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Abstract

Tsunami deposits provide information for estimating the magnitude and flow conditions of paleotsunamis, and inverse models

have potential for reconstructing hydraulic conditions of tsunamis from their deposits. The majority of the previously proposed

models are based on oversimplified assumptions and possess some limitations. We present a new inverse model based on

the FITTNUSS model, which incorporates nonuniform and unsteady transport of suspended sediment and turbulent mixing.

The present model uses a deep neural network (DNN) for the inversion method. In this method, forward model calculations

are repeated for random initial flow conditions (e.g., maximum inundation length, flow velocity, maximum flow depth and

sediment concentration) to produce artificial training data sets of depositional characteristics such as thickness and grain size

distribution. The DNN was then trained to establish a general inverse model based on artificial data sets derived from the

forward model. Tests conducted using independent artificial data sets indicated that this trained DNN can reconstruct the

original flow conditions from the characteristics of the deposits. Finally, the model was applied to a data set of 2011 Tohoku-Oki

tsunami deposits. The predicted results of flow conditions were verified by the observational records at Sendai plain. Jackknife

resampling was applied to estimate the precision of the result. The estimated results of the flow velocity and maximum flow

depth were approximately 5.4\pm0.140 m/s and 4.11\pm0.152 m, respectively after the uncertainty analysis. The DNN shows

promise for reconstruction of tsunami characteristics from its deposits, which would help in estimating the hydraulic conditions

of paleotsunamis.
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Introduction

The auxiliary material consists of Table S1. The tsunami deposit was measured and sampled

during a field survey conducted 3 months after the tsunami event that occurred on 11th March

2011. The samples were collected along 4.02 km long transect from the shoreline to the inunda-

tion limit in the northern part of Sendai plain. This transect was almost perpendicular to the

shoreline. The tsunami deposit was sampled at the 27 locations along the transect.
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Key Points:9

• Inverse modeling of paleotsunami deposits was performed using deep learning neu-10

ral networks.11
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• Comparison of observations and uncertainty analysis implied that the reconstructed14

flow conditions were accurate and reasonably precise.15
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Abstract16

Tsunami deposits provide information for estimating the magnitude and flow conditions17

of paleotsunamis, and inverse models have potential for reconstructing hydraulic con-18

ditions of tsunamis from their deposits. The majority of the previously proposed mod-19

els are based on oversimplified assumptions and possess some limitations. We present20

a new inverse model based on the FITTNUSS model, which incorporates nonuniform and21

unsteady transport of suspended sediment and turbulent mixing. The present model uses22

a deep neural network (DNN) for the inversion method. In this method, forward model23

calculations are repeated for random initial flow conditions (e.g., maximum inundation24

length, flow velocity, maximum flow depth and sediment concentration) to produce ar-25

tificial training data sets of depositional characteristics such as thickness and grain size26

distribution. The DNN was then trained to establish a general inverse model based on27

artificial data sets derived from the forward model. Tests conducted using independent28

artificial data sets indicated that this trained DNN can reconstruct the original flow con-29

ditions from the characteristics of the deposits. Finally, the model was applied to a data30

set of 2011 Tohoku-Oki tsunami deposits. The predicted results of flow conditions were31

verified by the observational records at Sendai plain. Jackknife resampling was applied32

to estimate the precision of the result. The estimated results of the flow velocity and max-33

imum flow depth were approximately 5.4±0.140 m/s and 4.11±0.152 m, respectively af-34

ter the uncertainty analysis. The DNN shows promise for reconstruction of tsunami char-35

acteristics from its deposits, which would help in estimating the hydraulic conditions of36

paleotsunamis.37

Plain Language Summary38

This study presents an inverse model that uses an artificial intelligence technique39

to estimate the hydraulic conditions of paleotsunamis from deposits.40

1 Introduction41

Tsunamis are one of the most disastrous natural hazards that occur in coastal zones.42

They are a threat to the overall socio-economic infrastructure of coastal-based cities (Lin43

et al., 2012). Tsunami hazard assessment is necessary for any fast-growing coastal city.44

The 2004 Indian Ocean tsunami and 2011 Tohoku-Oki tsunami caused devastating dam-45

age to many Asian countries, but such situations are worsened when countries lack tsunami-46
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related preparedness for disasters that cause human causalities and extensive building47

damage (Imamura et al., 2019). Ghobarah et al. (2006) reported that the debris carried48

by the 2004 Indian Ocean tsunami could cause major building damage. The 2004 Indian49

Ocean tsunami caused extensive structural and non-structural destruction of reinforced50

concrete buildings (Saatcioglu et al., 2005).51

To mitigate tsunami disasters, a method of inverse modeling of tsunamis based on52

their geologic records has been developed. Tsunami deposits are defined as layers of sed-53

iment formed by hydrodynamic activities of tsunami, and research on tsunami deposits54

started since early 1950s (Shephard et al., 1950; Bourgeois et al., 2009).55

The mode of sediment transportation and deposition by tsunamis can be under-56

stood via a detailed study of tsunami deposits (Costa et al., 2015). Also, several stud-57

ies of forward modeling as well as flume experiments of tsunamis have successfully re-58

produced features of tsunami deposits observed in field surveys (Johnson et al., 2016;59

Li et al., 2012; Sugawara et al., 2012; Yoshii et al., 2018). Using this knowledge, a quan-60

titative reconstruction of environmental conditions such as flow velocity and maximum61

flow depth has been attempted using several inverse modeling approaches (Soulsby, 1997;62

Jaffe & Gelfenbuam, 2007; Jaffe et al., 2012; Tang & Weiss, 2015).63

However, previous studies on inverse modeling were based on forward models us-64

ing unreasonably simplified assumptions. For example, in the settling-advection model65

(or moving-settling tube model), it was assumed that all the sediment particles settle66

in the water column without any turbulent mixing, resuspension or subsequent erosion67

(Soulsby et al., 2007; Moore et al., 2007; Jaffe & Gelfenbuam, 2007). Tang and Weiss68

(2015) assumed that sediment suspension in tsunamis occurs under uniform and steady69

conditions and uprush stops suddenly. As a result, situations to which these inverse mod-70

els are applicable are quite limited (Jaffe et al., 2016; Naruse & Abe, 2017). Moore et71

al. (2007) proposed a point inverse model based on advection settling of large particles72

in deposit, wherein the settling velocities of the larger particles (D84 and D100) in the73

deposit were used as input data, and the model estimated the average flow speed of the74

tsunami inundation. Moore et al. (2007) assumed that sediment grains travel without75

diffusion in water column and are not resuspended from bed, and thus a trajectory of76

a single grain is supposed to be linear. However, the movements of sediment grains do77

not obey such linear trajectory but they travel considerably longer distances because of78
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the flow turbulence (Braaten et al., 1990). Under the assumption of a linear trajectory,79

very large flow velocity is required to explain the travel distance that was actually ob-80

served. Indeed, Sugawara (2014) indicated from the field measurements that their advection-81

settling assumption cannot be justified in the case of 2011 Tohoku-Oki tsunami. D. Smith82

et al. (2007) proposed another point model based on particle settlings but only the finest83

grain size classes of 106–184 µm were used in this model; however, the incorporation of84

larger grain size classses is essential for obtaining accurate estimation from tsunami de-85

posits (Naruse & Abe, 2017). In contrast, Soulsby et al. (2007) proposed the 1D model86

that deciphered the run-up elevation and inundation distance, Although sediment dy-87

namics and optimization of input parameters were considered, no resuspension process88

of sediment particles was incorporated in the model assumption, so that significant over-89

estimation of the flow velocity also occurs similar to the method of Moore et al. (2007).90

