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Abstract

Clouds interact with atmospheric radiation and substantially modify the Earth’s energy budget. Cloud formation processes occur

over a vast range of spatial and temporal scales which make their thorough numerical representation challenging. Therefore, the

impact of parameter choices for simulations of cloud-radiative effects is assessed in the current study. Numerical experiments

were carried out using the ICOsahedral Nonhydrostatic (ICON) model with varying grid spacings between 2.5 and 80 km

and with different subgrid-scale parameterization approaches. Simulations have been performed over the North Atlantic with

either one-moment or two-moment microphysics and with convection being parameterized or explicitly resolved by grid-scale

dynamics. Simulated cloud-radiative effects are compared to products derived from Meteosat measurements. Furthermore, a

sophisticated cloud classification algorithm is applied to understand the differences and dependencies of simulated and observed

cloud-radiative effects. The cloud classification algorithm developed for the satellite observations is also applied to the simulation

output based on synthetic infrared brightness temperatures, a novel approach that is not impacted by changing insolation and

guarantees a consistent and fair comparison. It is found that flux biases originate equally from clear-sky and cloudy parts of

the radiation field. Simulated cloud amounts and cloud-radiative effects are dominated by marine, shallow clouds, and their

behaviour is highly resolution dependent. Bias compensation between shortwave and longwave flux biases, seen in the coarser

simulations, is significantly diminished for higher resolutions. Based on the analysis results, it is argued that cloud-microphysical

and cloud-radiative properties have to be adjusted to further improve agreement with observed cloud-radiative effects.
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Abstract18

Clouds interact with atmospheric radiation and substantially modify the Earth’s energy19

budget. Cloud formation processes occur over a vast range of spatial and temporal scales20

which make their thorough numerical representation challenging. Therefore, the impact21

of parameter choices for simulations of cloud-radiative effects is assessed in the current22

study. Numerical experiments were carried out using the ICOsahedral Nonhydrostatic23

(ICON) model with varying grid spacings between 2.5 and 80 km and with different subgrid-24

scale parameterization approaches. Simulations have been performed over the North At-25

lantic with either one-moment or two-moment microphysics and with convection being26

parameterized or explicitly resolved by grid-scale dynamics. Simulated cloud-radiative27

effects are compared to products derived from Meteosat measurements. Furthermore,28

a sophisticated cloud classification algorithm is applied to understand the differences and29

dependencies of simulated and observed cloud-radiative effects. The cloud classification30

algorithm developed for the satellite observations is also applied to the simulation out-31

put based on synthetic infrared brightness temperatures, a novel approach that is not32

impacted by changing insolation and guarantees a consistent and fair comparison. It is33

found that flux biases originate equally from clear-sky and cloudy parts of the radiation34

field. Simulated cloud amounts and cloud-radiative effects are dominated by marine, shal-35

low clouds, and their behaviour is highly resolution dependent. Bias compensation be-36

tween shortwave and longwave flux biases, seen in the coarser simulations, is significantly37

diminished for higher resolutions. Based on the analysis results, it is argued that cloud-38

microphysical and cloud-radiative properties have to be adjusted to further improve agree-39

ment with observed cloud-radiative effects.40

Plain Language Summary41

Clouds are a major challenge for climate science and their effects are difficult to42

quantify. Clouds scatter sunlight back into space and thus prevent the Earth from warm-43

ing up. But clouds also hold back heat radiation upwelling from the surface. Both ef-44

fects typically compensate each other and thus lead to the net cloud-radiative effect. Com-45

puter programs that are used to simulate the climate - so-called climate models - often46

use very coarse grid-box sizes in their computational mesh. Cloud processes and their47

effects are represented in them in a very simplified way, which leads to problems. For48

this reason, this study deals with the question to what extent the simulations of cloud-49

radiative effects can be improved by choosing more precise descriptions of the cloud pro-50

cesses. To investigate this, different configurations of more realistic models were taken51

to simulate cloud formation over the North Atlantic. The resulting simulation data were52

compared to satellite observations. It could be shown that problematic biases of the coarser53

climate models are reduced if, as is usual in weather models, one switches to smaller grid-54

box sizes and improved descriptions of the cloud processes.55

1 Introduction56

Clouds are very effective in cooling the Earth. Clouds scatter sunlight back to space57

before it can be absorbed by the Earth’s surface. They also trap longwave radiation orig-58

inating from the warm surface and thus induce a counter-acting greenhouse effect (Ramanathan59

et al., 1989). In the global mean, the shortwave effect of clouds (−46 to −48 W m−2)60

dominates over their longwave effect (26 to 28 W m−2) in the top-of-the-atmosphere (TOA)61

radiation budget, leading to a net negative cloud-radiative effect (CRE) of −18 to −20 W m−2
62

(Arking, 1991; G. L. Stephens et al., 2012; Henderson et al., 2013; Zelinka et al., 2017).63

The magnitude of net radiative effects becomes even larger and more important for cloud64

systems over the mid-latitude oceans, where the net CRE is more than twice the global65

average (see e.g. Zelinka et al., 2017).66
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Cloud feedbacks, i.e. the impact of changes in clouds on the TOA radiation bud-67

get, remain a major source of uncertainty in future climate projections (Boucher et al.,68

2013; Ceppi et al., 2017). Recent work indicates that the global-mean cloud feedback to69

global warming is likely positive, i.e., cloud changes will lead to an additional warming70

(Ceppi et al., 2017). This is largely attributed to a reduction in low-level cloud amount71

and a rise of high-level clouds (Zelinka et al., 2017). Yet, significant uncertainties remain72

in the parameterization of clouds and their radiative effects, in particular regarding the73

treatment of cloud microphysical processes in climate models (Gettelman & Sherwood,74

2016). Understanding clouds and their radiative changes is also relevant for regional cli-75

mate change, as the simulated response of the atmospheric circulation to global warm-76

ing is strongly shaped by clouds (Voigt & Shaw, 2015; Voigt et al., 2019; Ceppi & Shep-77

herd, 2017).78

The steady increase in computational power and advent of a new generation of mod-79

els that can harness this power has begun to allow for global atmospheric simulations80

with horizontal grid spacings on the order of a few kilometers (e.g. Satoh et al., 2018;81

Stevens et al., 2019). In these high-resolution simulations, clouds and the atmospheric82

flow interact much more naturally than in current low-resolution models typically run83

horizontal grid spacings of around 50 km. The explicit simulation of at least part of the84

cloud-scale circulations in fact provides a physical link between the resolved atmospheric85

flow and the parameterized cloud-microphysical processes (Satoh et al., 2019; Stevens86

et al., 2020). Moreover, and importantly, high-resolution models and satellite observa-87

tions probe the atmosphere on similar spatial and temporal scales, allowing for a mean-88

ingful comparison between simulation and observations that helps model evaluation as89

well as the interpretation of observations (Satoh et al., 2019). As such, high-resolution90

modelling might break the so-called cloud parameterization ”deadlock” (Randall et al.,91

2003) and promises to lead to more reliable simulations of cloud and precipitation re-92

sponses to future climate change (Roberts et al., 2018; Collins et al., 2018; Stevens et93

al., 2020).94

Motivated by these advances, we consider the radiative effects of mid-latitude cloud95

systems in simulations with a large range of horizontal resolutions, with three different96

treatments of atmospheric convection, and with two different treatments of cloud micro-97

physics in this study. This creates a hierarchy of simulations that at the one end resem-98

bles current low-resolution climate models with parameterized convection and relatively99

simple cloud microphysics, and at the other end resembles the next-generation high-resolution100

models with explicit convection and more detailed cloud microphysics. Through this ap-101

proach we investigate how a sequential reduction in model grid spacing from climate-102

model scales of 80 km down to 2.5 km affects, and hopefully improves, the simulation103

of cloud-radiative effects. Furthermore, we investigate the impact of subgrid-scale pa-104

rameterization choices regarding convection (fully explicit convection vs. parameterized105

shallow convection vs. parameterized convection) and cloud microphysics (one-moment106

scheme vs. two-moment scheme) on cloud-radiative effects and the radiation budget. To107

this end we analyze simulations with the ICOsahedral Nonhydrostatic (ICON) model108

(Zängl et al., 2014) over a large domain of the North Atlantic. Our work contributes to109

recent efforts to understand the sensitivity of climate simulations with respect to hor-110

izontal resolution and convection parameterization (Webb et al., 2015; Haarsma et al.,111

2016; Evans et al., 2017; Maher et al., 2018; Thomas et al., 2018; Vannière et al., 2019).112

We expand these efforts by bridging the gap between current climate models and and113

convection-permitting models.114

The focus region of this study is the mid-latitude North Atlantic. This is motivated115

on the one hand by its importance for current and future European weather, and on the116

other hand by the difficulties of current coarse-resolution global climate models to rep-117

resent the radiative effects of mid-latitude clouds (Bodas-Salcedo et al., 2014; Voigt et118

al., 2019) and their coupling to the circulation (Grise & Polvani, 2014). Cloud-radiative119
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effects in the mid-latitudes feed back onto circulations. As such, they are essential to an-120

ticipated poleward shift and strengthening of the eddy-driven jet streams under global121

warming (Voigt & Shaw, 2016; Albern et al., 2019; Ceppi & Hartmann, 2016; Li et al.,122

2019), and they also can impact mid-latitude weather on time-scales of days (Schäfer &123

Voigt, 2018; Grise et al., 2019)124

Biases in simulated mid-latitude CREs appear to be primarily due to deficiencies125

in parameterized physics of clouds and convection (Ceppi & Hartmann, 2015). These physics126

strongly depend on cloud type. Analysis of data from space-born imaging radiometers127

has shown that low-level clouds over the oceans provide the largest contribution to the128

net TOA CREs because reflection of sunlight dominates over the trapping of longwave129

radiation (Hartmann et al., 1992; Ockert-Bell & Hartmann, 1992; Chen et al., 2000). The130

traditional cloud classification approaches have been revised to assess the importance131

of cloud regimes as a whole using clustering techniques (Oreopoulos & Rossow, 2011; Ore-132

opoulos et al., 2016; McDonald & Parsons, 2018) and the vertical structure of cloud fields133

based on active satellite sensors (G. Stephens et al., 2018; L’Ecuyer et al., 2019). The134

latter showed that clouds are predominantly organized in multiple layers, which is typ-135

ically not resolved by passive imagery. Because active satellite observations are very sparse136

in time and space, we here nevertheless rely on the traditional cloud classification ap-137

proach to separate cloud-cover and CRE model biases into contributions from different138

cloud types. The comparison is based on instantaneous and high-resolution geostation-139

ary satellite data. We follow modern model evaluation standards and sequentially de-140

rive synthetic satellite observations using a satellite simulator (similar to Bodas-Salcedo141

et al., 2011; Pincus et al., 2012; Matsui et al., 2019) and cloud products with an advanced142

cloud classification software. For the latter step, we apply the cloud classification con-143

sistently for the full diurnal cycle (including nighttime). This improves the attribution144

of instantaneous CREs to different cloud types.145

The paper is organized as follows: In section 2, the setup of the ICON model sim-146

ulations and sensitivity studies is described. Sect. 2 also provides information on the ob-147

served and synthetic narrow-band satellite radiances that are forwarded into the cloud148

classification software and on our method for deriving TOA radiation fluxes from Me-149

teosat observations. Sect. 3 presents the main results. We first consider domain-averaged150

radiation fluxes and CREs, and then split cloud cover and radiative effects into contri-151

butions from different cloud types. A summary and conclusions are given in section 4.152

A more detailed description of the modifications of the cloud classification software and153

supporting information is provided in the supplement.154

2 Data and Methods155

2.1 Overview of the Analyses Workflow156

Before we provide more details, Fig. 1 presents an overview of the workflow and157

analyses steps for observations (black) and simulations (blue). Used acronyms are listed158

in Tab. 1. The diagram is to be read from top to bottom. The input data from Meteosat159

SEVIRI (see Sect. 2.2) and ICON (see Sect. 2.3) are provided in the first row. From these,160

observed and simulated cloud types (Fig. 1a) and CREs (Fig. 1b) are derived, as shown161

in the last row. Importantly, this workflow makes sure that observations and simulations162

are directly comparable to each other.163

For cloud classification, ICON simulations are translated into observation space us-164

ing the SynSat forward operator (Sect. 2.3). Based on observed and synthetic infrared165

BTs, cloud types are derived with the help of the NWCSAF v2013 software (Sect. 2.4).166

For the assessment of CREs, Meteosat SEVIRI data are processed to obtain GERB-like167

all-sky radiation fluxes at the top of the atmosphere (Sect. 2.2). The observed all-sky168

fluxes are supplemented by simulated clear-sky fluxes, which are corrected with a scal-169
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Figure 1. Overview of the workflow for (a) the calculation of a consistent cloud classification

and (b) the derivation of CREs. Two parallel paths for observations (black) and the simula-

tions (blue) are shown. The symbols in the top row visualize the input data (either satellite data

archive or simulation output). Final data are shown in the last row. Rectangles denote processing

methods further discussed in the text, and slanted parallelograms correspond to intermediate and

final data.

