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Abstract

The performance of present operational global forecast system (GFS) at T1534 (˜12.5 km) horizontal resolution with modified

fractional cloud condensate to precipitation conversion parameter in the simplified Arakawa-Schubert (SAS) convection scheme

is evaluated for the summer monsoon seasons of 2018 and 2019 over the Indian region. The modified parameter has the form

of an exponential decreasing function of temperature above the freezing level, whereas below the freezing level, it is constant

and similar to default conversion parameter. The results reveal that the GFS T1534 with modified conversion parameter

(EXPT) shows better fidelity in forecasting the mean summer monsoon rainfall over the Indian continent region as compared to

default GFS T1534 (CTRL). The rainfall probability distribution function analysis indicates notable improvement in forecasting

moderate and heavier category rainfall in EXPT as compared to CTRL. The improved distribution of total rainfall is found

be contributed by the proper forecasting of convective and large-scale rainfall in EXPT. It is likely that the reduced rate of

conversion of cloud condensate to convective precipitation above the freezing level leads to decrease in convective rainfall, which

eventually increases the moisture in the upper level through detrainment and hence enhancement in large-scale rainfall. Further,

EXPT shows relative improvement in forecasting outgoing longwave radiation, wind circulation, cloud fraction, dynamical-

thermodynamical processes and moist-convective feedback through better lower tropospheric moistening over the Indian region.

Finally, various skill score analyses suggest that EXPT shows better skill in predicting moderate and heavier category rainfall

with longer lead time over the continental India.
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Abstract 19 

The performance of present operational global forecast system (GFS) at T1534 (~12.5 km) 20 

horizontal resolution with modified fractional cloud condensate to precipitation conversion 21 

parameter in the simplified Arakawa-Schubert (SAS) convection scheme is evaluated for the 22 

summer monsoon seasons of 2018 and 2019 over the Indian region. The modified parameter has 23 

the form of an exponential decreasing function of temperature above the freezing level, whereas 24 

below the freezing level, it is constant and similar to default conversion parameter. The results 25 

reveal that the GFS T1534 with modified conversion parameter (EXPT) shows better fidelity in 26 

forecasting the mean summer monsoon rainfall over the Indian continent region as compared to 27 

default GFS T1534 (CTRL). The rainfall probability distribution function analysis indicates 28 

notable improvement in forecasting moderate and heavier category rainfall in EXPT as compared 29 

to CTRL. The improved distribution of total rainfall is found be contributed by the proper 30 

forecasting of convective and large-scale rainfall in EXPT. It is likely that the reduced rate of 31 

conversion of cloud condensate to convective precipitation above the freezing level leads to 32 

decrease in convective rainfall, which eventually increases the moisture in the upper level 33 

through detrainment and hence enhancement in large-scale rainfall. Further, EXPT shows 34 

relative improvement in forecasting outgoing longwave radiation, wind circulation, cloud 35 

fraction, dynamical-thermodynamical processes and moist-convective feedback through better 36 

lower tropospheric moistening over the Indian region. Finally, various skill score analyses 37 

suggest that EXPT shows better skill in predicting moderate and heavier category rainfall with 38 

longer lead time over the continental Indian region. Considering the large socio-economic impact 39 

of heavy and extreme precipitation over India, the modified conversion parameter can be 40 

incorporated in the present operational GFS T1534 model. 41 
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1. Introduction 42 

Reliable prediction of summer monsoon precipitation is crucial for agriculture, water resource 43 

management, and many other socioeconomic aspects (Gadgil & Gadgil 2006).The skill of the 44 

numerical weather prediction models is improved over the years primarily due to better 45 

initialization, increased resolution and advanced model physics. In spite of this, the simulation of 46 

proper spatio-temporal distribution of monsoon rainfall and its variabilities remains a 47 

challenging task to the research community (Waliser et al., 2003; Lin et al., 2008; Sperber & 48 