Jaffe and Gelfenbuam (2007) presented a point model (TsuSedMod) using the thickness91

and bulk grain size distribution of suspension-graded intervals of tsunami deposits to es-92

timate the maximum tsunami flow speed, This model assumes that sediment deposited93

was is in a suspension that was in equilibrium with the maximum flow speed. See Jaffe94

et al. (2012) for model details. This model does not consider the temporal variation of95

deceleration of the flow. Thus, the application of TsuSedMod is limited to the study ar-96

eas where only the condition of uniform and steady tsunami flow is supposed to be ap-97

proached. The application of TsuSedMod involves, the spliting of tsunami deposits into98

two parts: the lower part deposited from run-up flow and the upper part deposited from99

the stagnant water. This interpretation is not always easy because both parts may be100

normally graded. Non-uniform sediment transport cannot be considered in this model.101

The estimation of flow velocity can be strongly affected by the assumptions mentioned102

above. Moreover, additional input information such as flow depth was required for the103

model (Naruse & Abe, 2017). Choowong et al. (2008) applied TsuSedMod to two units104

around Bangtao Beach, Phuket, Thailand and obtained an extremely high estimate of105

2004 Indian Ocean tsunami flow velocities (19–21 m/s), although a reason for this over-106

estimation of flow velocity can be that they used mean grain size instead of the entire107

grain size distribution in their analysis.108

To resolve issues in previous inverse models, the inverse model FITTNUSS (Naruse109

& Abe, 2017) was proposed, in which a forward model for calculating sediment hydro-110

dynamics and nonuniform, unsteady suspended sediment transport processes during run-111
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up and stagnant phases was employed. The overall computational and calculation effi-112

ciency was increased by using a transformed coordinate system of moving boundary type113

in the forward model. The inverse model requires the spatial variation of thickness and114

grain size distribution of the tsunami deposit along 1D shoreline-normal transects. It has115

ability to produce flow conditions such as run-up flow velocity, maximum flow depth and116

sediment concentration. However, the model still had many limitations such as poor per-117

formance of the model with increasing amount of data and grain size classes due to the118

optimization procedures of parameters during inversion. This model employed limited119

memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) method to optimize the flow con-120

ditions in the forward model for minimizing difference between observations and model121

results (Naruse & Abe, 2017). This is a kind of quasi-Newtonian algorithm but it re-122

quires the gradient of the objective function that can be obtained only by numerical method123

and tedious trial and error iterations are needed for calculation. Also, it may find local124

minimum solutions depending on the starting values of calculation so that multiple it-125

erations with different starting values are needed. As a result, it was difficult to deal with126

larger amount of data sets, and it was impossible to use uncertainty analyses because127

computational statistical methods, such as the jackknife method, require iterations of128

an inverse analysis. A brief description of jackknife method is given in the Appendix A.129

In this study, we present a new inversion method that uses the use of a deep neu-130

ral network (DNN) (Romano et al., 2009). This inverse model incorporates the same for-131

ward model used in FITTNUSS (Naruse & Abe, 2017). In this new methodology, how-132

ever, the initial conditions and model parameters of the forward model are not optimized133

to fit the observed characteristics of tsunami deposits. Instead, the forward model cal-134

culation was simply repeated at random initial flow conditions (e.g., maximum inunda-135

tion length, maximum flow depth, flow velocity, and sediment concentration) to produce136

artificial training data sets that represent artificial depositional characteristics such as137

the spatial distribution of thickness and grain size composition. The DNN was then trained138

to establish a relation between the characteristics of deposits and flow conditions based139

on artificial data sets. The established DNN can instantaneously predict the probable140

flow conditions from deposits, such that it works as an inverse model based on the tsunami141

deposits. The performance of the model was verified using training and test data sets.142

Finally, this 1D model was applied to the 2011 Tohoku-Oki tsunami deposits from the143

Sendai plain, and a fair prediction of the flow velocity, maximum flow depth, and con-144
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centration of six grain size classes was obtained. The data set of Sendai plain was selected145

because it is one of the best preserved data set in the history of tsunami deposits, nev-146

ertheless further reliability check of the model should be examined with other data sets147

as well in future studies. The precision of the model was checked using the jackknife method148

(Appendix A). The methodology and result were compared with the FITTNUSS model149

and the actual initial flow conditions. The comparison shows promise for the use of DNN150

as a tsunami hazard assessment tool.151

2 Model Formulation152

This DNN inverse model uses the forward model of FITTNUSS (Naruse & Abe,153

2017) to calculate the sediment transport and deposition from the depth averaged flow154

velocity, the maximum flow depth, and initial sediment concentration. The forward model155

can reproduce the thickness and grain size distribution along a 1D shoreline normal tran-156

sect, which is used to train the DNN inverse model. Our assumption in the forward model157

is that the topography can be approximated as flat, so that the local topographic change158

is not considered in the model (Naruse & Abe, 2017).159

2.1 Forward model160

The FITTNUSS forward model is used in the present inverse model framework. The161

forward model is based on the layer averaged shallow-water equations, although they are162

simplified in order to treat the hydraulics of tsunamis. The model calculates the spatial163

variation of the thickness and grain size distribution of the tsunami deposit from input164

values of (1) maximum distance of horizontal run-up, (2) maximum inundation depth,165

(3) run-up velocity, and (4) sediment concentration of each grain size class (Naruse &166

Abe, 2017). Here, we present a brief review of FITTNUSS forward model. (see Naruse167

and Abe (2017) for details). In the FITTNUSS model, shallow layer-averaged one-dimensional168

equations are used, which take the following form:169

∂h

∂t
+
∂Uh

∂x
= 0, (1)

∂Uh

∂t
+
∂U2h

∂x
= ghS − 1

2
g
∂h2

∂x
− u2∗. (2)
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where t and x are considered as the time and bed-attached streamwise coordinate which170

is, perpendicular to the shoreline and is positive landward side. Here, h refers to the171

tsunami inundation depth, and U is the flow velocity. The gravitational acceleration is172

denoted as g, S is the bed slope and u∗ is the friction velocity.173

The sediment conservation equation of tsunami is given as follows:174

∂Cih

∂t
+
∂UCih

∂x
= wsi(FiEsi − r0iCi). (3)

In the above equation, Ci refers to the volume concentration in the suspension of the ith175

grain size class. The parameters wsi, Esi, r0i, and Fi represent settling velocity, sediment176

entrainment coefficient, ratio of near-bed to layer-averaged concentration of the ith grain177

size class and volumetric fraction of the sediment particles in the bed surface active layer178

above the substrate respectively (Hirano, 1971). Several empirical functions are required179

to close equations such as (1), (2) and (3) for evaluating friction velocity (u∗). A de-180

tailed review of equations involving parameters in closure equations such as thickness181

of the active layer (La) (Yoshikawa & Watanabe, 2008), Shield’s dimensionless shear stress182

