO2 studies on the rare basalts and oli-
vine-hosted melt inclusions that transit the continental
crust poses a challenge to the community. Insights can
be gleaned, however, from extensive analytical work on
magnetite–ilmenite pairs in more evolved arc rocks. In
the arc crust, we observe that magnetite–ilmenite only
precipitate once primary magmas have fractionated
significant quantities of olivine and clinopyroxene
(which remove Fe2+ from the melt), and magnetite–
ilmenite pairs in arc lavas record slightly higher fO2s
than primitive arc glasses, in accordance with this
expectation (see Results, Table 3.1, and Fig. 3.2).
Within the BABB suite, silica and fO2 do covary,
although this relationship is demonstrably unrelated
to crystal fractionation (Brounce et al., 2014). SiO2

and fO2 covary because of two independent phenom-
ena: melting more hydrous mantle yields primary mag-
mas with higher SiO2 concentrations (Kushiro, 1972)
and melting mantle with more subduction influence
yields primary magmas with higher fO2s and also more
water (Kelley & Cottrell, 2009).
Figure 3.6 shows all of the volcanic data we have com-

piled as a function of both crustal thickness (from 7 to
nearly 70 kilometers), SiO2 concentration (a proxy for
crystal fractionation, ranging from ~45 to > 75 wt.%),
and SiO2/Alkali ratios. We observe that magmas record
fO2s in excess of ~QFM +1 only when the crust is thicker
than that found in the ridge setting. However, from volca-
nics erupted through ~25 km of oceanic crust to volcanics
erupted through nearly 70 km of continental crust, we
observe no global correlation between crustal thickness
and fO2. Neither do we observe a correlation between
fO2 and silica content or SiO2/alkalis, within or among
arcs. Figure 3.6 demonstrates that, to first order and on
average, there is no simple relationship amongst the vari-
ables of crustal thickness, differentiation, and oxygen
fugacity. Thus, while the relative influence of slab charac-
teristics, the mantle wedge, and differentiation within the
overlying crust on the geochemistry of arcs in the broadest
sense remains an active area of research (Chin et al., 2018;
Farner & Lee, 2017; Lee et al., 2013; Tang et al., 2018;
Turner & Langmuir, 2015; Turner et al., 2016), thick crust
and crystal fractionation are not necessary for the gener-
ation of oxidized magmas.

Inferences about Mantle fO2 as a Function of Tectonic
Setting. From the analysis above, we may conclude that
neither degassing nor crystal fractionation can generate
the increases we observe in Fe3+/ΣFe ratios as we move
from the mid-ocean ridge, to the back-arc, to the arc-front
environment. The inability of these processes to greatly
alter fO2 is evidenced by the fact that magnetite–ilmenite
oxybarometry on volcanics, and spinel-oxybarometry on
the source mantle itself, also record increasing fO2 as we
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move from the ridge, to the back-arc, to the subduction-
influenced forearc, to the arc-front setting. We conclude
from this evidence that the mantle source itself must
become oxidized as the influence of subduction increases.
Indeed, in situ work by Kelley and Cottrell (2009) and
numerous studies since (Brounce et al., 2014; Brounce
et al., 2021; Brounce et al., 2015; Kelley & Cottrell,
2012), have linked the fO2 recorded by
submarine glasses and olivine-hosted melt inclusions to
enrichment in slab-derived fluid-mobile incompatible
trace elements. However, it is critical to consider other
lines of evidence, such as trace element proxies, that have
been argued to be more robust proxies for mantle fO2

(e.g., Lee et al., 2005).
We compare our Fe-based oxybarometry results to

those obtained from trace element partitioning. Several
studies based on V/Sc, V/Y, V/Ti, V/Ga, Zn/Fe ratios,
or Cu concentrations have concluded that the fO2