Table 1. List of most important acronyms.

Acronym Explanation

BT Brightness Temperature
CRE Cloud-Radiative Effect
GERB Geostationary Earth Radiation Budget
ICON ICOsahedral Nonhydrostatic
NAWDEX North Atlantic Waveguide and Downstream impact EXperiment
NWCSAF Satellite Application Facility in support to NoWCasting and very short range

forecasting
RTTOV Radiative Transfer for Television infrared observation satellite Operational

Vertical sounder
RRTM Rapid Radiation Transfer Model
SEVIRI Spinning Enhanced Visible and InfraRed Imager
SynSat synthetic satellite imagery
TOA Top-Of-the-Atmosphere

ing factor in the shortwave and a constant additive offset in the longwave part to cor-170

rect for biases in simulated ocean surface properties (Sect. 2.5).171

2.2 Meteosat Observations172

Observations are provided by measurements of the imaging radiometer SEVIRI (Spin-173

ning Enhanced Visible and InfraRed Imager) on board the geostationary satellites of the174

Meteosat Second Generation (MSG) series operated by EUMETSAT (European Organ-175

isation for the Exploitation of Meteorological Satellites). We utilize multi-spectral data176

from SEVIRI’s operational prime service located at a nominal longitude of zero degrees177

and a nadir resolution of 3×3 km2 (Schmetz et al., 2002). An example of upwelling ther-178

mal radiation measured at 10.8 µm is provided in Fig. 2 (top row). In the atmospheric179
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window at 10.8 µm, atmospheric gases are relatively transparent and thermal emission180

mainly originates from the Earth surface, from clouds or from a combination of the two181

(in case of semi-transparent or fractional clouds). High BTs typically represent clear re-182

gions, whereas low temperatures represent emission from high cirrus clouds. In the scene183

of Fig. 2, a low-pressure system is located in the Atlantic ocean. Its frontal cloud sys-184

tem, seen by the low BTs, extends towards the south and approaches the British Islands.185

In the western part of this low-pressure system, cold and rather dry air is advected south-186

wards together with marine, low-level clouds that formed within the cold sector.187

Figure 2. Overview of observed and simulated BTs from Meteosat SEVIRI’s window channel

at 10.8 µm for 1200 UTC 23 Sept 2016. Observations are compared to ICON simulations with

increasing grid spacing (left to right and downwards, from 2.5 to 80 km). Only the subset of sim-

ulation experiments with one-moment microphysics and fully parameterized convection is chosen

for visualization. A special color scheme is used to highlight observed and simulated features.

BTs over land are also shown to improve anticipation of the cloud scenery. Further analysis

however only considers the Atlantic ocean region.

The Meteosat satellites also carry the broadband radiometer GERB (Harries et al.,188

2005) for accurate measurements of all-sky TOA radiation fluxes. Unfortunately, dur-189

ing the period of our analysis GERB was in ”safe mode” to protect its sensors. We there-190
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fore base our TOA radiation flux estimates on SEVIRI data. So-called GERB-like ra-191

diation flux products are derived as internal products in the Royal Meteorological In-192

stitute of Belgium (RMIB) GERB processing system which have been retrieved from the193

RMIB archive for our study. All GERB-like processing steps are explained in detail in194

Dewitte et al. (2008) and updates on the calibration of SEVIRI data are given in Meirink195

et al. (2013). The accuracy of the applied narrowband-to-broadband conversion is 3.5%196

for shortwave fluxes Fsw and 0.7% for longwave fluxes Flw (Clerbaux et al., 2005). For197

a particular scene type, this error must be considered as a systematic error. For estimates198

of downwelling shortwave fluxes, temporal variations in the total solar irradiance are taken199

into account as described in Mekaoui and Dewitte (2008). Throughout the paper, we use200

a positive-upward convention so that upwelling fluxes are positive and downwelling fluxes201

are negative (following G. L. Stephens, 2005).202

2.3 ICON Simulations203

We analyze simulations with the ICON model in limited-area setup performed over204

a large area of the North Atlantic (model version icon-2.1.00 with bug fixes for two-moment205

cloud microphysics). The simulations were already described in Stevens et al. (2020) (see206

their Fig. 3) and were performed in support to the NAWDEX field campaign of fall 2016207

(Schäfler et al., 2018). The domain extends from 78◦W to 40◦E in longitudinal direc-208

tion, and from 23◦N to 80◦N in latitudinal direction. ICON is used with the numerical209

weather prediction physics package in a setup that largely follows the tropical Atlantic210

setup of Klocke et al. (2017). ICON is initialized from the Integrated Forecast System211

(IFS) analysis data of the European Center for Medium-Range Weather Forecasts (ECMWF)212

at 0 UTC. The lateral boundary data are taken from IFS at 3-hourly resolution. When213

available, i.e. at 0 UTC and 12 UTC, IFS analysis data are used. In between 3-hr, 6-214

hr and 9-hr IFS forecast data are used. The continually updated analysis and forecast215

data ensure that the model stays close to the actual meteorology over the simulation pe-216

riod over several days (see below). The IFS data is retrieved at the highest available res-217

olution in space (∼ 9 km horizontal grid spacing). 11 days are analyzed in total. These218

result from 4 simulation sets that each cover a time span of 3 or 4 days, and for which219

the first day is disregarded as spin-up. The simulations are listed in Tab. 2.220

Table 2. List of days simulated with ICON during the period of the NAWDEX field cam-

paign in fall 2016. Nsim is the number of simulations as a result of testing for the sensitivity with

respect to horizontal resolution and the treatment of cloud microphysics and convection.

Simulation period Analyzed days Nsim

Set 1 Sep 20:0UTC - Sep23:0UTC Sep 21, 22 14
Set 2 Sep 22:0UTC - Sep26:0UTC Sep 23, 24, 25 20
Set 3 Sep 29:0UTC - Oct02:0UTC Sep 30, Oct 01, 02 14
Set 4 Oct 02:0UTC - Oct06:0UTC Oct 03, 04, 05 14

The simulations are performed for six horizontal grid spacings of 80, 40, 20, 10, 5221

and 2.5 km. In the vertical, always the same set of 75 levels is used. The thickness of the222

lowest model layer above ground is 20 m. The model layer thickness increases to ≈ 100 m223

at 1 km altitude above ground up to 1200 m at the model top of 30 km. Sweeping through224

the horizontal resolution allows us to cover both the horizontal resolution of present-day225

global climate models, which typically run at 50-100 km, as well as the resolution of ex-226

isting convection-permitting regional climate simulations (Prein et al., 2015) and upcom-227

ing global simulations (Stevens et al., 2019), which run at 2-5 km. Depending on hor-228

izontal resolution, subgrid-scale convection is parameterized following Bechtold et al. (2008)229

based on the scheme of Tiedtke (1989). When fully enabled, the convection scheme in-230
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teractively decides on the type of convection to be activated, either deep, mid-level or231

shallow convection. For the finest resolution of 2.5 km the convection parameterization232

scheme is switched off either fully or partly. In the latter setup, only shallow convection233

is parameterized, whereas mid-level and deep convection are explicitly represented (ICON234

Model Tutorial April 2018). The setup with only shallow convection parameterization235

has emerged as the standard setup for 2.5km-ICON simulations at the German Weather236

Service (pers. comm. A. Seifert). For resolutions of 5 km and coarser, the convection scheme237

is fully enabled and takes care of shallow as well as mid-level and deep convection. In238

addition, for a three-day subset (Sep 22, 23, and 24), the 2.5 km simulations are repeated239

with fully enabled convection parameterization, and the 5 and 10 km simulations with240

fully disabled convection parameterization. This allows us to compare the impact of the241

convection scheme with respect to changes in resolution. Besides assessing the impact242

of resolution and representing convection in an explicit or parameterized manner, we study243

the impact of representing cloud microphysics. To this end, all simulations are performed244

with the one-moment cloud microphysical scheme with graupel described in Baldauf et245

al. (2011) as well as with the two-moment cloud microphysical scheme of Seifert and Be-246

heng (2006). The one-moment scheme is currently used operationally by the German Weather247

Service; the two-moment scheme is used in large-eddy mode simulations with ICON (Heinze248

et al., 2017).249

To indicate the model setup in the plots and tables, the following nomenclature is250

used. For instance ICON( 10km, *, CP ) refers to ICON simulations with 10 km grid251

spacing, one-moment microphysics and fully enabled convection parameterization. In con-252

trast, ICON( 2.5km, ** ) refers to ICON simulations with 2.5 km grid spacing, two-253

moment microphysics and fully disabled convection parameterization - a setup that is254

called ”simulation with explicit convection” in the following. Lastly, ICON( 2.5km, **,255

sCP ) refers to a simulation in which only the shallow convection parameterization is256

enabled. Tab. 3 summarizes the model setups.257

Table 3. Overview of different treatment of convection for the four sets of simulations (see

Tab. 2). sCP means that only the shallow convection scheme is active. CP means that convec-

tion is fully parameterized. A notation example is given in the last row for simulations with

2.5 km grid spacing and one-moment cloud microphysics (indicated by *; two-moment cloud

microphysics are indicated by **).

explicit convection sCP CP

Set 1, 3, 4 2.5 km 2.5 km 5 - 80 km
Set 2 2.5, 5, 10 km 2.5 km 2.5 - 80 km

Notation example ICON( 2.5km, * ) ICON( 2.5km, *, sCP ) ICON( 2.5km, *, CP )

Radiative transfer is calculated by the global model version of the Rapid Radia-258

tion Transfer Model, RRTMG (Mlawer et al., 1997). RRTMG uses a reduced number259

of g-points (g is the relative rank of the atmospheric absorption coefficient within a wave260

length interval) for the correlated k-method to mitigate some of the computational bur-261

den of the parent RRTM model. 14 bands are used in the shortwave, 16 bands are used262

in the longwave. The solar constant is set to 1361.4 Wm-2. The diffuse ocean albedo is263

set to a constant value, αdif = 0.07. The direct ocean albedo follows the radiation scheme264

of Ritter and Geleyn (1992) and is a function of the diffuse albedo and the solar zenith265

angle, µ0,266

αdir =
1 + 0.5 cosµ0 (α−1

dif − 1)

(1 + cosµ0 (α−1
dif − 1))2

. (1)267
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The maximum value allowed for αdir is 0.999. The diffuse and the direct ocean albe-268

dos are independent of wavelength do not depend on surface roughness and wind speed.269