(τ∗m), settling velocity (wsi) (Dietrich, 1982), sediment entrainment coefficient (Esi) (Rijn,183

1984), correction of damping effects (ψi) (Rijn, 1984), are given in Naruse and Abe (2017).184

.185

For the sedimentation of tsunamis, the Exner equation of bed sediment continu-186

ity is used:187

∂ηi
∂t

=
1

1− λp
wsi(r0iCi − FiEsi). (4)

Here ηi refers to the volume per unit area (thickness) of the sediments of the ith grain188

size class accounts for the porosity of the bed sediment λp. As a result of the sedimen-189

tation, the grain size distribution in the active layer varies with time (Hirano, 1971), which190

is expressed as follows:191

La
∂Fi

∂t
=
∂ηi
∂t
− Fi

∂η

∂t
, (5)

Thus, the rate of total sedimentation is as follows:192
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∂η

∂t
=
∑ ∂ηi

∂t
. (6)

Equations (4) to (6) were solved using the two step Adams-Bashforth scheme and193

the predictor-corrector method. Finally, the flow dynamics of tsunamis was simplified194

using the assumptions proposed by Soulsby et al. (2007), while considering the veloc-195

ity of tsunami run-up flow as uniform and steady but that the flow depth varies with time;196

thus, the model is based on a quasi-steady flow assumption. The simplified equation is197

as follows:198

∂Ci

∂t
+ U

∂Ci

∂x
=

Rw

H (Ut− x)
{wsi (FiEsi − r0iCi)} . (7)

where Rw and H indicate maximum inundation length and Maximum flow depth of the199

tsunami at the seaward (upstream) boundary of the transect, respectively.200

In addition to these formulations, a transformed coordinate system (Crank, 1984)201

has been applied to equation (7) to increase the computational efficiency of the forward202

model. The implicit Euler method was used to solve the equation after applying coor-203

dinate transformation. The entire forward and inverse model were implemented using204

Python with the Numpy and Scipy libraries.205

2.2 Inverse model206

Although artificial neural networks have been primarily applied for learning obser-207

vational data sets for constructing predictive models (Ramirez et al., 2005), in this study,208

they are used for learning the results of a numerical simulation to construct an inverse209

model. First, artificial training data sets are prepared by repetition of the forward model.210

Multiple flow conditions such as maximum inundation length, flow velocity and maxi-211

mum flow depth and boundary conditions are generated randomly with a range that is212

possible values in natural environments. Using the generated flow conditions, the for-213

ward model calculates the grain size and thickness distributions along 1D shore-normal214

transect. Thus, this procedure results in multiple combinations of flow conditions and215

their consequences (i.e. grain size and thickness distribution of tsunami deposits), which216

are used for training and verification of the inverse model. Results of the forward model217

calculations (Figure 1) are given to an input layer of the NN. The nodes in the input layer218
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receive the values of the volume per unit area of each grain size class at grid cell used219

in the forward model. The feed-forward calculation through several hidden layers is then220

performed, in which the values at the nodes were summated with weighting coefficients221

that are assigned on connections to nodes in the next layer, and the computed total in-222

put data passes through the activation functions to produce the net output. The num-223

ber of hidden layers was set to maximize the model performance (S. Smith, 2013). As224

a result of this feed-forward calculation, the values obtained from the output nodes pro-225

vide estimates of the hydraulic conditions of tsunamis that formed the deposits. This226

procedure results in the training of the model followed by testing of the model perfor-227

mance. 20% of the artificial data is used to validate the model performance during train-228

ing. If the model tends to overlearn, the selection of hyperparameters and the optimiza-229

tion method is required to be revised. After the model training with artificial data set230

is completed, the model is ready for application to a natural data set; however, the model231

performed training based on artificial data with set spacing.232

Figure 1. Workflow of the DNN inverse model.233

2.2.1 Procedures for training of the inverse model234

Here, we describe the procedures used for generating a training data set and the235

preprocessing. In the present study, in the forward model, the grain size distribution was236

discretized into six grain size classes, and the number of spatial computational grids in237
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the transformed coordinate was 50. The number of spatial grid sizes in the fixed coor-238

dinates depends on the size of the sampling window. It is important to determine the239

appropriate number of training data sets produced by the forward model in order to im-240

prove the inverse model training (Jordan & Rumelhart, 1992). In this study, the num-241

ber of iterations of the forward model calculation was incrementally increased, and the242

relation between the number of training data sets and the performance of the inverse model243

was investigated. The range of the inundation lengths, flow velocities, maximum flow depths,244

and sediment concentrations used for generating the training data set is described later.245

The sampling window was then set to the artificial training data sets before starting the246

training of the DNN, and only the data in the sampling window was used for the train-247

ing. This sampling window was necessary because (1) the tsunami deposit becomes too248

thin to measure precisely and predict computationally inland, and (2) field measurements249

along transects typically do not cover the entire distribution of tsunami deposits . Very-250

thin and finegrained tsunami deposits far inland are not easily differentiated from the251

background soil, and thus, the region of analysis should be limited to a relatively prox-252

imal area wherein coarser and thicker deposits are distributed. Therefore, the specific253

window is preferably at the proximal to middle part of the transect. As in the settings254

of our inverse model, the grid spacing has been maintained at a constant value of 15 m255

in our model. The number of grid points in the fixed coordinate varies according to the256

selected interval of the sampling window. After the production of the training data set257

and extraction of the sampling window, the normalization of the input and teacher val-258

ues was performed, which is one of the most important processes in training the neural259

network. As the input and teaching data have largely a different range of values from260

each other, the normalization of the values is required to be performed to remove the261

computational biases towards a specific dimension of data (Bishop et al., 1995). In this262

case, the maximum inundation length has a larger range of values, while the values of263

concentration are very low. Thus, the raw values of the teaching data may predict the264

inundation length preferentially, while the concentration values tend to be ignored. There-265

fore, both the input and teaching data in the artificial data set produced by the forward266

model were normalized before they were given as input to the inverse model. The input267

data (volume per unit area of deposits) were normalized using the following equation:268

Xnorm =
Xraw −min(Xraw)

max(Xraw)−min(Xraw)
(8)
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269

where Xnorm and Xraw are the normalized and original values of the input data respec-270

tively. min(Xraw) and max(Xraw) denote the minimum and maximum values of the raw271

input data, respectively. Similarly, the teaching data that was the original conditions used272

in the forward model calculation was normalized using the following equation:273

Ynorm =
Yraw −min(Yraw)

max(Yraw)−min(Yraw)
(9)

274

where Ynorm and Yraw are the normalized and original values of the teaching data re-275

spectively. min(Yraw) and max(Yraw) denote the minimum and maximum values respec-276

tively, of raw teaching data. After the training, the NN outputs the normalized values277

of the hydraulic conditions, such that these values were converted to values in the orig-278

inal scale.279

Then, the training and teaching data set were given to the NN for training. The287

overall neural network structure consists of three parts, the input layer, hidden layers,288

and output layer (Figure 3). In the inverse model, the input layer of neural network struc-289

ture consists of input nodes where the input values comprise the volume per unit area290

of each grain size class at the spatial grids. Thus, the number of input nodes can be ex-291

pressed as M×N where M and N are the total number of spatial grids and grain size292

classes, respectively. In this study, the number of dense hidden layers was set as three293

along with the total 2500 nodes, and thus total number of layers was five (Figure 3). Here,294

the rectified linear activation function (ReLU) was used as an activation function that295

calculates the output value from the total net weighted inputs (Ian & Yoshua, 2016). ReLU296

is function that is widely used for this purpose (Patterson & Gibson, 2017). The drop297

out has been applied to the hidden layer for regularization of the NN (Srivastava et al.,298