recorded by arc volcanics are statistically indistinguisha-
ble from those recorded by MORB (Lee et al., 2005;
Lee et al., 2010; Lee et al., 2012; Mallmann & O’Neill,
2013); this study, and others, have reached the opposite
conclusion (Bucholz & Kelemen, 2019; Laubier et al.,
2014; Shervais, 1982). It is beyond the scope of this con-
tribution to translate the V/Yb ratios we have compiled
into fO2; however, the conclusion that V/Yb of MORB
< BABB < arc basalts is robust (Figure 3.4). This implies
that subduction-modified mantle is more oxidized than
the MORB source mantle, consistent with Fe-based oxy-
barometry, for reasons that remain debated (e.g.,
Andreani et al., 2013; Benard et al., 2018; Canil & Fel-
lows, 2017; Carmichael, 1991; Chin et al., 2018; Debret
et al., 2014; Evans, this volume; Farner & Lee, 2017;
Foden et al., 2018; Gaillard et al., 2015; Kelley & Cottrell,
2009; Lecuyer & Ricard, 1999; Lee et al., 2005; Mungall,
2002; Nebel et al., 2015; Parkinson &Arculus, 1999; Tang
et al., 2018; Tollan & Hermann, 2019; Williams et al.,
2004; Wood et al., 1990).

3.5. CONCLUSIONS AND FUTURE
DIRECTIONS

Oxygen fugacity varies as a function of tectonic setting.
We have shown that all estimators of magmatic fO2

(XANES, magnetite-ilmentite pairs) and mantle source
fO2 (spinel oxybarometry, V/Yb ratio) show independ-
ently that the fO2 of ridges < back-arcs < arcs. Inferences
about plume fO2 are strongly model dependent, and our
study indicates that plume fO2s range widely, but on aver-
age are similar to or higher than mid-ocean ridges. We
also strongly conclude that mantle lithologies record a
much greater range in fO2 than volcanics.

The process of subduction generates elevated fO2 in
both melts and mantle lithologies, though the mechanism
and locus of this shift remains debated. The extent to
which arc rocks are oxidized relative to MORB does
not correlate with crustal thickness or indices of crystal
fractionation. Degassing may oxidize or reduce magmas
to small extents (< 0.2 log units) so long as melts are cap-
tured at pressures > 500 bar, and the tendency for shallow
degassing (< 200 bar) to reducemagmas appears universal
across all tectonic settings. Plate recyclingmay also enable
plumes to achieve their elevated fO2 relative to mid-ocean
ridges; however, when attempting to project back to near-
primary compositions, the fO2 of plume lithologies is
uncertain. This is because plume volcanics have thus far
only constrained fO2 minima, and because plume xeno-
liths derive from lithospheric mantle that was generated
at distal mid-ocean ridges that have subsequently meta-
morphosed and are variably overprinted by the passage
of transiting plume-derived melts.
Several additional challenges confront a more complete

understanding of oxygen fugacity as a function of tectonic
setting. Geographic coverage of fO2 estimates remains
poor, with peridotites from ridges, volcanic rocks and
xenoliths from plumes, and primitive volcanic rocks from
arcs especially so. Further sampling of primitive melts and
mantle lithologies from diverse tectonic environments is
needed in order to illuminate the geodynamic and compo-
sitional origins of variable fO2 across tectonic settings.
Analytical challenges must still be overcome. Some of
the most promising samples for the elucidation of redox
processes – melt inclusions – are difficult to prepare and
susceptible to radiation beam damage (Cottrell et al.,
2018). Experiments and models are needed to gain
insights into processes that may shift the fO2s recorded
by melts and residues during partial melting of the source
and after melt and residue separate. Additional observa-
tions of natural samples and new experiments and models
are required to ultimately connect the fO2 recorded by
partial melts, peridotites and pyroxenites, and the fO2

of the solid convecting mantle.
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METHODS APPENDIX

OXYGEN FUGACITY CALCULATIONS

Volcanics

a. Magnetite-Ilmenite Pairs
For arc and ocean island volcanics, we collected previ-

ously reported compositions of magnetite and ilmenite
from 28 studies (Arce et al., 2013; Baggerman & DeBari,
2011; Beier et al., 2006; Browne et al., 2010; Carmichael,
1967, 1964; Coombs & Gardner, 2001; Costa et al., 2004;
Crabtree & Lange, 2011; Crabtree & Waters, 2017;
Devine et al., 2003; Ferrari et al., 2012; Frey and Lange,
2011; Genske et al., 2012; Grocke et al., 2017; Grove
et al., 2005; Gunnarsson et al., 1998; Howe et al., 2014;
Izbekov et al., 2002; Larsen, 2006; Muir et al., 2014; Port-
nyagin et al., 2012; Stelten &Cooper, 2012; Toothill et al.,
2007; Wallace & Carmichael, 1994; Waters et al., 2015;
Wolfe et al., 1997; Wright, 1972). We applied the equilib-
rium criteria of Bacon &Hirschman (1988) to all collected
oxide compositions and only use those that pass for calcu-
lations of temperature and oxygen fugacity. (Equilibrium
between ilmenite and magnetite is assessed based on com-
parison Mn and Mg partitioning between ilmenite and
magnetite pairs with a dataset of magnetite-ilmenite pairs
from natural volcanics inferred to be at equilibrium),
Oxide compositions were input into the model of Ghiorso
and Evans (2008) to obtain temperatures and oxygen
fugacities. Ghiorso and Evans (2008) report their error
for the parameterization of their model in terms of the
residual energies (kJ) associated with the exchange and