Annamalai 2008). Several studies have been carried out to simulate the Indian summer monsoon 49 

(ISM) from Atmospheric Global Circulation Models (AGCMs) (Sperber & Palmer 1996; Gadgil 50 

& Sajani 1998; Sabre et al., 2000; Waliser et al., 2003; Abhik et al., 2014) as well as Coupled 51 

ocean-atmosphere Global Circulation Models (CGCMs) (Yang et al., 2008; Pattanaik & Kumar 52 

2010; Kim et al., 2012; Saha et al., 2013; Ramu et al., 2016). In spite of better skill in CGCMs, 53 

all the above studies unanimously showed prominent dry bias over the Indian subcontinent in 54 

both the atmospheric and coupled GCMs. 55 

Several studies (Manabe et al., 1970; Mahlman & Urnscheid (1987); Kiehl & Williamson 56 

(1991); Williamson et al., (1995); Hack et al., (2006); Rajendran & Kitoh (2008); Manganello et 57 

al., 2012; Mukhopadhyay et al., 2019) have pointed out the importance of model resolution in 58 

simulating various aspects of the atmospheric fields. Majority of these studies emphasized the 59 

importance of higher resolution models for better representation of orography, land-ocean 60 

coastlines, vegetation cover, land use and associated nonlinear processes. Manganello et al., 61 

(2012) highlighted that the track and intensity of tropical cyclone is well predicted by 10 km 62 

European Centre for Medium Range Weather Forecast (ECMWF) Integrated Forecast System 63 

(IFS) model as compared to coarser resolution IFS.In recent decades, a lot of progress has been 64 
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made in terms of resolution of the operational forecasting model mainly due to advancement in 65 

computing facilities throughout the globe. Recently, ECMWF incorporates a very high resolution 66 

GCM (9 km for deterministic and 18 km for ensemble forecast) for 10 days weather prediction 67 

(https://www.ecmwf.int/en/forecasts/documentation-and-support). While the extreme rainfall 68 

over the Indian subcontinent shows an increasing trend (Goswami et al., 2006; Rajeevan et al., 69 

2008; Roxy et al., 2017). Kim et al., (2018) demonstrated the importance of high resolution 70 

models in simulating extreme precipitation over Indian region. Further, Trenberth et al., (2012) 71 

indicated that the climate models have a tendency to produce more frequent but less intense rain 72 

than observed heavy rainfall.  73 

Over the Indian region, the operational medium range forecast started at National Centre 74 

for Medium Range Weather Forecast (NCMRWF) in 1994 using the T80L18 global data 75 

assimilation and forecasting system. With the gradual progress in observing data network, data 76 

assimilation, model development and computational resources, the skill of the operational 77 

models have improved over the years. Prasad et al., (2011) demonstrated the improved skill of 78 

Global Forecasting System (GFS) T574L64 (~27 km) as compared to coarser resolution 79 

T382L64 (~38 km) model over the ISM region. Further, Prasad et al., (2014) reported that GFS 80 

T574L64 model exhibited one day gain in forecast skill as compared to T382L64 model 81 

configuration. Another recent study by Mukhopadhyay et al., (2019) clearly brings out the 82 

fidelity of operational GFS semi-Lagrangian (SL) T1534L64 (~12.5 km) model for the year of 83 

2016-2017 summer monsoon over the Indian region. They have noted that the high-resolution 84 

GFS is able to predict the rainfall and associated large-scale dynamical parameters reasonably 85 

well. However, it is found that the forecasted rainfall appears to grossly overestimate over the 86 

Indian landmass, Arabian Sea and southern part of Bay of Bengal (BoB) region for different lead 87 
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time in their study. Further, the rainfall probability distribution function (PDF) showed an 88 

overestimation (underestimation) of lighter (heavier) rainfall for all the lead time over the ISM 89 

region. Finally, Mukhopadhyay et al., (2019) concluded that although GFS T1534 has shown 90 

reasonable fidelity in capturing the spatio-temporal variability of the ISM features, further 91 

development is required to enhance the forecast skill of heavy rainfall with a longer lead time.   92 