2014). The results of the feed-forward calculation of this NN during the training pro-299

cess were evaluated by the loss function (mean squared error), which is defined as fol-300

lows:301

J =
1

N

∑(
Ifmk − INN

k

)2
(10)

302

–11–



manuscript submitted to JGR: Earth Surface

Figure 2. Example of the forward model calculation and sampling window used for the in-

verse analysis. (a) Spatial variation of the volume per unit area of each grain size class of the

tsunami deposit calculated using the forward model. Here volume per unit area is used for ex-

hibiting amounts of deposition of particular grain size class. Thickness of a tsunami deposit can

be obtained by summation of volume-per-unit-area of all grain size classes with consideration of

porosity. (b) Spatial variation of sediment concentration for each grain size class in the run-up

flow when the tsunami reached maximum inundation point.
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where Ifmk is denoted as the teaching data that are the initial parameters used for pro-303

ducing in the training data and INN
k denotes the predicted parameters. This loss func-304

tion quantifies how close the NN was to an ideal inverse model. The values of this func-305

tion were averaged over the entire data set (Patterson & Gibson, 2017). To minimize the306

loss function J , the back-propagation method with the stochastic gradient descent al-307

gorithm (SGD) was used to optimize the weight coefficients at links of the network (Patterson308

& Gibson, 2017). The Nesterov momentum method was used with the SGD to speed up309

the computation and improve convergence (Sutskever et al., 2013). Although other op-310

timizers such as AdaDelta, Adam, or AdaMax can provide an acceptable performance311

(Patterson & Gibson, 2017), this optimizer performed best for our model. This optimiza-312

tion process was repeated for prescribed times, and the training set was shuffled before313

splitting it into batch chunks that were used for the SGD optimization during each epoch.314
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Figure 3. Neural network architecture for the inverse model. The NN structure includes one

input and one output layer with three hidden layers for a total of five layers.

315

316

In order to estimate how well the model was trained without overfitting, valida-317

tion was performed with the validation data set that was also generated from the for-318

ward model calculation. Among the produced data sets, 80% and 20% of the data were319

used for the training and validation respectively. The results of validation were used for320

tuning of the hyperparameters of the NN which are explained later. Finally, the perfor-321

mance of the model was evaluated after the hyperparameter tuning and using the test322

data sets, which were the data not used during the training process.323

In our model, there are several hyperparameters that should be specified for the324

tuning of the training of the NN. The tuned hyperparameters were the learning rates,325

batch size and momentum used in the SGD, rates of drop out, number of hidden lay-326

ers, types of activation function, and number of epochs. The hyperparameters were se-327

lected by trial and error in this study. The number of training data sets is also a hyper-328
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parameter of the inverse model, and it was tested by changing the number of repetitions329

of the forward model calculation. The trained model can work on a data set with a spe-330

cific spatial grid in the fixed coordinate and grid spacing. In order to apply the inverse331

model to the natural data set in 1D vectors, the collected samples must be fit into that332

fixed coordinate system. A linear 1D interpolation was required as it provides values at333

positions between the data points, which are joined by straight line segments (Bourke,334

1999). A linear 1D interpolation was applied to the natural data set in this case.335

In addition to the training and validation data, 500 independent data points were336

kept aside for the testing of the inverse model. Therefore, after the model was trained,337

the model was applied to the test data sets to check its performance before applying it338

to the natural data sets. The good correlation between the teaching data in the test data339

set and the prediction of the model from the test data set showsfair ability of inverse model340

prediction. The residuals from the teaching data in the test data set were plotted in a341

histogram to determine the deviation of the prediction from the test data set from the342

true initial conditions.343

3 Results of training and test of the inverse model344

The hyperparameters for the training were set as follows. Among the hyperparam-345

eters (Table 1) used in the SGD algorithm, the learning rate was set as 0.02 and batch346

size was kept as 32 for our models (Patterson & Gibson, 2017). The use of larger or smaller347

learning rates did not provide improved results. Furthermore, other batch sizes were used348

in the training of the model, but the model was not improved. The selection of number349

of layers and the number nodes were tested by increasing or decreasing layers or nodes,350

and finally three hidden layers with 2500 nodes were used in the models. Another hy-351

perparameter is the rate of drop-out at each hidden layer, which was 50% in our model.352

Thus, during the training, 50% of the layer outputs that were randomly selected were353

kept inactive. This regularization process helps to reduce overfitting and increases the354

efficiency of the training (Srivastava et al., 2014). Finally, the number of epochs in the355

training process, which indicates number of times that a full data set has passed the op-356

timization calculation (J. Smith & Eli, 1995), were determined depending on the rates357

of the progress of the training (Figure 4). This is described in the following sections.358
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Table 1. List of hyperparameters used for major model configuration359

Hyperparameter Settings

Optimizer SGD

Activation function ReLU

Learning rate 0.02

Batch size 32

Momentum 0.9 (Nestrov)

Drop-out 50%

Number of epochs 2000

Number of hidden layers 3

Number of nodes 2500

Number of training data sets 4500

Figure 4. History of learning indicated by the variation of the loss function (mean squared

error). Both the values of the loss function for the training and validation data sets decrease over

2000 epochs without any discrepancy, thus indicating that overlearning did not occur.

360

361

362

The input parameters for the inverse model include the maximum inundation length,363

flow velocity, maximum flow depth, and the sediment concentration of six grain size classes.364

The range of values for the maximum inundation length, flow velocity, maximum flow365
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depth, and sediment concentration used for generating the training data sets were 2500366

to 4500 m, 1.5 to 10 m/s, 1.5 to 12 m, and 0 to 2%, respectively. These ranges of flow367

conditions are also presumably applicable to other areas where large-scale tsunami in-368

undated. These values are based on the maximum records of tsunamis in the studies of369

Mori et al. (2012), Nakajima and Koarai (2011), Foytong et al. (2013) and Jaffe et al.370

(2012).371

The values of the loss function of training and validation at the first epoch were372

0.09 and 0.07 for the training and validation data, respectively. The value of the loss func-373

tion decreased to less than 0.01 after 200 epochs. The present model was reasonably con-374

verged over 2000 epochs for both the training and validation performance. Moreover, the375

plot for the loss function was smooth, and there was no anomalous oscillation. The last376

and lowest loss function at the final epoch was 0.0040 for the training data sets and was377

0.0018 for the validation data sets. The efficiency of performance increases if the loss func-378

tion reduces with the number of iteration or epochs with time. The aim is to achieve low-379

est value of loss function by tuning the hyperparameters in the neural network. The sam-380

pling window was set from 0 to 2000 m in this training and the following tests (Figure381

2).382

For the current inverse models, the forward model was calculated repeatedly from383