redox equilibria betweenmagnetite and ilmenite.We eval-
uate the uncertainty of the model of Ghiorso & Evans
(2008) by comparing modeled values of temperature
and oxygen fugacity for experimentally grown iron oxide
pairs with the reported experimental conditions (see
Fig. 10 from Ghiorso & Evans, 2008). We find the uncer-
tainty in oxygen fugacity and temperatures associated
with model of Ghiorso and Evans (2008) is ±0.25 log units
and ±45 C, respectively. All temperatures and oxygen
fugacities obtained from magnetite-ilmenite pairs are
shown in Figure A1.
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b. Fe3+/ΣFe ratios from XANES
We calculate magmatic fO2s from measured Fe3+/ Fe

ratios using Kress and Carmichael (1991) and referenced
to the QFM oxygen buffer of Frost (1991) at one atmos-
phere and 1200 C, using the major element compositions
reported by each study. For studies that quantify
Fe3+/ Fe ratios using the standard glasses of Cottrell
et al. (2009; see Table 3.1), we have recalculated tho-
se Fe3+/ Fe ratios according to a revision of the

Mössbauer-determined Fe3+/ Fe ratios of those stand-
ard glasses (Zhang et al., 2018). Oliver Shorttle (pers.
comm.) provided us with his revised Fe3+/ Fe ratios
based on the Zhang et al. (2018) update.

c. Application of Kress and Carmichael (1991)
A subset of the data we compiled for this review reports

glass Fe3+/ΣFe ratios. Unlike mineral equilibria, we must
relate glass Fe3+/ΣFe ratios to fO2 via an empirical model

Table A1 Major element criteria for “terrestrial” lavas between QFM -3 and QFM +4.1 and “MORB-like” lavas between QFM -2
and QFM +2

SiO2 TiO2 FeO Na2O Al2O3 CaO MgO K2O MnO P2O5

“terrestrial” 42–78 0–4 0.1–18 1–6 11–23 0.1–15 1–14 0–6 0–0.5 0–2
N=98
MORB-like 45–55 0.5–4 6–16 1.5–4 12–18 8–14 4–12 0–3 0–0.4 0–1
N=33

Major element ranges equal or exceed (Basaltic Volcanism Study Project, 1981) and (Ewart, 1979)
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Figure A3 The measured experimental furnace fO2 in log units relative to the QFM buffer for Borisov et al. (2018)’s
recent compilation of 435 controlled-atmosphere experiments vs the fO2 predicted by three fO2 parameterizations
(i.e. calculated fO2 from the inputs of Fe3+/ΣFe ratio, T, and major element composition). (a–c) Furnace fO2

predicted by each parameterization for 435 compositions from QFM -3.3 to +7.3, and (d–f ) for 98 “terrestrial”
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parameterization of Kress and Carmichael (1991); panels (b) and (e) use the parameterization of O’Neill et al.
(2018); panels (c) and (f ) use the parameterization of Borisov et al. (2018).
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that accounts for composition. Several studies parameter-
ize the relationship between Fe3+/ΣFe ratio and fO2 and a
detailed comparison can be found in Borisov et al. (2018).
For this compilation, we investigated those of Borisov
et al. (2018), O’Neill et al. (2018), and Kress and Carmi-
chael (1991). [During preparation of this manuscript, a
typo in O’Neill et al. (2018) came to light; the coefficient
for P2O5 in Eqn. 9b in the text of O’Neill et al. (2018)
should be –0.018 not –0.18 as written. We use the correct
equation here.]
The Borisov et al. (2018) and Kress and Carmichael