Keeping the above issues of operational GFS T1534 in mind, a recent study by Ganai et al., 93 

(2019) examined the impact of modified rate of fractional cloud condensate to precipitation 94 

conversion parameter in the revised simplified Arakawa-Schubert (SAS) convection scheme in 95 

Climate Forecast System version 2 (CFSv2) in simulating ISM. The modified conversion 96 

parameter (C0) is defined following Han et al., (2016) as 97 

𝐶0 = 𝑎 exp[𝑏(𝑇 − 𝑇0)] 𝑓𝑜𝑟𝑇 ≤ 𝑇0,          (1a) 

𝐶0 = 𝑎  𝑓𝑜𝑟 𝑇 > 𝑇0,           (1b) 

where a (=0.002m
-1

) and b (=0.07) are constants, T0 (=0°C) is the freezing temperature and T is 98 

the atmospheric temperature. The C0 is defined as a constant (0.002 m
-1

) in default revised SAS. 99 

The exponential function of modified C0 is derived following the results from a cloud resolving 100 

model simulation by Lim, (2011). Further details about the C0 can be found in Lim, (2011); Han 101 

et al., (2016) and Ganai et al., (2019). Ganai et al., (2019) demonstrated that modified conversion 102 

parameter in revised SAS in CFSv2 shows considerable improvements in simulating mean ISM 103 

precipitation, outgoing longwave radiation (OLR), wind circulation, dynamical and 104 

thermodynamical processes etc. They have suggested that reduced rate of conversion of cloud 105 

condensate to convective precipitation above the freezing level leads to decrease in convective 106 

rainfall, which further enhances the detrained moisture from the upper-troposphere, resulting 107 
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enhancement in large-scale rainfall. Better simulation of convective and large-scale precipitation 108 

has resulted in improved total precipitation distribution over the ISM domain in CFSv2 in Ganai 109 

et al. (2019). Although Ganai et al. (2019) have assessed the fidelity of the climate model CFSv2 110 

in detail over the ISM region, they have noted the potential of the modified C0 in revised SAS 111 

convection scheme in predicting an extreme precipitation event over Mumbai in high resolution 112 

operational forecast model (GFS T1534). It is worth to mention that Han et al., (2016) have 113 

demonstrated the improved simulation of heavy precipitation event over Korea with modified 114 

conversion parameter in operational Global/Regional Integrated Model System (GRIMs) (Hong 115 

et al., 2013). They have suggested better model performance due to the decrease in convective 116 

precipitation from cloud condensate at colder temperature. Another recent study by Han et al., 117 

(2017) have shown the impact of modified C0 in the operational NCEP GFS along with other 118 

updates in the convection scheme and indicated considerable improvement in summer 119 

precipitation over the continental USA.  120 

While the above two studies (Han et al., 2016; Han et al., 2017) clearly demonstrated the 121 

importance of modified conversion parameter in the operational weather forecast model, it is 122 

remained to be seen its impact over the ISM region. It is already mentioned that Ganai et al., 123 

(2019) demonstrated the capability of modified C0 in simulating one heavy precipitation event 124 

over Mumbai in GFS T1534. Additionally, Mukhopadhyay et al. (2019) have echoed to improve 125 

the forecast skill of heavy rainfall in operational weather forecast model (GFS T1534) over 126 

Indian region. Therefore, the primary objective of the present study is to assess the impact of 127 

modified C0 in revised SAS convective scheme in GFS T1534 operational weather forecast 128 

model over the Indian summer monsoon region.  129 

2. Model description, data and methodology 130 
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Presently, NCEP GFS version 14.1.0 with spectral resolution of T1534 (~12.5 km) with 64 131 

hybrid sigma-pressure levels (top layer 0.27 hPa) is utilized for daily operational forecast over 132 

the ISM region. It is worth to mention that the present version of the operational GFS model is 133 

implemented from 2018 summer monsoon season replacing the older version (GFS version 134 