For cloud overlap, the generalized maximum-random overlap scheme of Hogan and Illing-270

worth (2000) is used, with a vertical decorrelation length scale of 2 km. Ozone is spec-271

ified according to the Global and regional Earth system Monitoring using Satellite and272

in situ data (GEMS) climatology (Hollingsworth et al., 2008), and aerosol according to273

the climatology of Tegen et al. (1997). Only aerosol-radiation-interactions are consid-274

ered, aerosol-cloud interactions are not taken into account. The cloud droplet number275

used in the radiation for the effective radius of droplets and crystals follows a prescribed276

vertical profile taken from the global atmosphere model ECHAM6 (Stevens et al., 2013).277

Cloud optical properties, i.e., single scattering albedo, extinction coefficient and asym-278

metry factor, are also specified as in ECHAM6. Radiation is called every 12 minutes. The279

radiation fields are output every hour and are always consistent with the simulated cloud280

field, insolation, solar zenith angle and the state of the atmosphere and surface. Simu-281

lated radiation fluxes were re-gridded onto the observational grid (Sect. 2.2). The anal-282

ysis is restricted to ocean areas free from sea ice, which avoids complications from dif-283

ferences in surface albedo. As such, the analysis domain includes the North Atlantic and284

connected water bodies, including the North sea and the Baltic sea (see e.g. Fig. 2 and285

Fig. 4). The southern boundary is at 28.3◦N and is determined by the boundary nudg-286

ing zone of the 80 km grid. A maximum satellite zenith angle of 75◦ marks the north-287

ern boundary of the domain.288

For a fair comparison between observations and simulations, the simulated data289

have to be transformed into the observational space using forward operators (or some-290

times called instrument simulators). This has become a standard approach in the last291

decades (Morcrette, 1991; Roca et al., 1997; Chaboureau et al., 2000) and is especially292

important when such ambiguous variables like cloud cover and cloud types are taken into293

consideration (e.g. Pincus et al., 2012). For our study, we apply the so-called SynSat op-294

erator after Keil et al. (2006) and Senf and Deneke (2017) to derive synthetic satellite295

images with the sensor characteristics of MSG SEVIRI. The SynSat operator prepares296

vertical profiles of atmospheric temperature, humidity, condensate content and subgrid-297

scale cloud cover as well as several surface variables to perform single-column radiative298

transfer calculations with the RTTOV model (Saunders et al., 1999; Matricardi et al.,299

2004), here version 11.3. Radiative transfer calculations are performed for different streams300

per vertical column which are combined using the maximum-random overlap assump-301

tion. We apply a standard configuration that has been operationally employed by the302

German Weather Service for several years and utilized for ICON simulations in previ-303

ous studies (Heinze et al., 2017; Senf et al., 2018; Pscheidt et al., 2019). For this, diag-304

nostic subgrid-scale cloud condensate content is added to its grid-scale counterpart, and305

ice and snow masses are simply combined to a frozen condensate content. Radiative prop-306

erties of frozen condensate are estimated using relations for randomly-oriented hexag-307

onal columns after Fu (1996) and McFarquhar et al. (2003). The derivation of synthetic308

BTs is impacted by uncertainties in the formulation of microphysical and radiative hy-309

drometeor properties. A complicating fact is that different model parameterization han-310

dle hydrometeor properties differently leading to model-internal inconsistencies as ad-311

ditional cause for uncertainties in the forward calculations. Considering these issues and312

typical parameter variations, Senf and Deneke (2017) showed that uncertainties in BTs313

are in the order of a few Kelvin and largest for semi-transparent cirrus clouds with low314

cloud-top temperatures and with emissitivies close to 0.5.315

Fig. 2 also provides a sequence of synthetic BTs for different model grid spacings316

from 2.5 to 80 km. As expected, the simulations capture the general cloud scenery and317

the synoptic-scale features very well. All simulations show the frontal cloud band that318

approaches the European continent and the upper-level trough located upstream in the319

North Atlantic. The coarser the resolution, the less detail can be seen in the synthetic320
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BT-fields. However, no abrupt quality changes appear to happen with increased grid spac-321

ing.322

2.4 Cloud Classification323

A cloud classification is derived from simulation and satellite data with the NWC-324

SAF software version 2013. As input, the NWCSAF software expects multi-spectral data325

of MSG SEVIRI in its native data format. Using a set of several multi-spectral tests, a326

categorical classification is derived for all pixels classified as cloudy (Derrien & Le Gléau,327

2005). The applied thresholds mainly depend on the illumination, the viewing geome-328

try, the geographical location and numerical forecast data describing the moisture and329

thermodynamic structure at coarser resolution. For the latter, short-term IFS forecasts330

are supplied.331

Cloud types are mainly distinguished by their cloud-top height and opacity sim-332

ilar to the ISCCP-approach (International Satellite Cloud Climatology Project, see e.g.333

Rossow and Schiffer (1999)). No further distinction between convective and stratiform334

cloud structures is performed. The typical properties of the NWCSAF cloud types are335

shown in Fig. 3 and contrasted to the categorization after Hartmann et al. (1992). For336

practical reasons, we consider planetary albedo instead of cloud-optical thickness as mea-337

sure of cloud opacity. Clouds are divided into different height classes: very low, low, mid-338

level, high and very high clouds are approximately separated by cloud-top altitudes of339

2, 3.5, 6.5 and 9.5 km. These values correspond to pressure levels of 800, 650, 450 and340

300 hPa and to environmental temperatures of +8, 0, −18 and −40◦C. Therefore, very341

low and low clouds are purely liquid clouds, mid-level and high cloud categories might342

contain a mixture of hydrometeor phases, and very high clouds are completely glaciated343

at cloud top. As shown in Fig. 3, the high and very high clouds are further subdivided344

by different opacity levels and called: semi-transparent (semi.) thin, semi. moderately345

thick, semi. thick cirrus as well as high and very high opaque clouds. We call all these346

categories together ”cirrus clouds”. The very high opaque clouds might also contain deep347

convective cores and parts of anvils close to upper-level convective outflow. An additional348

class is used for fractional clouds for which multi-spectral signatures of clouds and un-349

derlying surface are identified. Fractional clouds are typically made of small boundary-350

layer cumuli. The separation between this and the very-low cloud category is rather ar-351

tificial. We therefore combine these two classes and end up with eight cloud types that352

will be utilized for further analysis. No undefined class exists, i.e. satellite pixels are ei-353

ther classified as cloud-free (k = 0) or cloudy (k > 0). Therefore, the total domain-354

average cloud cover can be estimated from the sum of fractions of the individual cloud355

types.356

For very low / fractional clouds (k = 1 and k = 9 in Fig. 3), very low albedo357

values (close to the clear-sky albedo of ∼0.1) are most probable. This cloud type mainly358

consists of shallow clouds with low geometrical and optical thicknesses especially due to359

high sub-pixel variability and considerable clear-sky contributions. For more opaque clouds360

with higher cloud tops, averaged albedo shifts to higher values. These cloud types have361

larger vertical and horizontal extent, and thus higher cloud-optical thicknesses. A sim-362

ilar shift to higher albedo values is found for semi-transparent cirrus going from semi.363

thin (k = 6) to semi. moderately thick (k = 7) to semi. thick (k = 8). Cloud-spatial364

structures and sub-pixel variability might be also an important factor for the albedo of365

semi-transparent cloud categories.366

The NWCSAF software has undergone more than a decade of development and is367

highly adjusted to the needs of operational forecasters and nowcasting applications. It368

tries to account for as much information as available to derive a comprehensive and in-369

stantaneous classification of the cloud field. Changes in solar illumination can lead to370

changes in product quality and systematic differences, especially between day- and night-371
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Figure 3. Planetary albedo versus cloud-top height for the different NWCSAF classes. The

circles represent averages and the error bars give the standard deviation of clear-sky or cloud

properties. Data have been taken from the observed scenery shown in Fig. 2 and 4. Numbers

k = {0 . . . 9} refer to the different classes listed in the legend. Note that the cloud classes “frac-

tional” and “very low” (which are shown separately here) are combined in the following analysis.

For comparison, a second categorization after Hartmann et al. (1992) is provided as background

image. It separates cloud amounts into three height categories (low, mid-level and high) as well

as into two opacity levels (thin and thick clouds).

time, are inevitable in the standard setup of the NWCSAF cloud classification. To mit-372

igate these problems and to build a time-consistent cloud classification, we implemented373

a modification to the cloud product generation chain. The NWCSAF software has been374

set up to run in permanent-night conditions at which only infrared radiation of terres-375

trial origin is utilized. We developed an algorithm which reads in infrared SEVIRI ra-376

diances from a selected scene and thereafter outputs these data into a template valid for377

the same day, but for 0 UTC. The template files, including the embedded satellite ra-378

diances, are supplied to the NWCSAF software which generates a cloud classification in379

night-mode. To keep the software itself unmodified, we provide simple estimates of ra-380

diances at 3.9 µm which are mandatory, but contaminated with sunlight during day-time381

(further explained in the supplement). Beyond time consistency, there is an other ma-382

jor advantage of our approach: It also allows to exchange real observations with synthetic383

observations. In our case, we utilized synthetic radiances derived from all the different384

simulations with the SynSat method (see Sect. 2.3) and provide these data to the NWC-385

SAF software. In this way, a cloud classification is obtained for all simulations that is386

directly comparable to its observational counterpart.387

An example scenery of an instantaneous and high-resolution cloud classification is388

shown in Fig. 4. The scene is similar to the one shown in Fig. 2, but here the focus is389

on 2.5 km simulations with different treatment of convection and cloud microphysics. A390

frontal cloud band extends from the British Island to the open Atlantic. West of this cold391

front, marine clouds of type ”low” and ”very low / fractional” propagate towards the392

European continent. In the subtropical areas, Meteosat observations show a rather low393

fraction of low and very low / fractional marine clouds. The amount of these cloud types,394

which appear in large patches of marine stratocumulus, is strongly overestimated. This395

is a common bias in all considered ICON simulations at 2.5 km, especially in the vari-396

ants with explicit convection (see also (Senf et al., 2018)), and might reflect weaknesses397

in the setting and coupling of the convection scheme and planetary-boundary layer scheme.398
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Figure 4. Example of observed and simulated cloud types for 1200 UTC 23 Sept 2016 as

derived from Meteosat SEVIRI observations (top left) and ICON simulations with 2.5 km hor-

izontal resolution. The left column is for simulations with one-moment cloud microphysics (*),

the right column for simulations with two-moment microphysics (**). The second row is for fully

explicit convection, the third row for simulations with a shallow convection scheme (sCP), and

the fourth row for simulations with fully parameterized convection (CP).