(1991) models are both empirical parameterizations of
hundreds of wet-chemical determinations of Fe3+/ΣFe
ratios of glasses of diverse compositions equilibrated in
controlled-atmosphere experiments. O’Neill et al. (2018)
heavily weights (“anchors”) their calibration with the
Mössbauer determinations of Fe3+/ΣFe ratios of basalts
(one basalt composition from Berry et al. (2018), two
basalt compositions from Cottrell et al. (2009), but with
the Fe3+/ΣFe ratios “corrected” to be consistent with
Berry et al. (2018), one low-Fe basalt composition from
Jayasuriya et al. (2004), and one high-Fe sherggotite from
Righter et al. (2013), but without that study’s correction
for recoilless fraction). They then derive the composi-
tional terms from approximately the same database of
wet-chemical results used in the Borisov et al. (2018)
and Kress and Carmichael (1991) models, though O’Neill
et al. (2018) uses only compositions with < 60 wt.% SiO2.
Not included was the Mössbauer study of Zhang et al.
(2018), which determined recoilless fraction using cryo-
genic Mössbauer. Correction for recoilless fraction
reduces the Fe3+/ΣFe ratios of Cottrell et al. (2009) by a
few percent absolute, though this decrease is not equiva-
lent to the “correction” applied by O’Neill et al. (2018).
The Mössbauer studies of Zhang et al. (2018) and Berry
et al. (2018) obtain fundamentally different results. We
prefer the Mössbauer treatment of Zhang et al. (2018)
because the methods applied in Berry et al. (2018) depend
on assumptions we believe are flawed, including that
highly reduced basalt is free of ferric iron (even under
the most reducing conditions, Fe0 coexists with substan-
tial Fe3+ (Allen & Snow, 1955; Bowen & Schairer,
1932); that hyperfine parameters remain constant as
Fe3+/ΣFe ratio varies (there is ample evidence to the con-
trary, e.g., Mysen, 2006); and that center shifts > 0.6, at
low quadrupole splitting, should be assigned to ferrous
iron (this assertion is unsupported, see Zhang et al.,
2018 for a discussion). Of course, when exploring the
accuracy of a technique, it is advantageous to cross-cali-
brate. We note that the calibration of Zhang et al.
(2018) yields an fO2- Fe

3+/ΣFe ratio relationship that is
the same within uncertainty as Kress and Carmichael
(1991) model and Borisov et al. (2018) model, based on
independent wet-chemical measurements (see also

Partzsch et al., 2004), and spinel oxybarometry
(Davis & Cottrell, 2018). Debate on these points must
play out in the peer-reviewed literature and so for the pur-
pose of this compilation, we take a different, agnostic,
approach.
For our assessment, we take advantage of the fact that

electrochemical sensors, the devices that monitor the fO2

within gas-mixing furnaces, are accurate to better than
±0.1 log units in fO2 and yield oxybarometric results con-
sistent with independent calorimetric data, even account-
ing for potential interlaboratory biases due to poor
calibration of the furnace hotspot (O’Neill & Pownceby,
1993). Taking advantage of this precision and accuracy,
we use Borisov et al. (2018)’s recent compilation of 435
controlled-atmosphere experiments to assess the parame-
terizations; the same experimental database that provides
the compositional terms in all three parameterizations.
The 435 experiments have wet-chemical determinations
of Fe3+/ΣFe ratios, and so are independent of the afore-
mentioned debate concerning Mössbauer spectroscopy.
We calculated the furnace fO2 predicted by each param-
eterization for 435 compositions from QFM -3.3 to
+7.3, and for 98 “terrestrial” compositions (Table A1)
in the Earth-relevant fO2 range of QFM -3 to +4.1.
Because our inputs are the experimental temperatures,