13.0.2; Mukhopadhyay et al., 2019) over the Indian region. The dynamical core of the present 135 

high resolution deterministic model is based on a two-level semi-implicit Semi-Lagrangian (SL) 136 

discretisation approach (Sela, 2010), while the physics is carried out in the linear, reduced 137 

Gaussian grid in the horizontal space. The GFS version 14.1.0 uses various physics packages as 138 

described in table 1. With the increase in model resolution, NCEP GFS incorporated scale 139 

awareness following Arakawa and Wu, (2013) in the SAS deep and shallow convection scheme 140 

(Han and Pan, 2011; Han et al., 2017). In the SAS deep convection scheme (Han and Pan, 2011; 141 

Han et al., 2017), the cloud condensate to precipitation conversion parameter (C0) is assumed to 142 

be a constant (0.002 m
-1

) indicating the rate of generation of rainfall from cloud condensate is 143 

same from all the levels. However, recent study by Han et al., (2016) and Ganai et al., (2019) 144 

showed that the modified C0 varies according to equations 1a and 1b based on the study by Lim 145 

(2011). In the present study, two separate GFS T1534 model forecasts are utilized, one with 146 

default version of convection scheme (CTRL hereafter) and the other with modified conversion 147 

parameter (C0) (EXPT hereafter). Similar to Mukhopadhyay et al., (2019), the model forecast is 148 

run daily for 10 days (240hour) and the output is saved every 3 hour interval at 12.5 km regular 149 

grid. In the present manuscript, the two years (2018 and 2019) of forecast data for the summer 150 

monsoon season (June to September, JJAS) is used. Except the modified C0 in EXPT, the other 151 

components of the GFS T1534 are kept unchanged for both the forecast run. Both the forecast 152 

runs are carried out at the Ministry of Earth Sciences high performance computing facility 153 
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“Pratyush” at the Indian Institute of Tropical Meteorology (IITM), Pune, India. The initial 154 

conditions for the forecast are generated by NCMRWF through the NCEP-based ensemble 155 

Kalman filter (EnKF) component of hybrid global data assimilation system (GDAS) cycle which 156 

has more Indian data in it. Further details about the NCMRWF data assimilation system is 157 

reported by Prasad et al., (2016).  158 

To validate the model forecast, the daily observed gridded rainfall data at 25 km resolution is 159 

utilized from India Meteorological Department (IMD) for the summer season of 2018 and 2019. 160 

These data are merged product of gridded rain gauge observations and Global Precipitation 161 

Measurement (GPM) satellite-estimated rainfall data over the ISM region (Mitra et al., 2014). 162 

This dataset has been extensively used in several studies (Sridevi et al., 2019; Kar et al., 2018; 163 

Prakash et al., 2016; Prasad et al., 2016; 2017 etc.) to validate the model forecast over Indian 164 

region. In addition to rainfall, different satellite and reanalyses-based parameters are also used to 165 

further analyze model performance. The fifth generation of ECMWF atmospheric reanalyses 166 

(ERA5) products (Hersbach and Dee, 2016) is utilized at 25km horizontal resolution for the year 167 

of 2018 and 2019 JJAS season. The satellite estimated outgoing longwave radiation (OLR) daily 168 

data (Liebmann & Smith, 1996) from National Oceanic and Atmospheric Administration 169 

(NOAA) is used in the present study. 170 

In the present manuscript, the daily 24 hour accumulated rainfall is computed from 3 hourly (03 171 

UTC of previous day to 03 UTC of forecast valid day) forecast data over the ISM domain for 172 

both CTRL and EXPT. The rainfall time series is calculated for the JJAS season of the year of 173 