2.5 Estimation of Observed Clear-Sky Radiation Fluxes399

We are interested in the cloud impact on broadband shortwave and longwave ra-
diation fluxes. This impact is commonly measured in terms of cloud-radiative effects (CREs),

CREnet = Fnet,clear − Fnet , (2)

which are defined as time-average difference between hypothetical clear-sky fluxes that400

would occur in the absence of clouds and cloud-affected all-sky fluxes. We follow the sign401

convention of G. L. Stephens (2005) and remind the reader that we defined upwelling402

all-sky and clear-sky fluxes as positive. Positive CREs indicate a gain of radiative en-403

ergy and a warming effect of clouds, negative CREs indicate a loss of radiative energy404

and a cooling effect. Note that CREs are the net result of different cloud types; the ra-405

diative impact of individual cloud types is analyzed later in Sect. 3.2.406
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The ICON simulations provide all-sky and clear-sky fluxes, where the latter are cal-407

culated via a second radiation call with cloud fields set to zero. Simulated CREs follow408

directly from the application of eq. (2). Deriving clear-sky fluxes for the observations is409

more difficult. Observational clear-sky fluxes could be estimate from all-sky fluxes in re-410

gions classified as cloud-free, but these might contain undetected clouds and could be411

biased toward drier and more stable atmospheric conditions (Sohn et al., 2010). For our412

analysis the situation is even more challenging because (i) the North Atlantic is very cloudy,413

and (ii) we are interested in instantaneous high-resolution radiation fluxes and CREs,414

for which the clear-sky fluxes cannot be derived by temporal and spatial aggregation (as415

done in, e.g., Futyan and Russell (2005)). We therefore apply the following recipe to es-416

timate observational clear-sky fluxes (clear-sky path in Fig. 1b):417

(i) Clear-sky fluxes are taken from simulations as first guess (similar to Allan, 2011).418

The ICON( 10km, *, CP ) experiment has been chosen as reference.419

(ii) A bias correction is applied to simulated clear-sky fluxes under the constraint that420

the radiative effects of undetected clouds have similar magnitudes in observations421

and simulations.422

The second step is based on the fact that for ICON simulations, differences between423

clear-sky and all-sky radiation fluxes are also available for regions that are classified as424

cloud-free (k = 0). As shown in Fig. 5, these differences are not zero and are caused425

by undetected clouds. We thus need to distinguish between all-sky and clear-sky fluxes426

in cloud-free regions. Therefore, a distinction between “cloud-free” and “clear-sky” is427

made throughout the rest of the paper.428

The radiative effects of undetected clouds help us to establish a bias correction to429

translate simulated clear-sky fluxes into observational estimates (see also supplement)430

and to assess the quality of the NWCSAF cloud detection (modified by us to run in night-431

mode). For a perfect cloud classification, all values should be at zero. This is not the case,432

however, and this demonstrates that a small amount of clouds remains undetected. Un-433

detected clouds from the simulations contribute around 3 W m−2 of additional shortwave434

reflection in cloud-free regions (Fig. 5a). In the longwave, simulated flux differences are435

between 1 and 2 W m−2 in cloud-free regions (Fig. 5b) and result from the reduced emis-436

sion temperature of undetected clouds. The shortwave and longwave effects of undetected437

clouds partially cancel. When weighted by the fraction of cloud-free areas of around 25%,438

we conclude that CREs of undetected clouds have negligible impact on the total domain-439

average radiation budget.440

Fig. 5 additionally shows two observational estimates of the effects of undetected441

clouds: one just takes uncorrected (first-guess) ICON clear-sky fluxes (gray symbols) and442

the other one uses bias-corrected ICON clear-sky fluxes (black symbols). It can be seen443

that the bias correction brings the observational estimates close to the simulations. The444

bias correction reduces the first-guess clear-sky fluxes by 4 to 6 W m−2 in the shortwave445

and by 2 W m−2 is the longwave. We believe the overestimation in the shortwave results446

from a too bright ocean surface albedo in ICON. Additional support for this interpre-447

tation comes from independent internal investigations by the German Weather Service448

(pers. comm. A. Seifert). Moreover, simulated ocean surface seems to be too warm caus-449

ing an overestimation of outgoing longwave clear-sky fluxes that adds to the shortwave450

bias.451

Technically, an offset of 2 W m−2 is subtracted from Flw,clear as simple bias cor-452

rection in the longwave. For the shortwave, it is more appropriate to apply a scaling fac-453

tor to the upwelling flux Fsw,up,clear (see Fig. 6). A scaling factor of 0.88 brings the ICON454

curve approximately down to the observational curve. Fig. 6 also shows that all ICON455

simulations lie together closely. It is therefore of minor importance which ICON exper-456

iment is chosen as reference. After correction, the simulated clear-sky fluxes are used to-457
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Figure 5. The radiative effect of undetected clouds in areas classified as cloud-free (i.e.

k = 0). All data points show the average difference between clear-sky and all-sky fluxes for

(a) shortwave ∆Fsw,net = Fsw,net,clear − Fsw,net and (b) longwave ∆Flw = Flw,clear − Flw. The bars

give an robust estimate of the standard error of the daily-average values over all simulation sets,

thus provide a confidence interval. For this, the difference between the 84-th and 16-th percentile

has been calculated to approximate twice the multi-day standard deviation 2σ which was further

divided by
√
N with N = 11 for the all experiments except the additional runs from simulation

set 2 (see Tab. 3). Colored symbols represent different simulations which have been vertically

stacked to improve visibility. The gray symbols show the uncorrected observational estimate

where the all-sky fluxes are based on Meteosat, but the clear-sky fluxes are directly taken from

ICON( 10km, *, CP ). The black symbols show the corrected observational values with a scale

factor applied to the shortwave and a constant additive offset to the longwave part of clear-sky

fluxes taken from ICON( 10km, *, CP ). Thin gray lines connect all other symbols to the obser-

vation for improved interpretation. The clear-sky bias of the simulations is directly obtained from

the difference between black and gray symbols.

gether with observed all-sky fluxes for the calculation of observed CREs using eq. (2).458

In summary, the applied strategy for cloud classification is extremely helpful to estab-459

lish a consistent bias correction of instantaneous clear-sky fluxes estimated from simu-460

lations.461

3 Results462

3.1 Domain and Time-Averaged Radiation Fluxes and Cloud-Radiative463

Effects464

We begin with a comparison of observed and simulated radiation fluxes averaged465

over the North Atlantic domain and all days (Fig. 7). The observed net flux is around466

25 W m−2 and directed outward (Fig. 7a), implying that in this time of the year the North467

Atlantic region looses more radiative energy than it gains. All simulations show larger468

net fluxes, indicating that they overestimate the loss of radiative energy. Simulations with469

partly or fully parameterized convection have a net flux of around 30 W m−2, with the470

coarsest resolution showing the smallest deviation with respect to observations. Further-471

more, simulations with fully parameterized convection have net fluxes slightly closer to472

the observation when using one-moment microphysics instead of two-moment microphysics.473

This might reflect previous model tuning that was done for one-moment but not for two-474

moment microphysics. Simulations with parameterized shallow convection show net fluxes475

very similar to simulations with fully parameterized convection. Much stronger devia-476

tions occur, however, for simulations with explicit convection, for which the net flux reaches477
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Figure 6. Simulated and observed upwelling versus downwelling shortwave fluxes in cloud-free

areas. The upwelling flux is calculated for 10 bins of the downwelling flux. Symbols denote condi-

tional median values and error bars show the inter-quartile range. Simulations are shown in gray,

with the simulations for ICON( 10km, *, CP ) shown in olive green. Observations are shown by

the black diamonds and the black sold line. The dashed black line shows the upwelling flux from

ICON( 10km, *, CP ) rescaled by a factor of 0.88.

about 40 W m−2. We note that the deviations in the net flux are not simply a result of478

differences in the downwelling shortwave flux, which amount to 1 W m−2 due to slight479

differences in the solar constant in the simulations and observations.480

The better agreement in terms of the net flux for low-resolution simulations and481

for simulations with (partly) parameterized convection results from compensating biases482

in outgoing longwave fluxes and upwelling shortwave fluxes (Fig. 7b and d). These com-483

pensating radiation flux biases are a known problem of a large number of climate mod-484

els where tuning was aimed in particular at the net TOA energy balance (Klein et al.,485

2013). With one exception, the simulations overestimate outgoing longwave radiation486

(Fig. 7b), which corresponds to a too high effective emission temperature. The longwave487

bias increases with increasing grid spacing, with the largest bias found for the coarsest488

simulation at 80 km resolution. Simulations with fully parameterized convection under-489

estimate upwelling shortwave radiation, which corresponds to a too low planetary albedo.490

Similar to the longwave bias, the shortwave bias is stronger for the coarser simulations.491

The better agreement in the net flux found for the coarser simulations is thus achieved492

for the wrong reason: a systematic bias compensation between longwave and shortwave493

fluxes that increases when a coarser resolution is used. Put differently, this also means494

that bias compensation becomes smaller as the resolution is made finer - an encourag-495

ing signature of convergence with increasing resolution. Similarly, Hohenegger et al. (2020)496

found that net shortwave TOA radiation shows a continuous improvement for succes-497

sive grid refinements in their global ICON simulations with explicit convection.498

For the highest resolution simulations at 2.5 km the outgoing longwave flux improves499

when the shallow-convection scheme is disabled so that convection becomes fully explicit.500

This is in particular the case for two-moment microphysics, which agrees best with ob-501

servations in terms of the longwave flux (Fig. 7b). However, the simulations with fully502

explicit convection strongly overestimate the upwelling shortwave flux. As a result, the503

overall most satisfying agreement is found for simulations that combine two-moment mi-504

crophysics and parameterized shallow convection. The shallow-convection parameter-505

ization avoids the strong overestimation of upwelling shortwave flux found for fully ex-506

plicit convection.507
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Figure 7. Domain and time-averaged all-sky radiation fluxes: (a) total net flux, (b) outgoing

longwave flux, (c) net shortwave flux, (d) upwelling shortwave flux, and (e) downwelling short-

wave flux. Observations are shown by the black horizontal lines. The deviations of simulated

fluxes with respect to observations are shown by colored bars.

The simulation of domain- and time-averaged CREs and cloud cover is analyzed508

in Fig. 8. For the observations, CREs are around −41 W m−2 in the shortwave and around509

27 W m−2 in the longwave, with a net cooling effect of clouds of −14 W m−2. These CRE510

values are in the same range as global and long-term averaged observations. However,511

in the seasonal mean, twice as large CRE values would be found for the North Atlantic512

region (Zelinka et al., 2017). Simulated shortwave and longwave CREs are negatively cor-513

related, with more positive longwave CREs obtained for more negative shortwave CREs514

(Fig. 8a). Simulations with fully parameterized convection lie in the upper left quadrant515

of Fig. 8a and thus underestimate the magnitude of both longwave and shortwave CREs.516

Although these simulations show some improvement with decreasing grid spacing, none517

of the simulations approaches the observed CREs, and the impact of resolution appears518

to saturate at grid spacings between 10 and 20 km. This indicates that even if the grid519

spacing was further reduced, the simulations would be unable to approach the observa-520

tions if convection is fully parameterized. This idea is supported by Fig. S5 (supplemen-521

tary material).522

In contrast, simulations with shallow-convection scheme or with fully explicit con-523

vection are scattered around the observations (Fig. 8a). In these simulations, the impact524

of grid-scale cloud microphysics is also much more pronounced. This is because less or525

no subgrid-scale cloud condensate is produced by the convection parameterization, which526

has its own and much simpler convection microphysics description. Overall, this suggests527

a clear benefit from (partly) disabling the convection scheme. In fact, simulations with528

shallow-convection scheme and two-moment microphysics show a remarkable match with529

observed longwave and shortwave CREs.530

Fig. 8b-d further shows the relation between CREs and cloud cover. In the obser-531

vations, cloud cover is around 73%. Cloud cover is a primary control on CREs (e.g. Dolinar532

et al., 2015). Unsurprisingly this is visibile in the simulations, which show a near-linear533

relation between cloud cover and the CREs. In part, this clear relation is due to the fact534

that the analyses were only made for one particular model, the ICON model. Greater535
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spread would be expected for the comparison of several models with different parame-536

terizations (see Nam et al., 2012). For our analysis, the observations do not fall onto the537

simulation-based relationship. This leads to a dilemma: For none of the simulations do538

CREs and cloud cover at the same time match the observations. Cloud cover is better539

simulated for coarser grid spacings, whereas CREs improve as the grid spacing is refined.540

This indicates that the distribution of cloud-optical thicknesses and, associated with this,541

the vertical cloud structure is insufficiently represented in ICON.542

Figure 8. Comparison of domain- and time-averaged cloud-radiative effects and cloud cover:

(a) longwave CRE vs. shortwave CRE. Cloud cover vs. (b) shortwave CRE, (c) longwave CRE,

and (d) net CRE. Similar to Fig. 5, symbols denote average values and error bars provide confi-

dence intervals. Please note the differences in the y-axis range.