reported major elements, and reported wet-chemical
determinations of Fe3+/ΣFe ratios of the experiments, this
analysis makes no assumptions about the accuracy of the
data that underlie O’Neill et al. (2018), Borisov et al.
(2018), or Kress and Carmichael (1991). This analysis
only asks how well the three parameterizations predict
the known furnace fO2 of those 435 experiments given
their independently-determined compositions. For the
indicated terrestrial range, O’Neill et al. (2018)’s parame-
terization returns furnace fO2s that are, on average, 0.56
(±0.55) log units higher than measured, Kress and Carmi-
chael (1991)’s returns furnace fO2s that are 0.09 (±0.58)
lower than measured, and Borisov et al., (2018)’s returns
0.05 (±0.52) lower than measured. Standard errors on the
estimates are reported in Table A2. We could therefore
move forward confidently with either Kress and Carmi-
chael (1991) or Borisov et al. (2018) but use the former
simply because we had completed our analysis before Bor-
isov et al. (2018) was published. Table A2 reports the
standard error of each parameterization for the entire
compilation and compositional subsets as defined in
Table A1. Our analysis assumes that there is no systematic
inaccuracy amongst the wet-chemical studies compiled by
Borisov et al., (2018). O’Neill et al. (2018) raise the possi-
bility that some wet-chemical determinations could be
erroneous, and cite four suspect studies. Of these four,
only two are included in the compilation of Borisov
et al. (2018), and of these, 80% are from the study of
Thornber et al. (1980). We therefore assessed whether
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inclusion/exclusion of the Thornber et al. (1980) data
would significantly impact our analysis. It does not. For
example, excluding data from Thornber et al. (1980) from
the terrestrial data set (n = 55 without Thornber) causes
the standard error of O’Neill et al. (2018) parameteriza-
tion to degrade to 0.84, while the standard error of Kress
and Carmichael (1991) stays constant and that of Borisov
et al. (2018) improves to 0.50.
c. Vanadium oxybarometry using V/Yb ratios.
All method details provided in the main text.

Mantle Lithologies

We calculated the oxygen fugacity of mantle lithology
(peridotites and olivine-orthopyroxene-spinel bearing
pyroxenites) by spinel oxybarometry, following the proce-
dures of Davis et al. (2017). This method uses phase equi-
librium between olivine, orthopyroxene, and spinel to
constrain the oxygen fugacity of the system.
Calculated oxygen fugacity values are highly dependent

on mineral activity models. We have thus recalculated all
literature data to use a single set of activity models. For
olivine and orthopyroxene, we use the activity models
cited in Wood and Virgo (1989). For spinel, we use the
activity model developed by Sack and Ghiorso (1991a,
b). This spinel activity model better reproduces the exper-
imental data of Wood (1990) than do other commonly
used spinel activity models such as those of Mattioli
and Wood (1988) and Nell and Wood (1991) (see Davis
et al., 2017, for further discussion). Additionally, the Sack
andGhiorso (1991a,b) model is more applicable to spinels
at high Cr#, such as the arc and forearc peridotites
reported in this work (see Birner et al., 2017, for further
discussion).
The activity of magnetite in spinel is itself highly

dependent on accurate determination of the ferric iron
content within the spinel phase. The studies included in
this compilation determine ferric iron content in spinel
using either Mössbauer spectroscopy or electron probe
microanalysis (EPMA). In the case of EPMA, ferric iron
content cannot be determined directly and is instead cal-
culated using stoichiometric constraints. The preferred
method of determining ferric iron content in this manner
involves correcting the values based on a set of calibration
spinels, with ferric iron contents independently

determined by Mössbauer, run at the beginning and end
of each EPMA session (e.g., Wood & Virgo, 1989; Davis
et al., 2017). For peridotites from ridges, arcs, and fore-
arcs compiled in this study, we have only included data
in which the Fe3+/ Fe ratio of spinel was determined
via Mössbauer or corrected EPMA. In the case of xeno-
liths from OIB localities, we have chosen to additionally
include a number of studies in which this correction was
not applied, due to the paucity of measurements using spi-
nel standards for correction. Uncertainty in fO2 increases
when uncorrected EPMA analyses of spinels are used to
calculate fO2, but the degree to which that uncertainty
increases is dependent on the Fe3+/ Fe ratio of the spi-
nel. Uncertainty in fO2 is greater for spinels with lower
Fe3+/ Fe ratios and lesser for spinels with higher
Fe3+/ Fe ratios (Ballhaus et al. 1991; Davis et al.
2017). For example, fO2 calculated from corrected EPMA
analyses of spinels with Fe3+/ Fe = 0.10 has an fO2

uncertainty of about +0.3/-0.4 log units, whereas the
uncertainty roughly doubles for uncorrected spinel ana-
lyses. At Fe3+/ Fe > 0.35, fO2 uncertainty is only about
0.1 log units for corrected EPMAanalyses, and doubles to
about 0.2 log units when the analyses are uncorrected.
Therefore, the potential effects of including uncorrected
analyses on the distribution of fO2 recorded by peridotites
from an oxidized setting is likely to be small.
The calculation of oxygen fugacity also depends highly