500 to 4500 iterations, and it provided the best result with 4500 iterations of calcula-384

tions of the forward model (Figure 5). Figure 5 presents a plot of the relation between385

the number of training data sets and the loss function of the validation data set. The386

loss value of the validation data set decreases as the amount of training data increases,387

which creates concave-upward shape. When the number of training data in the data set388

was 500, the loss function was higher but decreased significantly after 1500 training data389

sets. The loss function reached a minimum value after 3500 training data sets and did390

not change much subsequently. Thus, it was suggested that the number of training data391

sets should be greater than 3500. The number of training data sets thus used was 4500.392

After training the model, the predictions of the inverse model estimates for test396

data sets were plotted against the original values used for producing the test data sets.397

Figure 6(a-i) shows that the nine predicted parameters from the artificial test data sets398

were distributed along the 1:1 line in the graph indicating that the test results were cor-399

related with the original inputs.400
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Figure 5. Relation between the loss function of the validation and number of training data

sets selected for the inverse model. The results of the training improved as the number of train-

ing data sets increased, whereas it varied slightly after 4000 training data sets.

393

394

395

Figure 7(a-i) shows histograms of the deviation of the estimated values predicted405

from the original values. Deviations were distributed in a relatively narrow range with-406

out large biases from the true conditions, except in the case of the maximum flow depth.407

Only the maximum flow depth was slightly biased. Based on the scatter diagram (Fig-408

ure 7), the values of the predicted maximum flow depth were approximately 0.5 m lower409

than the input values.410

4 Result of application to the 2011 Tohoku-Oki tsunami deposit413

The model was applied to the 2011 Tohoku-Oki Tsunami deposits distributed around414

the Sendai plain for the evaluation of the models. This region was extensively surveyed415

for hazard evaluation as well as tsunami deposits (Abe et al., 2012; Naruse & Abe, 2017),416

and thus, large amounts of field data are available for evaluating the inverse models. In417

this study, the field data used was the same as that used for the FITTNUSS model (Naruse418

& Abe, 2017), and therefore the inversion methodology can be compared with the pre-419

vious study.420
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Figure 6. Verification of the performance of the model using artificial test data sets. The

values estimated using the inverse model were plotted against the original values used for the

production of the test data sets. The solid lines indicate a 1:1 relation and suggest good correla-

tion.

401

402

403

404
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Figure 7. Histograms show the deviation of the predicted results from the original values of

the artificial test data sets.

411

412
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4.1 Field methods and settings for inverse analysis421

Field work for obtaining these tsunami deposits and collect auxiliary data was con-422

ducted soon after the tsunami event in June 2011 (Naruse & Abe, 2017).More detail on423

the methods are given in the studies of Abe et al. (2012) and Naruse and Abe (2017).424

The study area (Figure 8) mainly consists of a long sandy beach backed by a high on-425

shore seawall, aeolian sand dunes, coastal forests, and long flat rice-paddy fields (Naruse426

& Abe, 2017). The deposit samples were obtained every 50–100 m at 26 sites along the427

transect. The thickness of tsunami sand and mud layers ranged from 0.1 cm to 34 cm.428

Grain size analysis of the tsunami deposit showed that the tsunami sand was primar-429

ily medium sand with a small amount of fine and very fine sand (Naruse & Abe, 2017).430

The measured grain size distributions were then discretized to six grain size classes (Fig-431

ure 9), two more classes than used in the previous FITTNUSS model (Naruse & Abe,432

2017). The representative diameters of the grain size classes were 615, 406, 286, 177, 117433

and 77 µm .434

Figure 8. Location of the survey transect and sampling points on the Sendai plain. The lo-

cation of the surveyed transect is shown on the topographic map of the study area. The 4 km

long transect was situated transverse to the shoreline, and the tsunami deposit was sampled at 27

locations along the transect (Naruse & Abe, 2017).

435

436

437

438
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Figure 9. Total grain size distribution of the tsunami deposits in the Sendai plain and the

discretized fraction of the sediments in the six grain size classes.

439

440

Parameters, such as flow velocity, estimated using the inverse model were verified441

by comparing them with the data obtained from aerial videos and observations of the442

Sendai plain (Hayashi & Koshimura, 2013; Mori et al., 2012). It is difficult to assess sed-443

iment concentration data obtained from direct field observation.444

4.2 Determination of length of sampling window445

The sampling window was set at a region from 0 to 2000 m along the transect. Al-446

though the total distance of the transect for collecting the samples was approximately447

3000 m, the measured bed thickness was very thin (several millimeters) and exhibited448

a large fluctuation in the distal region (2000 to 3000 m) (Figure 13). Therefore, a 2000449

m long sampling window was extracted from the sampling distance, which is 3000 m. This450

size of sampling window was also used for training the inverse model. For this situation,451

the number of spatial grids used for the inversion was 133 because the grid spacing in452

the fixed coordinates was 15 m. The selection of a sampling window of this size was checked453

based on a comparison with the results obtained using different sampling windows, and454

the results of the comparison suggested that 2000 m was the most suitable for obtain-455

ing stable results. Figure 11 shows the fluctuations of the jackknife standard error es-456

timation of the parameters depending on the sampling window sizes. The equations re-457
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lated to jackknife standard error assessment are given in Appendix A. The majority of458

the parameters such as flow velocity and sediment concentrations exhibited a decreas-459

ing trend in their estimation errors as the length of the sampling window was increased.460

In particular, the jackknife error of the flow velocity decreased significantly above a sam-461

pling window size of 1000 m in length. The estimates of the maximum inundation length462

show large errors but it decreased suddenly at approximately 2500 m. In contrast, the463

error in the maximum flow depth increased above a sampling window size of 2000 m. Hence,464

it was decided that the size of the sampling window was set as 2000 m. It should be noted465

that the computation result for the maximum inundation length was unstable at this se-466

lection.467

4.3 Effect of irregularly spaced data sets on the accuracy of the inver-468

sion469

In field investigations, sampling intervals are larger than grid spacing of the arti-470

ficial training and test data sets, and are irregularly spaced. Therefore, it is necessary471

to check the effect of non-ideal data sets such as incomplete field data sets on the results472

of inversion. In our model, 1D linear interpolation was applied to the field data set of473

Sendai plain to fit locations of data points to the spacing of training data sets, but this474

interpolation can have some influence on the predictions of the inversion model. Hence,475

after the model was trained, subsampling of test data sets was performed at the outcrop476

locations of Sendai plain. In this subsampling procedure, volume-per-unit-area of sed-477

iment in the test data sets at the sampling locations were estimated by 1D linear inter-478

polation, and these subsampled data was subsequently interpolated again at the grids479

of the forward model. Therefore, the irregularly spaced data points were created from480

the original test data sets, and resulted in regularly spaced sampling locations due to rep-481

etition of 1D interpolation. The inverse analysis was conducted on this subsampled test482

data sets.483

Finally, the model prediction was checked with both the true flow conditions and484

the inversion results using the original test data sets to examine the bias and variance485

caused by the incompleteness of spatial distribution of sampling locations. Figure 10a486

and 10b shows that the maximum inundation length and flow velocity have a bias to-487

wards positive end and mean of bias were 210 m and 0.50 m/s respectively. The max-488

imum flow depth has negative bias 0.90 m (Figure 10c). Considering that it already had489
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Table 2. Predicted results by inverse model applied to 2011 Tohoku-Oki tsunami deposit data

obtained from Sendai plain

506

507

]