2018 and 2019 for different lead times. The JJAS mean rainfall is calculated based on two years 174 

of datasets for day-1, day-3, day-5 and day-8 forecast lead times. The spatial correlation 175 

coefficient, root mean square error (RMSE), bias, rainfall probability distribution function 176 
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(PDF), easterly shear etc. are calculated for both observation and model forecast at various lead 177 

times. 178 

3. Results and discussion 179 

3.1. Seasonal mean precipitation and OLR distribution 180 

We first investigate the model performance in capturing the seasonal (JJAS) mean rainfall 181 

distribution over the ISM region (Figure 1). The IMD-GPM merged data indicates that large 182 

amount of rainfall occurs over the Western Ghats, Bay of Bengal (BoB), northeast India and 183 

central Indian (CI) landmass region (Figure 1a). The southern peninsula and northwest India 184 

receives least amount of rainfall during summer monsoon season (Figure 1a). The large rainfall 185 

over the Western Ghats and northeast India is due to the topography over the regions (Rao, 186 

1976). The biases in GFS T1534 with respect to observation are depicted in Figure 1b (CTRL) 187 

and Figure 1c (EXPT) respectively. Although the forecasts by both the model are able to capture 188 

the JJAS mean rainfall pattern reasonably at various lead times, some notable biases can be seen 189 

in both CTRL and EXPT. Both the models appear to grossly overestimate the rainfall over CI 190 

landmass region, northeast India, Himalayan foothills and Western Ghats region at various lead 191 

times (Figure 1b and 1c). However, the magnitude of rainfall overestimation gradually decreases 192 

with forecast lead days (day-3, day-5 and day-8). Mukhopadhyay et al., (2019) also showed 193 

similar results from older version of GFS T1534 over the ISM region during JJAS of 2016 and 194 

2017. In addition, the northern (southern) part of BoB shows underestimation (overestimation) of 195 

rainfall amount in both the model forecasts at all the lead times. However, closer analyses reveal 196 

that with the modified conversion parameter forecast run (EXPT), the magnitude of the rainfall 197 

biases improved over the above regions as compared to CTRL forecasts at all the lead times 198 
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(Figure 1c). It is further evident from model to model comparison as in Figure 1d. Additionally, 199 

it is also established from various statistical parameters calculated over the all India land points 200 

as shown in table-2. The seasonal mean rainfall appears to be overestimated at all the lead time 201 

in CTRL forecasts whereas EXPT shows relative improvement as compared to observation (table 202 

2). Additionally, the spatial correlation coefficient remains above 0.5 for all the lead times in 203 

both the model forecasts. Further, the RMSE appears to be slightly better in EXPT in day-1 204 

forecast as compared to CTRL. However, with further lead times (day-3, day-5 and day-8), it is 205 

slightly better in CTRL forecast (table 2). On contrary, standard deviation analyses suggests that 206 

although the variability is slightly less in EXPT as compared to CTRL in day-1 lead time, EXPT 207 

shows better variability as compared to observation with further lead times (day-3, day-5 and 208 

day-8) over the continental Indian region. The above analyses bring out better rainfall fidelity 209 

with modified conversion parameter in GFS T1534 model over the Indian region. It is well 210 

documented that the revised SAS with constant C0 has a tendency to produce more convective 211 

rainfall in global GCMs (Ganai et al., 2015; 2016; Saha et al., 2013) as well as in weather 212 

forecast models (Han et al., 2016; Han et al., 2017). In the modified C0, the convective rainfall is 213 

decreased through the reduced rate of conversion of cloud condensate to convective precipitation 214 

above the freezing level, which further enhances the detrainment of condensate from convection 215 

in the upper level and resulted in an increase in large-scale precipitation (Han et al., 2016; Ganai 216 

et al., 2019). Thus, similar to CFSv2 in Ganai et al., (2019), it is possibly better simulation of 217 

convective and large-scale precipitation that may result in improving the total rainfall 218 

distribution in EXPT. 219 

In order to find out the improvement in the total precipitation in EXPT forecast, the rainfall PDF 220 

is analyzed at different lead times for JJAS and different months of the summer season over the 221 
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continental India (Figure 2). The rainfall bins are taken according to Mukhopadhyay et al., 222 