Using Eq. (2) the radiation flux biases of the ICON simulations with respect to ob-
servations can be written as the sum of clear-sky and CRE biases, i.e.,

δF = FICON − FOBS = δFclear − δCRE. (3)

The results of this decomposition are collected in Fig. 9, with net flux biases shown in543

the left column, shortwave flux biases in the middle column, and longwave flux biases544

in the right column. The matrix presentation of Fig. 9 allows for two implicit summing545

rules: the left column is the sum of the middle and right columns, and the first row is546

the sum of 2nd and 3rd rows. The second row of Fig. 9 shows that net biases are to a547

substantial extent due to clear-sky biases, which are independent of the simulation setup548

and amount to ∼ 7.4 W m−2. The biases in simulated clear-sky fluxes have already been549

identified in Sect. 2.5 where a correction for observational clear-sky estimates was con-550

structed. The clear-sky bias mostly arises from the shortwave (∼ 5.6 W m−2), with a551

smaller longwave contribution (∼ 1.8 W m−2). The magnitude of the clear-sky short-552

wave bias is somewhat surprising, and likely reflects an imperfect representation of ocean553

surface albedo in the ICON simulations.554

The dependence of all-sky flux biases on resolution and the treatment of convec-555

tion and cloud microphysics results entirely from CREs (Fig. 9, third row). The net CRE556

bias counteracts the clear-sky bias and thus reduces the net all-sky bias for simulations557

with fully parameterized convection. For simulations with fully explicit convection, the558

net CRE bias adds to the clear-sky bias and therefore increases the net all-sky radiation559
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bias. For simulations with parameterized shallow convection, the CRE biases depend on560

cloud microphysics. With one-moment microphysics, the CRE biases are similar to the561

biases found for fully parameterized convection. In contrast, with two-moment micro-562

physics there is essentially no CRE bias, neither in the shortwave, longwave or net. The563

net flux bias of the two-moment simulation with parameterized shallow convection is there-564

fore entirely due to clear-sky biases, which could be decreased by adjusting the ocean565

albedo.566

Figure 9. Decomposition of domain- and time-averaged biases for net (left), shortwave (mid-

dle) and outgoing longwave (right) radiation fluxes. The all-sky bias (1st row) is the sum of

clear-sky (2nd row) and CRE (3rd row) biases. The clear-sky biases are calculated with respect

to the bias-corrected clear-sky fluxes of ICON( 10km, *, CP ), which serves as observational

reference.

The above analyses have already shown that CRE biases become smaller when the567

spatial resolution of ICON is refined. This effect is quantified more precisely in Fig. 10568

which shows the resulting CRE biases and their changes for simulation set 2 (see Tab. 3).569

For set 2, additional simulations are available, which allow to assess the effect of grid re-570

finement on CRE biases simulated with explicit convection. The magnitudes of short-571

wave CRE biases become larger for increasing grid spacing from 2.5 to 10 km and ex-572

plicit convection (Fig. 10a). The sign of the longwave CRE bias depends on the choice573

of the microphysics scheme. For a detailed assessment of the resolution impact, simu-574

lation pairs were formed in which one simulation has half the grid spacing of the other575

simulation. Microphysics and convection parameterization were chosen identically. Ab-576

solute values of the CRE biases were subtracted from each other in such a way that a577

positive value indicates an improvement by grid refinement. It can be seen that refin-578

ing resolution always improves shortwave CRE biases (Fig. 10c). The improvement is579

less pronounced for grid spacings less than 20 km and fully parameterized convection.580

This saturation can be overcome when fully explicit convection is used for which refine-581

ment down to 2.5 km provides substantial reduction of shortwave CRE biases. For the582

longwave, the behavior is different (Fig. 10d). Simulations with fully parameterized con-583
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vection and two-moment microphysics experience continuous improvement with each re-584

finement step down to 2.5 km. In contrast, longwave CRE biases simulated with explicit585

convection and one-moment microphysics even become worse when horizontal resolution586

is refined. As a further analysis, simulation pairs were formed which have the same res-587

olution and convection parameters, but differ in terms of microphysics. Positive changes588

in CRE biases indicate improvements when switching to two-moment microphysics (Fig. 10e589

and f). For coarse resolutions, switching to two-moment microphysics leads to worse CRE590

biases in the longwave and in the shortwave. For smaller grid spacing and partly or fully591

parameterized convection, the sign changes and switching to two-moment microphysics592

can now lead to substantial improvements. For simulations with fully explicit convec-593

tion, these improvement of CRE biases are only found in the longwave whereas switch-594

ing microphysics causes unexpectedly increased biases in the shortwave. The clarifica-595

tion of the exact causes for the parameter dependencies found here requires further in-596

vestigations.597

Figure 10. Impact of resolution and microphysics on CRE biases. Similar to Fig. 9h-i, CRE

biases are shown for shortwave (left) and longwave (right), but only for simulation set 2 (see

Tab. 3). Additionally, it is shown how CRE biases are reduced when resolution is refined (middle

row) and microphysics is switched from the one-moment scheme to the two-moment scheme (bot-

tom row). All other parameters were set equal and the ICON experiment, to which it is switched,

is indicated in colored bars. A reduction of the CRE bias is shown with positive and increase

with negative values.
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3.2 Dependence of Cloud-Radiative Effects and Cloud Cover on Cloud598

Type599

We now explore the origins of the domain- and time-averaged cloud-cover and CRE
biases in the ICON simulations. To this end we use the cloud classification outlined in
Sect. 2.4, which allows us to quantify the biases as a function of cloud type. This is done
by writing the instantaneous domain-averaged net flux, Fnet, as a sum of contributions
from the K cloud types of the cloud classification,

Fnet =

K∑
k=0

fk Fnet,k , (4)

where fk is the fractional cloud cover of a certain cloud type k and Fnet,k is the instan-
taneous net flux averaged over the area covered by cloud type k. Areas classified as cloud-
free are included at k = 0. As before a positive sign is taken for upwelling fluxes. In-
stantaneous domain- and time-averaged CREs are decomposed analogously,

CREnet = −
K∑

k=0

fk (Fnet,k − Fnet,clear,k) , (5)

where the cloud type-separated instantaneous net fluxes are averaged over time. This600

yields to a CRE decomposition into contributions from different cloud types. Note that601

clear-sky and cloud-free fluxes are not equal, Fnet,0 6= Fnet,clear,0, because of clouds that602

are undetected by the cloud classification (cf. Fig. 5).603

Fig. 11 presents the cloud-type separation of total cloud cover. In the observations,604

cloud cover is dominated by very low / fractional clouds, which contribute around 30%605

to the total observed cloud cover of 73%. The three cloud types ”low”, ”high opaque”606

and ”semi. moderately thick” clouds each provide around 10%. The remaining cloud types607

are less important. From a qualitative point of view, all simulations capture the cloud608

cover of the different cloud types rather well. A few features of simulated cloud types,609

however, stand out:610

(i) The cloud cover of very low / fractional clouds strongly depends on resolution and611

is better simulated in coarse-resolution simulations with grid spacings between 10612

and 80 km. Finer-resolution simulations substantially overestimate very low / frac-613

tional cloud cover, with a more severe overestimation as the grid spacing is decreased.614

The largest overestimation is found for simulations with shallow of fully explicit615

convection.616

(ii) Most simulations underestimate the low cloud cover and overestimate the cloud617

cover of semi-transparent clouds. These biases are less resolution dependent and618

become smaller when convection is fully explicit.619

(iii) The choice of the microphysics scheme (one-moment vs. two-moment scheme) has620

a dominant impact on the cloud cover of cirrus clouds, which are represented by621

the five cloud types “high” and “very high opaque” as well as “semi. thin”, “semi.622

moderately thick” and “semi. thick”. The effect is evident for high and very high623

opaque clouds, for which the two-moment scheme produces smaller cloud cover than624

the one-moment scheme for fully parameterized convection but higher cloud cover625

for very high opaque clouds and parameterized shallow convection. At the same626

time, the two-moment scheme leads to increased cloud cover and cloud-cover bi-627

ases for semi. thin and moderately thick clouds independent of the treatment of628

convection.629

An overestimation of marine shallow cloud cover has already been observed in Senf630

et al. (2018), where ICON simulations were performed at 2.5 km grid spacing and with631

fully explicit convection. This persistent bias can also be found here and is a problem632
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Figure 11. Observed and simulated cloud cover as a function of cloud type (a) as well as

cloud cover biases of the simulations with respect to Meteosat observations (b). Similar to Fig. 5,

symbols denote average values and error bars provide confidence intervals.

especially for simulated cloud coverage in the subtropical regions (see Fig. 4). A grid spac-633

ing of 2.5 km is still too coarse, so that the cloud-scale circulations are not sufficiently634

resolved. As result, too large and too regular structures of marine stratocumulus appear635

in the simulations.636

To understand the microphysical sensitivity of the simulated cirrus clouds, it must637

be considered that the microphysics scheme in ICON was inherited from the weather model638

of the Consortium for Small-scale Modeling (COSMO). For COSMO a systematic over-639

estimation of the cirrus cover was found (Böhme et al., 2011; Senf & Deneke, 2017). In640

order to eliminate this error, adjustments were made in the description of ice microphysics641

which reduce the optical thickness of cirrus clouds (Eikenberg et al., 2015; Köhler & Seifert,642

2015). In the ICON simulations presented here, this may lead to a situation where semi-643

transparent cirrus is more overestimated by the two-moment scheme.644
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The domain- and time-averaged shortwave CRE depends on the typical albedo of645

a certain cloud type (see Fig. 3). This relation is further illustrated by Fig. 12a where646

CREs have been calculated for a hypothetical overcast situation in which the radiative647

effect of each cloud type was considered separately assuming a total coverage of 100%.648

Based on observations, very low / fractional clouds induce a rather low shortwave over-649

cast CRE of −30 W m−2. The shortwave overcast CRE increases reaching −140 W m−2
650

for very high, opaque clouds. The concurrent increase of albedo and cloud-top height also651

leads to increases in longwave overcast CREs. The imperfect compensation between short-652

and longwave CREs causes net effects that have different signs for observed opaque and653

observed semi-transparent cirrus clouds. All opaque clouds induce a net cooling due to654

their negative net CREs in the observation. For observed low and mid-level clouds, the655

magnitudes of net overcast CREs are largest with −50 W m−2. The warming effect of656

observed semi-transparent clouds is less pronounced and is largest for semi. thick clouds657

with 15 W m−2. Theses numbers are consistent with the findings of Chen et al. (2000)658

who attribute the largest negative shortwave CRE to their deep convective cloud type659

(comparable with our opaque very high category) and who also find a positive net CRE660

for their cirrus cloud type (comparable to our semi-transparent thin category).661

The comparison of observed overcast CREs with their simulated counterparts helps662

to assess how good the different simulation setups represent the individual cloud-type663

specific radiation fluxes (independently of the fractional cloud cover of each type). On664

a qualitative level, all simulations perform very well showing the observed dependence665

of overcast CREs on cloud type. Most remarkably, none of the simulated semi-transparent666

cloud types causes significant positive net CREs (except for ICON(2.5 km, **, sCP)),667

i.e. hardly any of the ICON simulations induce a net domain-average warming from semi-668

transparent cirrus (see Fig. 12b). For all simulated semi-transparent cirrus cloud types,669

the longwave CREs and thus their thermal cloud emissitivies are underestimated (see670