Parameters Predicted Results Mean bias

Maximum Inundation Length 4045 m ± 121.17 m 210 m

Flow Velocity 5.4 m/s ± 0.140 m/s 0.50 m/s

Maximum Flow Depth 4.11 m ± 0.152 m -0.90 m

Concentration of C1 (615 µm) 0.55% ± 0.034% 0.001

Concentration of C2 (406 µm) 2.19% ± 0.048% 0.001

Concentration of C3 (268 µm) 1.98% ± 0.058% 0.009

Concentration of C4 (177 µm) 0.14% ± 0.018 % 0.009

Concentration of C5 (117 µm) 0.18% ± 0.012% 0.001

Concentration of C6 (77 µm) 0.04% ± 0.0011% 0.001

a bias of 0.50 m in the inversion results of the original test data sets, the additional bias490

caused by incompleteness of data sets was 0.40 m towards negative end. Figure 10(d-491

i) shows that the bias in sediment concentrations were generally around 0.001.492

4.4 Result of inversion497

The inverse model reconstructed the flow conditions of the tsunami from the de-498

posit of the 2011 Tohoku-Oki tsunami in the Sendai plain. The model estimated flow499

parameters that were close to the observed values. The maximum inland extent of tsunami500

deposits observed by Mori et al. (2012), was up to 4.02 km beyond the shoreline and the501

tsunami had inundation height of 6.5 m above Tokyo Peil (mean sea level at Tokyo bay),502

which transported large amount of sandy sediments landward (Mori et al., 2012). The503

average flow velocity of the run-up flow was measured 4.2 m/s from an aerial video which504

varied landward from 6.9 to 1.9 m/s (Hayashi & Koshimura, 2013).505

Table 2 shows the predicted hydraulic conditions of the 2011 Tohoku-Oki tsunami508

of the Sendai plain. The predicted result of the flow velocity was approximately 5.4 m/s509

with a range of uncertainty ± 0.140 m/s using jackknife standard error calculation with510

a 95% confidence interval (Figure 12b). The value of the maximum flow depth was ap-511
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Figure 10. Histograms showing the variance and bias of predictions from the test data sets

subsampled at the sampling locations in Sendai plain.

493

494
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Figure 11. Variation of jackknife standard error with changing range of sampling window

distance.

495

496
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poximately 4.11 m (± 0.152 m uncertainty using jackknife standard error calculation (Fig-512

ure 12c) with a 95% confidence interval).513

The reconstructed total sediment concentration over six grain size classes was 5.08%.514

The estimated value of the sediment concentration of each grain size class ranged from515

0.04% to 2.19% (Figure 12d-12i).516

The model predicted the maximum inundation length of the tsunami from the de-519

posit, as approximately 4045 m with a ± 121.17 m jackknife standard error with a 95%520

confidence interval (Figure 12a). The actual inundation length was 4020 m (Naruse &521

Abe, 2017), which is consistent with the reconstructed value. Table 2 also shows, mean522

bias which are the mean of the bias estimates for 9 parameters, caused large and irreg-523

ular spacing of the sampling points. The maximum inundation length shows 210 m bias524

and flow velocity shows 0.50 m/s bias towards positive end, whereas the maximum flow525

depth shows total 0.90 m bias towards negative end. Bias in the sediment concentration526

was around 0.001.527

Finally, using the reconstructed initial conditions of the tsunami, the forward model538

was used to calculate the spatial distribution of the thickness and grain size composi-539

tion for a comparison with the measured distribution. Figure 13 exhibits the thickness540

and grain size distribution with the distance for the measured data and simulated re-541

sults. The measured values of volume per unit area for each grain size class matched the542

simulated results except in the case of the finest grain size class, where the predicted val-543

ues were larger than the actual measurements.544

5 Discussion545

5.1 Tests of inverse models546

The tests of the inverse models performed using the artificial data sets of tsunami547

deposits demonstrated that the models built using NN can predict the flow velocity and548

the concentration of six grain size classes, maximum inundation length reasonably. The549

scatter diagram of the predicted parameters against the true conditions indicates excel-550

lent correlation (Figure 6). For example, 2σ of the estimation error of the maximum in-551

undation length was 121.17 m, and the range of true values was 2500–4500 m (Figure552

12). Thus, the precision of estimates is only the order of approximately 5%. More im-553

portantly, there was no large deviation of mode of predicted values from true conditions554
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Figure 12. Jackknife estimates for the results predicted by the inverse model to determine the

uncertainty of the model.

517

518
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Figure 13. Spatial variation of the thickness of the tsunami deposit. Spatial distribution of

volumes per unit area of six grain size classes is presented. The solid circles indicate the values

measured by Naruse and Abe (2017), and the lines indicate the results of the forward model

calculation obtained using parameters predicted by the inverse model.

528

529

530

531

except for the maximum flow depth. Especially in cases of estimates of sediment con-555

centration, mean of the estimation errors ranges within 1.0× 10−3. These results im-556

ply that the inverse model has the ability to possess the prediction of hydraulic condi-557

tions satisfactorily.558

However, the model tends to estimate maximum flow depth values that are approx-559

imately 0.5 m higher. As a result, in the comparison of the predicted values and orig-560

inal values of the maximum flow depth plotted in the histogram, the deviation shows a561

positive bias, and the mode value was approximately 0.5 m towards the negative side.562
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Figure 14. Comparison between field observation and results of inverse analysis of 2011

Tohoku-Oki tsunami. The solid dots are measured values by field observation, and the lines are

results of the inverse analysis of this study. (a) Velocity of run-up flow of the 2011 Tohoku-Oki

tsunami on Sendai plain. (b) Maximum flow depth of 2011 Tohoku-Oki tsunami on Sendai plain.

Values measured from the aerial videos are indicated by the solid and open circles (Hayashi &

Koshimura, 2013), and the results of the inverse analysis are shown by the lines.

532

533

534

535

536

537
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Despite the skewness, it is possible to correct the final result of the maximum flow depth563

by adding 0.5 m with the final reconstructed value from original field data.564

5.2 Reconstruction of the flow parameters of the 2011 Tohoku-Oki tsunami565

After applying the inverse models to the 2011 Tohoku-Oki tsunami, the predicted566

results of the flow velocity and the inundation depth were close to the values observed567

in the aerial video and field measurements (Figure 14), which indicates the effectiveness568

of the proposed method in applying the actual tsunami deposits.569

The subsampling test showed (Figure 10) that the inversion model has slight bias570

for maximum inundation length, flow velocity and the maximum flow depth because of571

the effect of large and irregular interval of sampling locations. The flow velocity shows572

0.50 m/s mean bias towards the positive end. Therefore, the predicted value of flow ve-573

locity 5.4 m/s could be approximately 4.9 m/s considering the bias correction. Figure574