on assumptions about the temperature and pressure of
equilibration. In order to maintain consistency between
datasets, we calculate the fO2 values of all mantle lithol-
ogies at 0.6 GPa and the temperature recorded by spi-
nel-olivine thermometry. Justification for this choice
can be found in Birner et al. (2017) for forearc/arc perido-
tites and Birner et al. (2018) for mid-ocean ridge perido-
tites. Although we choose these values to maintain
consistency, there is no rigorous method available to esti-
mate pressure recorded by spinel peridotite xenoliths and
no thermal model that can be easily applied to plume-
influenced lithosphere that would allow recorded temper-
ature to be related to a depth along a geotherm. OIB xeno-
liths could potentially have been exhumed from any depth
within the spinel stability field. Assuming a maximum
pressure of 2.5 GPa, the choice to calculate fO2 at 0.6
GPa may lead to an overestimation of fO2 relative to
QFM by as much as 0.6 to 0.8 log units. This difference

Table A2 Standard error (σest) of three fO2 parameterizations.

reference

n=435 n=98 n=33

(all expts compiled by [Borisov et al., 2018]) (“terrestrial” lavas) (“MORB-like” lavas)

Kress & Carmichael, 1991 0.56 0.59 0.53
Hugh St C. O’Neill et al., 2018 0.58 0.79 0.8
Borisov et al., 2018 0.38 0.53 0.49
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in fO2 relative to QFM is owing to the differences inΔV of
the QFM reaction and the reaction underlying the spinel
oxybarometer (fayalite-ferrosilite-magnetite).

Modeling in DCompress. We modeled the change in
magmatic fO2 with progressive degassing of a C-O-H-S
vapor using the gas-melt equilibrium model of Burgisser
et al. (2015). This thermodynamic model computes C,
H, O, and S concentrations and speciation in coexisting
gas and silicate melt as functions of pressure, temperature,
melt composition, and fO2, based on experimental cali-
brations of melt solubility and homogeneous equilibrium
in the gas phase for H2, H2O, CO, CO2, SO2, H2S, and S2
species. The melt does not change in major element com-
position during degassing (i.e., there is no crystallization)
and it is not permitted to precipitate separate sulfide or
carbon phases.
We followed the methodology of Brounce et al. (2017)

to compute the degassing trajectories, except that we used
the DCompress default solubility models for C-O-H-S
species. We used the default basalt composition and
non-temperature dependent solubility relationships of
H2, H2O, CO2, H2S, and SO2. We also executed model
runs wherein we set the solubility of H2 in the silicate melt
to zero in order to demonstrate how uncertainty in the spe-
ciation of H-species in silicate melts (e.g., finite solubility
[Hirschmann et al., 2012;Mysen et al., 2011] vs no solubil-
ity ([Newcombe et al., 2017]) propagates into uncertainty
in degassing trajectories, particularly those at relatively
low fO2. Among these simulations, only the scenario of
an arc magma decompressing at QFM= 0 (i.e., H2O-rich
magma in equilibrium with a gas phase containing non-
negligible amounts of H2) was sensitive to this assumption
(Fig. 3.5). All calculations are calculated as equilibrium
(i.e., batch) isothermal decompression, at 1100 C. The
calculations intended to simulate MORB degassing were
started atQFMand 1385 bar, with concentrations of vola-
tiles similar to those calculated for globally representative
primary MORB melts (Le Voyer et al., 2018) containing
0.2 wt.%H2O, 1100 ppmCO2, and 1425 ppmS. Increasing
CO2 to several thousand ppm has no effect on the trajec-
tories shown. The calculations intended to simulate OIB
degassing were started at QFM +1.4 and 2115 bar, with
concentrations of volatiles similar to those expected for
undegassed Erebus melts (Mousallam et al., 2014) con-
taining 1.5 wt% H2O, 1710 ppm CO2, and 2430 ppm S.
The calculations intended to simulate arc degassing were
started at QFM+1.5 and 2380 bar, with concentrations of
volatiles similar to those observed in melt inclusions from
Agrigan volcano, containing 4.5 wt.% H2O, 800 ppm
CO2, and 2050 ppm S (e.g., Kelley & Cottrell, 2012). Melt
chemistry (including fO2) and gas phase compositions
were calculated in 1 bar increments and stopped at 5 bars
(total pressure).
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