Fig. 12a).671

The dependence of all-sky CREs on cloud type is presented in Fig. 12c-d. Follow-672

ing eq. (5), all-sky CREs are calculated by weighting the difference between overcast and673

clear-sky radiation fluxes by the cloud cover of each cloud type. The relative amount of674

each cloud type determines the importance of this cloud type and its CREs for the domain-675

and time-average. Thus, simulated biases in all-sky CREs can arise from biases in (i) the676

radiative properties of a given cloud type, and (ii) the cloud cover of a given cloud type.677

Biases in radiative properties result from a misrepresentation of the distribution of cloud-678

optical thickness which is directly linked to the representation of vertical structure of the679

cloud type. Cloud-cover biases provide information on the misrepresentation of the hor-680

izontal extent of the respective cloud type. From Fig. 12d, we infer that mainly the four681

cloud types ”very low / fractional”, ”low”, ”mid-level” and ”high opaque” (with decreas-682

ing importance) contribute to the observed negative net all-sky CREs. The remaining683

four cloud types either have near zero net overcast CREs or too little cloud cover. For684

simulations with fully parameterized convection, the magnitudes of net all-sky CREs for685

very low / fractional and low clouds are severely underestimated. The discrepancy is much686

reduced for simulations with shallow convection at 2.5 km grid spacing, especially for687

one-moment microphysics. In contrast, the net all-sky CREs of very low / fractional clouds688

are overestimated in simulations with fully explicit convection. The all-sky net CREs of689

mid-level clouds are better represented for simulations with either shallow or full con-690

vection scheme than in simulations with fully explicit convection. In addition, semi. mod-691

erately thick clouds have too negative all-sky net CREs in all simulations, with the largest692

bias for simulations with fully explicit convection.693
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Figure 12. Observed and simulated (a,b) overcast CREs and (c,d) all-sky CREs for different

cloud types. Overcast CREs are calculated assuming a hypothetical cloud cover of 100%. All-

sky CREs include weighting by the cloud-type’s specific cloud cover. Similar to Fig. 5, symbols

denote average values and error bars provide confidence intervals.

To separate the effects of cloud type-dependent cloud cover and radiative proper-
ties on biases of simulated all-sky CREs, we apply a bias decomposition to eq. (5),

δCREnet =−
K∑

k=0

δfk (Fnet,k − Fnet,clear,k)︸ ︷︷ ︸
cloud cover

−
K∑

k=0

fk δ(Fnet,k − Fnet,clear,k)︸ ︷︷ ︸
radiative properties

−
K∑

k=0

δfk δ(Fnet,k − Fnet,clear,k)︸ ︷︷ ︸
co-variation

.

(6)
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The first term results from a misrepresentation of cloud cover, the second term from a694

misrepresentation of radiative properties and overcast CREs, and the third term from695

the co-variation between the two factors. The ”cloud cover” term shows how well the696

horizontal extend is simulated by cloud type. The ”radiation flux” term is related to the697

vertical structure of a cloud type. As before, cloud-free contributions are included at k =698

0. The decomposition holds for the all-sky net CREs as well as its shortwave and long-699

wave components.700

Fig. 13 summarizes biases in the domain- and time-averaged CREs and their de-701

composition. As discussed in Sect. 3.1, net CREs are biased negative for simulations with702

explicit convection, i.e. clouds cool too much, but biased positive for simulations with703

shallow-convection scheme and fully parameterized convection (except for ICON(2.5km,704

*, sCP)), i.e. clouds cool too little. For the latter simulations, net CRE biases become705

smaller as the grid spacing is decreased. The compensation of CRE biases originating706

in the longwave and shortwave is very apparent for fully convection-parameterized sim-707

ulations (Fig. 13a-c).708

The bias compensation between shortwave and longwave CREs leads to different709

roles of cloud cover and radiative properties, depending on whether one looks at net CREs710

or their shortwave and longwave components. For net CREs, cloud cover biases dom-711

inate. They are responsible for around half of the positive bias for fully parameterized712

convection (Fig. 13d). For simulations with fully explicit convection, in contrast, biases713

in radiative properties clearly control the net CRE biases. For the shortwave and long-714

wave CRE components, biases in radiative properties dominate in general. A pronounced715

compensation between shortwave and longwave CRE biases is apparent. We thus find716

that the earlier discussed compensation of shortwave and longwave flux biases directly717

traces back to a misrepresentation of cloud-radiative properties. Switching from one-moment718

to two-moment microphysics has different effects on cloud-cover and radiative-properties719

related CRE biases. It is found for nearly all simulations that the shortwave and long-720

wave CRE biases due to radiative properties become smaller. For the coarser simulations,721

the resulting improvement is more than compensated by biases in the ”cloud cover” term.722

Thus, the CRE biases become larger when switching to the two-moment scheme in these723

coarser ICON experiments (see also Fig. 10e and f). The simulations with shallow-convection724

parameterization possess smaller biases than the fully parameterized simulations. The725

simulations with fully explicit convection show acceptable results for the longwave bias726

due to radiative properties. Their worse net performance originates from the missing com-727

pensation by shortwave biases which are also negative for these simulations.728

The interpretation of CRE biases is further supported by Fig. 14 which provides729

a detailed bias decomposition separated by cloud type. We see that not only the com-730

pensation between shortwave and longwave CRE biases is important, but also the com-731

pensation of biases originating from different cloud types (Klein et al., 2013). For the732

net CRE biases (Fig. 14c), mainly cloud types “very low / fractional” and “low” con-733

tribute to the positive bias of simulations with fully parameterized convection. This is734

partially compensated by a negative net CRE bias from semi. moderately thick clouds.735

When split by cloud type, the net CRE bias of simulations with fully parameterized con-736

vection is dominated by CRE biases due to radiative properties.737

For shortwave and longwave CRE biases (Fig. 14a,b), it is found that the resolu-738

tion dependence of CRE biases not only originates from very low / fractional and low739

clouds, but also from very high opaque clouds. This cloud type is connected to deep con-740

vection which representation significantly improves for decreasing grid spacing. Espe-741

cially, some simulations with two-moment microphysics show a rather poor performance742

for the very high opaque clouds. The coarse simulation at 80 km underestimates the frac-743

tional coverage of this cloud type, in contrast the simulation with shallow convection pa-744

rameterization at 2.5 km overestimates the fractional coverage of very high opaque clouds745

(see also Fig. 11b). The spatial representation of this cloud type needs to be addressed746
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Figure 13. Decomposition of CRE biases (1st row) into contributions from biases in cloud

cover (2nd row) and cloud-radiative properties (3rd row). Co-variations between biases in cloud

cover and radiative properties are shown in the 4th row. The net CRE biases (left column) are

decomposed into shortwave and longwave (middle and right columns) contributions.

in future. In the shortwave, the positive CRE bias of simulations with fully parameter-747

ized convection mainly comes from very low / fractional and low clouds. For the former,748

biases in radiative properties dominate whereas for the latter CRE biases due to cloud749

cover also contribute. Switching from one-moment to two-moment scheme, we find im-750

provements in the representation of shortwave components of individual radiative prop-751

erties (see Fig. 13h and Fig. 14g) which indicate that the vertical structure of clouds in752

terms of optical thicknesses has improved. These improvements are partially masked by753

worse cloud cover biases (see Fig. 13e). In the longwave, many cloud types simulated with754

fully parameterized convection show a negative bias originating from the bias in radia-755

tive properties. The magnitudes of the individual longwave biases are much smaller for756

simulations with explicit convection.757

In summary, the above analysis showed that future model development should equally758

concentrate on improvements of simulated clear-sky and cloud-affected TOA radiation759

fluxes. For the former, we recommend to revise the formulation of ocean albedo to reach760

better consistency with observations. For CREs, strategies for further improvement de-761

pend on the choice of the convection scheme, especially at kilometer-scale resolutions.762

For simulations with fully parameterized convection, radiation is typically too weakly763

interacting with clouds, i.e. clouds appear too dark and too warm, especially for low and764

very low / fractional clouds. Hence, in contrast to the well known “too few, too bright”765

low-cloud problem of several climate models (Nam et al., 2012; Klein et al., 2013), low766

and very low clouds in ICON at coarse resolutions need to become brighter. This could767

be achieved by improving radiative properties of these cloud types, either from a macro-768

physical or a microphysical point of view. Specifically, in the used ICON version the ef-769
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Figure 14. CRE biases and their decomposition for different cloud types. Following eq. (6),

(top row) biases in CREs are separated into (bottom row) contribution from (left) cloud-cover

biases and (right) radiation-flux biases. The split into (a, d, g) shortwave and (b, e, h) longwave

components that sum up to the (c, f, i) net CRE bias is also provided in the different sub-panels.

Similar to Fig. 5, symbols denote average values and error bars provide confidence intervals.

fective radius of cloud particles taken in the radiative transfer follows from a prescribed770

number concentration of cloud particles and is unaware of the number concentration sim-771

ulated by the two-moment microphysics scheme. Adjusting this inconsistency might help772
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to correct the CRE biases, e.g. the negative biases in longwave CREs of semi-transparent773

cirrus. For simulations with only shallow or fully explicit convection, the radiative prop-774

erties of clouds show signs of improvement. However, ICON with shallow convection sim-775

ulates very low clouds, which still appear too dark and too similar to the clouds from776

the fully parameterized convection simulations. To improve the representation of this777

cloud type, new parameterization approaches need to be explored, such as those using778

stochastic sampling (Sakradzija & Klocke, 2018). The simulations with explicit convec-779

tion show a promising convergence, which should be investigated by further refinements780

down to the hectometer-scale (Stevens et al., 2020).781

4 Conclusions and Outlook782

Clouds regulate Earth’s energy budget (Ramanathan et al., 1989). Shallow low-783

level clouds are efficient scatterers of shortwave radiation and, in combination with their784

small thermal contrast to Earth’s surface, they have strong negative cloud-radiative ef-785

fects and cool the Earth. In contrast, the cloud-radiative effects of high-level cirrus clouds786

also include longwave effects so that depending on cirrus-optical properties these clouds787

can either have a near zero or a warming effect (G. L. Stephens, 2005).788

In mid-latitude environments, cyclones lead to the formation of frontal cloud bands789

with a complicated mixture of stratiform and convective clouds, possibly including multi-790

layer structures and embedded convection. Realistically representing such complex cloud791

structures and their radiative effects poses a challenge to numerical models, especially792

over oceans where extended shallow boundary-layer cloud fields occur in addition. Fur-793

thermore, the radiative impact of clouds on the mid-latitude circulation might depend794

on cloud type. We therefore investigated the ability of a specific numerical weather pre-795

diction - the ICON model (Zängl et al., 2014) - to represent cloud cover and cloud-radiative796

effects for selected days of the NAWDEX field campaign in boreal autumn 2016 over a797

large North Atlantic domain. Using a comprehensive set of sensitivity simulations that798

vary horizontal grid spacing between 2.5 and 80 km, we identified sensitivities with re-799

spect to model resolution. Moreover, we studied the impact of different choices regard-800

ing the parameterization of cloud microphysics (one-moment versus two-moment scheme)801

and convection (fully parameterized, shallow-convection only, fully explicit). This allowed802

us to identify strengths and weaknesses of the different model setups, in particular with803

respect to top-of-atmosphere radiation fluxes and cloud-radiative effects.804

To assess the ICON model we made use of multi-spectral observations from the geo-805

stationary Meteosat satellite in two ways. First, we analyzed observational estimates of806

instantaneous top-of-atmosphere radiation. Second, we derived a detailed multi-spectral807

cloud classification from the Meteosat observations. For a consistent comparison between808

the ICON simulations and the observations, the simulation data were forwarded to a satel-809

lite forward operator performing radiative transfer calculations to derive synthetic in-810

frared satellite images. This transfer of the simulations to observation space allowed us811

to subject simulations and observations to the same cloud classification software, and812

to analyze and compare observed and simulated cloud-type fields within the same frame-813

work.814

In observations, the average net TOA radiation flux over the North Atlantic region815

and for the selected analysis days is around +25 W m−2, indicating a net energy loss (re-816

member that we adopted a positive-upward convention for radiation fluxes). Clouds sub-817

stantially contribute to the energy loss and are responsible for a net cooling of −14 W m−2.818