14 shows that the observed inundating flow velocity of 2011 Tohoku-Oki tsunami mea-575

sured by video records varies spatially from 1.9 to 6.9 m/s (Hayashi & Koshimura, 2013),576

and the reconstructed values and the reconstructed values along with the jackknife un-577

certainty estimates (4.8–5.8 m/s) are in the range of observed values.578

The predicted inundation length was 4045 m which is close to the original max-579

imum inundation length of approximately 4020 m. However, the mean bias for this pa-580

rameter caused by incompleteness of field data sets was 210 m (Figure 10; Table 2). Hence,581

the bias corrected reconstructed values of the maximum inundation length could be ap-582

proximately 3835 m which is still close to the maximum inundation length measured in583

the field (Naruse & Abe, 2017). Furthermore, the model predicted the concentration of584

six grain size classes satisfactorily. The range of the estimated concentration for each grain585

size class was 0.04–2.19 vol.%, and the total concentration was 5.08 vol.%. There has been586

no direct observation of the sediment concentration in the inundating tsunami flows, and587

thus, it is impossible to compare the reconstruction with the actual observation.588

The predicted results for the maximum flow depth were close to the observed max-589

imum flow depth in the field data (Figure 14). The model predicted 4.11 m that approx-590

imates the observed values well. The uncertainty analysis performed using the jackknife591

method indicated that the error of estimates for maximum flow depth ranges from 3.8592

m to 4.4 m, which is reasonably narrow for an assessment of the magnitude of the tsunami.593
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However, considering the total mean bias caused by both original and interpolation of594

the field data sets, 0.90 m should be added to the maximum flow depth predicted by the595

inverse model (Figure 14). Thus, the reconstructed value obtained can be corrected to596

5.0 m, which is closer to the observed data set.597

This is to be noted that the effect of the friction coefficient (Cf ) on the results of598

inversion was investigated to check forward model influence on the inversion results. Es-599

timates of flow velocity varied from 5.5 to 3.08 m/s in response to the variation of Cf600

from 0.002 to 0.01. The present study uses Cf value 0.004 as the same was used in the601

FITTNUSS model (Naruse & Abe, 2017). The variation of reconstructed values of in-602

undation depth varied only from 4.8 to 5.0 m and sediment concentration in response603

to varied Cf was negligible. To summarize, the result obtained using a largest value of604

friction coefficient (Cf ) corresponds to the higher velocity in inversion results, but other605

flow characteristics were not influenced largely. Therefore, it is important to specify re-606

alistic friction coefficient value in the forward model to estimate flow velocity. The in-607

fluence of number of grain size classes on the inversion results was also checked. The vari-608

ation of the results was negligible for all reconstructed values (see supplementary infor-609

mation). Hence, the assumptions in the forward model have least influence on the in-610

version results.611

5.3 Comparison with existing models612

In the present study, we presented the use of a deep-learning NN as an inversion613

technique with a modified FITTNUSS forward model to obtain the initial tsunami hy-614

draulic condition based on tsunami deposits. The advantages of this new methodology615

are that (1) it can employ a more realistic forward model than previous methods, and616

(2) the performance of the inverse model can be tested before its application to actual617

deposits by using artificial data sets. In addition, (3) it is possible to conduct an uncer-618

tainty analysis of the inversion using the resampling method owing to the computational619

efficiency of the model. However, the data set of 2011 Tohoku-Oki tsunami deposits in620

Sendai plain is one of the best records of tsunami deposits in history. The data set con-621

tains high resolution samples as well as observational records of flow velocity and flow622

depth. However, further verification of the methodology using other case studies is strongly623

needed in future studies for proving wide applicability of the method.624
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Firstly, the DNN inverse model can employ the forward model, which is compu-625

tationally expensive. The new inverse model requires only a limited number of iterations626

of the forward model calculation for producing the training data sets, and these itera-627

tions can be parallelized. The calculation for producing each training data set is inde-628

pendent. In contrast, the previous inverse models, including the FITTNUSS model (Naruse629

& Abe, 2017), employed the optimization method (e.g., LBFGS) in which the forward630

model calculation depends on the result of the previous iteration, and thus, this trial and631

error procedure cannot be parallelized. It was time consuming to obtain the best solu-632

tion and was difficult to improve the computational efficiency in the previous method-633

ology. Therefore, the previous inverse model only employed the largely abridged forward634

models such as the “moving-settling tube” (Soulsby et al., 2007) or sudden settling from635

equilibrium uniform flows (Jaffe & Gelfenbuam, 2007). The recent inverse model TSU-636

FLIND (Tang et al., 2018; Tang & Weiss, 2015) also probably employed a similar sim-637

plified assumption because of this computational load problem. Tang et al. (2018) pro-638

posed the inversion model with uncertainty analysis using TSUFLIND-EnKF method639

but this method shares the same limitations of TSUFLIND in the assumption of the for-640

ward model. In addition, optimization by EnKF requires iteration of calculation that641

cannot be parallelized, while production of training data sets in our method can be eas-642

ily parallelized so that it can employ computationally expensive models (Tang et al., 2018).643

In the new inverse model, this limitation is diminished in the forward model, such644

that the former can potentially employ fully hydrodynamic models as the forward model.645

The present method of DNN is relatively robust against the sampling measurement er-646

rors as the uncertainty can be evaluated by jackknife method which was not applied to647

any other inverse models. Furthermore, forward model can be easily replaced with the648

similar or other upgraded forward models to improve our inverse model. This phenomenon649

implies that the present inverse model is flexible for upgradations.650

Secondly, the inverse model proposed herein can be tested prior to the actual anal-651

ysis because each inversion (i.e., feed-forward calculation of the NN) is completed instan-652

taneously in this method. In previous methods, such as FITTNUSS, each inversion re-653

quires a long time such that it was not realistic to iterate the inversion several hundred654

times for testing the performance of the model. In addition, a modern statistical uncer-655

tainty analysis requires resampling procedures in which the iteration of the inversion is656

also required. Therefore, it was possible to apply the jackknife uncertainty analysis in657
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the case of the DNN inversion in this study, but it is difficult to provide an error range658

of the estimates for the FITTNUSS method or other methods in a realistic time period.659

The inverse model in this study uses inexpensive artificial data for training of the660

neural network to avoid the difficulties to gather large amounts of data sets of tsunami661

deposits with in-situ measurements of flow velocity and depth. Even if the measured val-662

ues of tsunami characteristics are available, the overfitting of the inverse model should663

not be avoided because number of those data sets must be limited. The random gener-664

ation of artificial training data sets for different parameters was adopted to bypass the665

drawbacks of using real measurements to train the inverse model (Le et al., 2017; To-666

bin et al., 2017; Tremblay et al., 2018). Bias due to inaccuracy of the forward model may667

occur in this methodology as all of other inverse models, and thus it is necessary for ac-668

curate reconstruction to seek the forward model based on the appropriate assumptions669

for the field. As described above, the framework of inversion employed in this study is670

flexible to adopt a realistic forward model.671

6 Limitation and scope of improvement672

The present model shows promising results, but the reliability of this model is re-673

quired to be validated by using more field data. The options and hyperparameters of the674

inversion, such as the sampling window size, can be tested using other examples of mod-675

ern tsunami deposits with known flow parameters. Furthermore, it is necessary to ap-676

ply this model to tsunami deposits in Tohoku and other regions along with older tsunami677