Major contributors to the net CRE are shallow clouds of the cloud type ”very low / frac-819

tional” and ”low”, which both contribute around −5 W m−2 to the total net CRE. The820

shallow clouds also account for around half of the total cloud cover of 73%.821
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The main results of our comparison between observed and ICON simulated radi-822

ation fluxes and cloud fields are as follows:823

(i) For all model setups, the domain- and time-averaged net TOA radiation flux is larger824

than in the observations, independent of resolution and the treatment of cloud mi-825

crophysics and convection. The ICON model thus overestimates the TOA loss of826

radiative energy. Simulations with fully parameterized convection underestimate827

TOA shortwave reflection and overestimate outgoing longwave radiation, i.e. seen828

from space they are too dark and too warm.829

(ii) There is a systematic bias compensation between shortwave reflection and outgo-830

ing longwave radiation. The compensation is stronger for coarse-resolution simu-831

lations and becomes smaller for finer resolutions. Clear-sky and CRE biases have832

similar magnitudes, but only CRE biases are sensitive to horizontal resolution and833

in fact decrease with finer resolution. For fully parameterized-convection simula-834

tions, clouds are too weakly interacting with the radiation field leading to positive835

CRE biases in the shortwave and negative CRE biases in the longwave which par-836

tially compensate each other.837

(iii) For none of the ICON setups, a simultaneous match between observed and sim-838

ulated CREs and total cloud cover is achieved. Cloud cover compares better to ob-839

servations for coarse resolutions, whereas CREs compares better to observations840

for finer resolutions.841

(iv) The cloud cover of shallow clouds (types: “very low / fractional” and “low”) strongly842

depends on resolution. It compares well with observations for coarser resolutions843

of 10-80 km, but finer resolutions and explicit convection severely overestimate it844

by up to 50% relative to observations. For simulations with fully parameterized con-845

vection, net CRE-biases of shallow clouds are dominated by positive shortwave bi-846

ases in radiative properties. Biases in shortwave and net CREs are reduced when847

only shallow convection parameterization is applied. Using explicit convection even848

switches the sign of the shortwave CRE-biases leading to too bright shallow clouds849

and too large cloud-induced reflection.850

(v) The choice of the microphysics scheme has dominant impact on cloud cover of cir-851

rus clouds leading to smaller cloud cover for high opaque and very high opaque clouds852

and larger cloud cover for semi. thin and semi. moderately thick clouds. No pro-853

nounced net warming effect is found for simulated semi-transparent clouds. The854

net CRE bias of semi-transparent clouds is negative and caused by a misrepresen-855

tation of cirrus radiative properties, especially in the longwave.856

In summary, our analysis shows that refining horizontal resolution allows the ICON857

model to more accurately represent cloud-radiative effects over the North Atlantic. We858

found substantial bias compensation between top-of-atmosphere shortwave and longwave859

radiation fluxes as well as between clear-sky fluxes and cloud-radiative effects. An ac-860

ceptable net performance of a selected model setup is not at all a guarantor of realistic861

individual contributions. The best representation of the domain-average longwave and862

shortwave CREs is achieved when ICON is configured with two-moment cloud micro-863

physics, a shallow-convection scheme (explicit treatment of mid-level and deep convec-864

tion) and a horizontal resolution of 2.5 km.865

Starting with climate model resolution of 80 km, the improvement from increas-866

ing resolution are gradually up to a resolution of 10 to 20 km, at which point a further867

increase in resolution only leads small and insufficient improvements of the simulated short-868

wave CREs. Instead, at finer resolutions, the saturation is overcome when the convec-869

tion scheme is disabled so that the model is allowed to represent convection in an explicit870

manner. If convection treated explicitly, the simulation of CREs is even improved by re-871

finements at (and possibly beyond) the kilometer scale. However, a resolution of 2.5 km872

is still too coarse to resolve the shallow clouds and circulation in the marine boundary873
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layer, because of which the best simulation of average CREs at 2.5 km is achieved with874

an explicit treatment of mid-level and deep convection but a parameterized treatment875

of shallow convection. This simulation setup can represent the radiative-properties term876

in the CRE decomposition in a satisfactory manner for all cloud types except for very877

low clouds. For this cloud type, improvements in the simulation of cloud-optical thick-878

ness and thus vertical structure is needed. Moreover, the 2.5-km setup with parameter-879

ized shallow convection shows some deficits with regard to the fractional coverage of cloud880

types ”very high opaque” and ”low” which could be an indication that the linking be-881

tween resolved and parameterized convection has weaknesses in this setup. Compared882

to fully explicit convection, the use of a shallow-convection scheme mitigates the oth-883

erwise too high fractional coverage of very low clouds and too strong cloud shortwave884

reflection, and at the same time does not affect longwave CRE, which are dominated by885

high-level clouds. A deeper understanding of the spatial distribution of the CRE biases886

is needed. A promising approach would be the analysis of the cloud distribution and its887

radiative effects as a function of meteorological conditions, e.g. cloud controlling factors888

depending on large-scale circulation and vertical velocity regimes.889
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Schäfer, S. A. K., & Voigt, A. (2018, Mar). Radiation Weakens Idealized Mid-1121

latitude Cyclones. Geophys. Res. Lett., 45 (6), 2833-2841. doi: 10.1002/1122

2017GL0767261123

Schäfler, A., Craig, G., Wernli, H., Arbogast, P., Doyle, J. D., McTaggart-Cowan,1124

R., . . . Zinner, T. (2018). The north atlantic waveguide and downstream1125

impact experiment. Bull. Amer. Meteor. Soc., 99 (8), 1607-1637.1126

Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., & Ratier, A.1127

(2002). An introduction to Meteosat Second Generation (MSG). Bull. Amer.1128

Meteor. Soc., 83 (7), 977-992.1129

Seifert, A., & Beheng, K. D. (2006, 01). A two-moment cloud microphysics param-1130

eterization for mixed-phase clouds. part 1: Model description. Meteor. Atmos.1131

Phys., 92 (1), 45–66.1132

Senf, F., & Deneke, H. (2017). Uncertainties in synthetic meteosat seviri infrared1133

brightness temperatures in the presence of cirrus clouds and implications for1134

evaluation of cloud microphysics. Atmos. Res., 183 , 113-129.1135

Senf, F., Klocke, D., & Brueck, M. (2018). Size-resolved evaluation of simulated1136

deep tropical convection. Mon. Wea. Rev., 146 (7), 2161-2182.1137

Sohn, B. J., Nakajima, T., Satoh, M., & Jang, H. S. (2010, December). Impact of1138

different definitions of clear-sky flux on the determination of longwave cloud1139

radiative forcing: NICAM simulation results. Atmos. Chem. Phys., 10 (23),1140

11641-11646. doi: 10.5194/acp-10-11641-20101141

Stephens, G., Winker, D., Pelon, J., Trepte, C., Vane, D., Yuhas, C., . . . Lebsock,1142

–33–



manuscript submitted to JGR-Atmospheres

M. (2018). Cloudsat and calipso within the a-train: Ten years of actively1143

observing the earth system. Bull. Amer. Meteor. Soc., 99 (3), 569-581.1144

Stephens, G. L. (2005). Cloud feedbacks in the climate system: A critical review. J.1145

Climate, 18 (2), 237-273.1146

Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S., . . . Andrews,1147

T. (2012). An update on earth s energy balance in light of the latest global1148

observations. Nat. Geosci., 5 (10), 691.1149

Stevens, B., Acquistapace, C., Hansen, A., , & Coauthors incl. Senf, F. (2020).1150

Large-eddy and storm resolving models for climate prediction the added1151

value for clouds and precipitation. J. Meteor. Soc. Japan. doi: 10.2151/1152

jmsj.2020-0211153

Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., . . .1154

Roeckner, E. (2013). Atmospheric component of the mpi-m earth system1155

model: Echam6. J. Adv. Model. Earth Syst., 5 (2), 146-172.1156

Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., . . .1157

Klocke, D. (2019). Dyamond: the dynamics of the atmospheric general cir-1158

culation modeled on non-hydrostatic domains. Prog. Earth Planet Sci., 6 (1),1159

61.1160

Tegen, I., Hollrig, P., Chin, M., Fung, I., Jacob, D., & Penner, J. (1997). Con-1161

tribution of different aerosol species to the global aerosol extinction optical1162

thickness: Estimates from model results. J. Geophys. Res. Atmos., 102 (D20),1163

23895-23915.1164

Thomas, M. A., Devasthale, A., Koenigk, T., Wyser, K., Roberts, M., Roberts, C.,1165

& Lohmann, K. (2018). A statistical and process oriented evaluation of cloud1166

radiative effects in high resolution global models. Geosci. Model Dev. Discuss.,1167

2018 , 1–30. doi: 10.5194/gmd-2018-2211168

Tiedtke, M. (1989). A comprehensive mass flux scheme for cumulus parameteriza-1169

tion in large-scale models. Monthly Weather Review , 117 (8), 1779–1800.1170

Vannière, B., Demory, M.-E., Vidale, P. L., Schiemann, R., Roberts, M. J., Roberts,1171

C. D., . . . Senan, R. (2019). Multi-model evaluation of the sensitivity of1172

the global energy budget and hydrological cycle to resolution. Climate Dyn.,1173

52 (11), 6817–6846.1174

Voigt, A., Albern, N., & Papavasileiou, G. (2019, May). The Atmospheric Path-1175

way of the Cloud-Radiative Impact on the Circulation Response to Global1176

Warming: Important and Uncertain. J. Climate, 32 (10), 3051-3067. doi:1177

10.1175/JCLI-D-18-0810.11178

Voigt, A., & Shaw, T. A. (2015, Feb). Circulation response to warming shaped by1179

radiative changes of clouds and water vapour. Nat. Geosci., 8 (2), 102-106. doi:1180

10.1038/ngeo23451181

Voigt, A., & Shaw, T. A. (2016, Dec). Impact of Regional Atmospheric1182

Cloud Radiative Changes on Shifts of the Extratropical Jet Stream in1183

Response to Global Warming. J. Climate, 29 (23), 8399-8421. doi:1184

10.1175/JCLI-D-16-0140.11185

Webb, M. J., Lock, A. P., Bretherton, C. S., Bony, S., Cole, J. N. S., Idelkadi, A., . . .1186

Zhao, M. (2015). The impact of parametrized convection on cloud feedback.1187

Phil. Trans. R. Soc. A, 373 (2054), 20140414.1188

Zängl, G., Reinert, D., Ŕıpodas, P., & Baldauf, M. (2014). The ICon (ICosahedral1189

non-hydrostatic) modelling framework of dwd and MPI-m: Description of the1190

non-hydrostatic dynamical core. Q.J.R. Meteorol. Soc, 141 (687), 563-579.1191

Zelinka, M. D., Randall, D. A., Webb, M. J., & Klein, S. A. (2017). Clearing clouds1192

of uncertainty. Nature Climate Change, 7 (10), 674.1193

–34–



manuscript submitted to JGR-Atmospheres

Supporting Information for
“Increasing Resolution and Resolving Convection Improves the
Simulation of Cloud-Radiative Effects over the North Atlantic”

Fabian Senf1, Aiko Voigt2,3, Nicolas Clerbaux4, Anja Hünerbein1, Hartwig
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1 Cloud Classification with NWCSAF v2013

1.1 Adjustments for Permanent Night Mode

For cloud classification, we apply the NWCSAF software v2013 (Derrien & Le
Gléau, 2005). We keep the software itself unmodified and implement all changes via
an interface that controls the input files and the execution of the software package.
Within that interface, observed and synthetic infrared BTs are read from disk space
and written into Meteosat SEVIRI HRIT template files (the native data format dis-
tributed by EUMETSAT). The template files themselves are valid for 0 UTC, but data
embedded into the template files can have any time stamp. The NWCSAF software
retrieves night-time cloud classifications independent of the actual time stamp of the
embedded input data.

The Metetosat SEVIRI imager measures radiances, expressed in terms of bright-
ness temperatures (BTs), in several channels. One of them, the 3.9 µm channel, is
affected by shortwave as well as longwave radiation (see e.g. Lindsey et al., 2006). Dur-
ing night-time, the use of the 3.9-µm brightness temperature is beneficial for detecting
clouds and their microphysical characteristics at their top (Lensky & Rosenfeld, 2003).
Therefore, the 3.9 µm channel is mandatory for the NWCSAF cloud classification at
night-time. Because we aim to feed the NWCSAF software with both night-time and
day-time scenes, 3.9-µm radiances can be contaminated by sunlight, which might lead
to erroneous cloud classifications by the NWCSAF software.

We mitigate this problem in the simplest possible way: we estimate 3.9-µm BT
from BTs of the other infrared channels by means of a linear regression derived from
a least-squares fit,

T3.9 = T10.8 + a0 + a1∆T8.7−10.8 + a2∆T10.8−12.0 + a3∆T13.4−10.8 . (1)

Ti is the infrared BT of a SEVIRI channel with central wave length i µm, and ∆Ti−j

is the BT difference of two SEVIRI channels centered at i and j µm. The regression
was applied to observed SEVIRI data over the North Atlantic analysis domain and
each 0 UTC time slot within the whole NAWDEX period. The resulting average
regression parameters of (a0, a1, a2, a3) = (3 K, 1.8, 1.5, 0.12) are then used to
estimate the 3.9-µm BT, which is then fed into the NWCSAF software instead of
observed or simulated values. The approximation of the 3.9 µm channel is done for
both the SEVIRI observations and the synthetic observations derived from the ICON
simulations with the SynSat forward operator.

Corresponding author: Fabian Senf, senf@tropos.de
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The linear regression gives acceptable results, as described in more detail in the
following section. Testing against observed 3.9-µm BTs at 0 UTC, explained variances
are always above 99%, average biases are ∼ 0.1 K and average RMSEs are below 2 K.
We note that the current method is limited to ocean regions. For surfaces with a more
heterogeneous surface emissivity, e.g., in the Saharan region, a more sophisticated
approach would be needed.

1.2 Evaluation of NWCSAF Cloud Classification in Night Mode

As described above, we estimate 3.9-µm BTs from other channels’ BTs. The
extent to which this degrades the NWCSAF cloud classification is analysed below for
0 UTC at night time (see Tables S1 and S2). We use a pixel-based comparison and a
binary verification concept in which a certain cloud type is considered to be present
or not. Using the 2 × 2 contingency tables (see Wilks, 2006, p.260), five verification
metrics are considered: proportion correct (PC, Wilks eq. 7.7), critical success index
(CSI, Wilks eq. 7.8), BIAS (Wilks eq. 7.9), probability of detection (POD, Wilks eq.
7.12) and false alarm rate (FAR, Wilks eq. 7.13). The verification performs best if PC,
CSI, BIAS and POD have values of 1m and FAR is zero. For each verifcation metric,
the largest absolute deviation from these optimal values is marked in bold. In general,
the performance of NWCSAF run in night-mode is very good. The degradation is
strongest for fractional, very low and semi-transparent thin clouds, but even for these
the performance is satisfactory. We conclude that the modified NWCSAF software
will provide a robust cloud classification that can be used to assess differences between
observations and simulations.

A comparison between cloud classification by our degraded NWCSAF night-time
approach mode and the standard day-time NWCSAF approach is shown in Tab. S3
and S4. For the latter also solar SEVIRI channels have been used. The comparison
thus shows the overall information loss when only thermal infrared BTs can be used.
The verification scores are substantially worse than above. This means (i) there is a
significant change in detection quality during the course of the day (which we tried
to minimize with our permanent night-mode setup), and (ii) the solar channels help
a lot during daytime. Again, the most affected cloud type is ”fractional”, followed by
”very low” and ”semi-transparent”. The “semi. above” class is not assigned during
night-time.
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2 On the Bias in Simulated Clear-Sky Radiation Fluxes

Here, we provide further and more detailed information on the bias correction of
simulated clear-sky radiation fluxes. It has been discussed in the main part that it is
challenging to derived accurate estimates for observed clear-sky fluxes, especially due
to the high cloud coverage and the rather low cloud-free fraction found in our analysis
domain. For that reason we decided to use simulated clear-sky radiation fluxes as
substitute for observed clear-sky fluxes. However, systematic biases in simulated fluxes
need to characterized and corrected.

In the following, we consider longwave fluxes and skip the subscript ”lw”, but
the same also applies to upwelling shortwave fluxes with the subscript ”sw, up”. We
assume that simulated radiation fluxes have a systematic bias B and a random error
ε, i.e.

FICON,clear = FOBS,clear +B + ε (2)

After statistical averaging, the contribution of the random error ε gets smaller
and less important. Thus, the bias B can be estimated from the average difference
between simulated and observed clear-sky fluxes. The observed clear-sky flux FOBS,clear

is however unknown. Combining cloud detection (or detection of cloud-free regions)
and observational flux estimates, all-sky fluxes in cloud-free regions FOBS,0 can derived.
In addition to the clear-sky information these fluxes contain the radiative effect of
undetected clouds, i.e.

FOBS,clear = FOBS,0 + ∆FOBS (3)

The term ∆FOBS characterizes our cloud detection capabilities. It is thus a char-
acteristic property of the cloud classification algorithm. As we also derive a cloud
classification based on simulations (in a very consistent way), we are able to estimate
the average magnitude of the radiative effect of undetected clouds in ICON simulations
as

FICON,clear = FICON,0 + ∆FICON. (4)

Both, FICON,clear and FICON,0 are known and ∆FICON can be derived (see Fig. 5 in the
main part). If we assume that the radiative effects of undetected clouds have similar
magnitudes in simulations and observations, i.e. ∆FOBS ≈ ∆FICON, a bias correction

B = FICON,clear − (FOBS,0 + ∆FSIM) (5)

= FICON,0 − FOBS,0 (6)

can be derived. This means that if a bias correction is found that adjusts differences
in observed and simulated all-sky fluxes in cloud-free regions, this is equivalent to a
bias correction that adjusts the radiative effects of undetected clouds in simulations
and observations. For upwelling shortwave clear-sky fluxes, we applied a scaling factor
and for longwave clear-sky fluxes an offset is added.
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3 Additional Data Overview

We provide three additional overview plots to supplement the figures shown in
the main part of the manuscript. BTs from window channel at 10.8 µm are shown in
Fig. S1, BTs from the water vapor channel at 6.2 µm are shown in Fig. S2 and the
dependence of cloud typing on grid spacing is visualized in Fig. S3.

Figure S1. Overview of observed and simulated BTs from Meteosat SEVIRI’s window chan-

nel at 10.8 µm for 1200 UTC 23 Sept 2016. Meteosat SEVIRI observations (top left) are com-

pared ICON simulations with 2.5 km horizontal resolution. The left column is for simulations

with one-moment cloud microphysics (*), the right column for simulations with two-moment mi-

crophysics (**). The second row is for fully explicit convection, the third row for simulations with

a shallow convection scheme (sCP), and the fourth row for simulations with fully parameterized

convection (CP). A special color scheme is used to highlight observed and simulated features.

BTs over land are also shown to improve anticipation of the cloud scenery.
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Figure S2. Overview of observed and simulated BTs from Meteosat SEVIRI’s water vapor

channel at 6.2 µm for 1200 UTC 23 Sept 2016. Observations are compared to ICON simulations

with increasing grid spacing (left to right and downwards, from 2.5 to 80 km). Only the subset

of simulations with one-moment microphysics and fully-parameterized convection is chosen for

visualization. A special color scheme is used to highlight observed and simulated features. BTs

over land are also shown to improve anticipation of the cloud scenery.

–9–



manuscript submitted to JGR-Atmospheres

Figure S3. Overview of observed and simulated cloud types for 1200 UTC 23 Sept 2016.

Cloud classification based on Meteosat SEVIRI (top row) is compared to cloud classification

based on synthetic radiances derived from the ICON simulations and RTTO. The same simula-

tions are shown as in Fig. S2.
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3.1 Supplementary Data Analysis with Special Emphasis on Set 2

The following Figs. S4-S9 provides plots from additional analysis which support
the arguments and conclusion made in the main part of the manuscript. Six additional
numerical experiments have been performed in simulation set 2. These include ICON
simulations with 2.5 km grid spacing and fully enabled convection parameterization
and ICON simulations with 5 and 10 km grid spacing with only explicit convection
(fully disabled convection scheme). Two main conclusion can be derived from the
additional data analysis:

(i) For simulations with fully explicit convection, biases in radiation fluxes and
cloud-radiative effects are reduced when the grid spacing is sequentially brought
down from 10 to 2.5 km. The simulations at 2.5 km do not seem to have reached
a stage where signatures of convergence can be identified. Further reduction in
grid spacing is needed.

(ii) The simulation with parameterized convection and 2.5 km has similar error char-
acteristics then its coarser counterparts. This means that difference in e.g. ICON(
2.5km, *) and ICON( 5km, *, CP) which are discussed in the main part of the
manuscript are not due to difference in grid spacing.

Figure S4. Analysis of domain-average allsky radiation fluxes: (a) total net flux, (b) emitted

longwave flux, (c) net shortwave flux, (d) upwelling shortwave flux, and (e) downwelling short-

wave flux. The Meteosat observations (black line) were chosen as reference, and deviation of

simulated fluxes are shown with colored bars. The simulation experiments differ with regard to

horizontal grid spacing (2.5 5, 10, 20, 40 and 80 km), and parameterization choice (one-moment

vs. two-moment microphysics, with vs. without convection parameterization scheme). All values

represent time averages over 3 days from simulation set 2.
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Figure S5. Comparison of domain-average allsky cloud-radiative effects and total cloud cover:

(a) longwave CRE vs. shortwave CRE, and cloud cover vs. (b) shortwave CRE, (c) longwave

CRE, and (d) net CRE. Symbols and error bars represent average and estimates of standard

errors, respectively. With different colors and symbols styles different simulations experiments are

distinguished. Please note the differences in the y-axis ranges. All values represent time averages

over 3 days from simulation set 2.

Figure S6. Overcast CRE for different shallow cloud types. A legend for color and symbols

can be found in Fig. S5. All values represent time averages over 3 days from simulation set 2.

–12–



manuscript submitted to JGR-Atmospheres

Figure S7. Biases in overcast CRE for different shallow cloud types. A legend for color and

symbols can be found in Fig. S5. All values represent time averages over 3 days from simulation

set 2.

Figure S8. Allsky CRE for different shallow cloud types. A legend for color and symbols can

be found in Fig. S5. All values represent time averages over 3 days from simulation set 2.
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Figure S9. Biases in allsky CRE for different shallow cloud types. A legend for color and

symbols can be found in Fig. S5. All values represent time averages over 3 days from simulation

set 2.

–14–



manuscript submitted to JGR-Atmospheres

References
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