deposits in order to scrutinize the present model comprehensively and to develop a ro-678

bust model that can be used in the relevance of hazard evaluation.679

In addition, the model still has some limitations in terms of its applicability and680

accuracy. For example, the reconstructed values of the maximum flow depth showed a681

bias of -0.5 m, and the additional bias caused by the effect of irregularly spaced data sets682

on the inversion results. In future studies, improving the algorithm of the neural net-683

work structure might eliminate or reduce the bias of the parameter. Notwithstanding684

the bias in the predicted values of the parameters such as, maximum inundation length,685

flow velocity, maximum flow depth, this model showed satisfactory results for tsunamis686

of any scale. Our model is not suitable for the regions with topographic lows and chan-687

nels along with the high slope areas where return flow is strong. The assumption of quasi-688
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steady run-up flow analysis will only work in regions where the topography is sufficiently689

smooth and slope can be regarded as constant. Also, the forward model assumptions are690

valid only at depositional areas. Thus, a coastal dike or problems in source areas are not691

necessary to consider (Naruse & Abe, 2017), and therefore the erosional areas must be692

excluded in the inverse analysis using our method. These simplifications are adequate693

for the Sendai plain as suggested by verification of our inversion result. In future stud-694

ies, it is needed for verify influence of degree of topography on the inversion results, and695

other forward models will be tested if necessary. The improvement of the model can be696

done by incorporating 2D shallow-water model in future.697

It is to be noted that, in the present study thickness of the deposit for one run-up698

flow or layer is considered. Thus, in case of deposits that exhibit multiple layers (Abe699

et al., 2020), one of layers must be chosen for the analysis. Hence, if a single layer can-700

not be traced in a region, it is impossible to apply our model to that region. Since, the701

2011 Tohoku-Oki tsunami deposits on Sendai plain were mostly observed as single sand702

layer formed by the first wave, it was possible to apply our model to Sendai plain (Abe703

et al., 2012).704

7 Conclusion705

The new model presented in this study uses an artificial NN to derive the hydraulic706

conditions of a tsunami. It successfully reconstructed the flow conditions including the707

maximum inundation length, flow velocity, maximum flow depth and sediment concen-708

trations from artificial tsunami deposits produced by the forward model as well as the709

natural tsunami deposits of 2011 Tohoku-Oki tsunami. The reconstructed flow velocity710

and maximum depth were 5.4 m/s and 4.11 m respectively, which are in the ranges of711

observed values of the tsunami. The uncertainty of the results was determined using the712

jackknife method, which also shows that the model yields results that do not comprise713

large ranges of data. Thus, in future studies, it is expected that this model would be able714

to successfully reconstruct the flow conditions of modern and ancient tsunamis.715

Notation716

The symbols L, M and T denote dimensions of length, mass and time respectively. The717

symbol [1] denotes that the value is dimensionless.718
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C Total layer-averaged sediment concentration [1]719

Ci Layer-averaged sediment concentration of the ith grain size class [1]720

Cf Bed friction coefficient [1]721

Esi Sediment entrainment coefficient [1]722

Fi Volumetric fraction of the ith grain size class in the active layer [1]723

H Maximum flow depth of the tsunami at the seaward (upstream) boundary of the tran-724

sect [L]725

La Thickness of the active layer [L]726

Rw Maximum inundation length [L]727

S Bed slope [1]728

U Run-up velocity of the tsunami [LT−1]729

g Acceleration of gravity [LT−2]730

h Flow depth of the tsunami [L]731

r0i Ratio of near-bed sediment concentration of the ith grain size class to layer-averaged732

concentration [1]733

t Time [T]734

u∗ Friction velocity [LT−1]735

wsi Settling velocity of sediment of the ith grain size class [LT−1]736

x Bed-attached streamwise coordinate [L]737

ηi Volume per unit area of sediment of the ith grain size class [L]738

λp Porosity of the tsunami deposit [1]739

µ Dimensionless settling velocity of sediment of the ith grain size class [LT−1]740

τ∗m Shields dimensionless shear stress using the mean grain size in the active layer [1]741

ψi Coefficient in the relation of turbulent suppression due to density stratification [1]742

Xnorm Normalized values of input data [1]743

Xraw Original values of the input data respectively [1]744

min(Xraw) Minimum values of the raw input data [1]745

max(Xraw) Maximum values of the raw input data [1]746

Ynorm Normalized values of teaching data [1]747

Yraw Original values of the teaching data respectively [1]748

min(Yraw) Minimum values of raw teaching data [1]749

max(Yraw) Maximum values of raw teaching data [1]750
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Ifmk Teaching data that are the initial parameters used for producing in the training751

data752

INN
k Predicted parameters using Neural networks753

J Loss function for the inverse model754
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Appendix A Uncertainty analysis of inversion results767

The jackknife method was used for the error assessment of the results of the inverse768

model. This method estimates the standard error of the predicted value of the model769

using a resampled population. Quenouille (1949) first introduced this resampling method770

(Nisbet et al., 2009).771

A jackknife test is similar to the bootstrap method, but instead of a random sam-772

pling of a data set, the inversion model works on each separate set of samples by omit-773

ting a single set of observations per iterations from a total of N observations. Inversions774

are carried out N times and the resulting ensemble of solutions were interrogated to a775

single estimate for each parameter. In short, it involves a leave-one-out strategy in a data776

set of N observations and the model works on the rest of the samples and gives results777

accordingly. Preferably, N−1 observations were built on the data set as resampled data778
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for the model. Farrell and Singh (2010) discussed the importance of the jackknife method779

in survey sampling.780

We briefly describe the jackknife uncertainty analysis. Sample and jackknife es-781

timates are denoted as S and S∗, respectively. The number of observations in the sam-782

ple is N and the set of observations is denoted as {X1, ..., Xn, ..., XN}. The sample es-783

timate of the parameter is a function of the observations in the sample (Abdi & Williams,784

2010). The equation is given as follows:785

S = f(X1, ..., Xn, ..., XN ) (A1)

Let S−n be the n−th partial prediction of the parameter, which is produced by the786

inverse model without the nth observation. The equation for the prediction S−n is given787

as follows:788

S−n = f(X1, ..., Xn−1, Xn+1..., XN ) (A2)

S∗
n represents a pseudo value estimation of the nth observation. This parameter789

is defined as the difference between the estimates S obtained from the entire sample and790

the estimates S−n obtained without the nth observation as follows:791

S∗
n = NS − (N − 1)S−n (A3)

The mean of the pseudo values are regarded as the jackknife estimate S∗. The equa-792

tion for the jackknife estimate is given as follows:793

S∗ = S∗
mean =

1

N

N∑
n

S∗
n (A4)

where S∗
mean is also the mean of the pseudo values. The variance of the pseudo values794

is denoted as σvar
JK and the formula for the variance is given as follows:795

σvar
JK =

∑
(S∗

n − S∗
mean)2

N − 1
(A5)
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Finally, the jackknife standard error of the parameter estimate is denoted as σSE
JK ,796

The formula for the jackknife standard error is797

σSE
JK =

√
σvar
JK

N
=

√∑
(S∗

n − S∗
mean)2

N(N − 1)
(A6)

The confidence interval for this study has been computed using this jackknife stan-798

dard error formula.799
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