(2019). The JJAS rainfall PDF (Figure 2a) reveals that both the models forecast overestimates 223 

the lighter (<1.56 cm/day) category rainfall at all the lead times. It is consistent with the study by 224 

Mukhopadhyay et al., (2019) where overestimation of lighter category rainfall is reported in GFS 225 

T1534 forecast. However, the GFS T1534 with modified C0 forecast run shows considerable 226 

improvement in capturing moderate (1.56−6.45 cmday
-1

), heavy (6.45−11.56 cmday
-1

), very 227 

heavy (11.56−20.45 cmday
-1

) and extreme (≥20.45 cmday
-1

) category rainfall (Figure 2a, blue 228 

bars) as compared to observation at different lead times. On the other hand, CTRL forecast 229 

indicates gross overestimation over moderate category and underestimation of heavier category 230 

rainfall (Figure 2a, red bars). It further suggests that the total rainfall overestimation over Indian 231 

landmass in CTRL forecast is mainly due to excess contribution from lighter and moderate 232 

category rainfall. While Ganai et al., (2019) reported the importance of modified C0 in GFS 233 

T1534 in capturing the heavy rainfall event over Mumbai, the present study further established 234 

the fact that the modified conversion parameter has the potential to improve the moderate to 235 

heavier category rainfall forecast over the ISM domain. To gain more insight about the rainfall 236 

PDF distribution during each month of JJAS, PDF analyses is carried out in Figure 2b to 2e. 237 

During June (Figure 2b), July (Figure 2c), August (Figure 2d) and September (Figure 2e), both 238 

the models exhibit similar PDF characteristics as seen in JJAS, particularly in July, August and 239 

September. The CTRL forecast appears to grossly overestimate (underestimate) the lighter to 240 

moderate (heavier) category rainfall whereas the EXPT shows overestimation of lighter category 241 

and considerable improvement in heavier category rainfall for all the lead times. On the other 242 

hand, during June, CTRL appears to perform better in forecasting moderate and very heavy 243 

category rainfall for day-1, day-3 and day-5 lead times as compared to EXPT (Figure 2b). 244 
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Similar results were also reported by Chakraborty, (2010) using ECMWF forecast data over ISM 245 

region.   246 

In addition to rainfall PDF over continental India, it will be useful to investigate the spatial 247 

pattern of frequency of different categories of rainfall for various lead times over the ISM region 248 

(Figure 3). The spatial pattern depicts that both the models grossly overestimate the frequency of 249 

lighter rainfall (0.25- 2 cm/day) over the Indian landmass, BoB, Arabian Sea, Western Ghats and 250 

northeast India for all the lead time (day-1, day-3 and day-5) as shown in Figures 3b, 3c, 3d, 3e, 251 

3f, and 3g. This is consistent with the rainfall PDF over the continental India as shown in Figure 252 

2a. On the other hand, the frequency of moderate category (2-6 cm/day) rainfall shows 253 

considerable improvement over the central Indian landmass region in EXPT forecast for all the 254 

lead days (Figure 3c, 3e and 3g) as compared to observation (Figure 3a). On contrary, CTRL 255 

forecast shows large overestimation of moderate category rainfall over the central Indian 256 

landmass region (Figure 3b, 3d and 3f). This is contrary to the study by Mukhopadhyay et al., 257 

(2019) where they have shown (Figure 4 and 5 in their paper) underestimation of moderate 258 

rainfall in older version of GFS T1534. Further, it is noted that both the models overestimate the 259 

frequency of moderate rainfall over BoB, west coast and northeast Indian region. In addition to 260 

lighter and moderate rainfall, the frequency of heavy (6-10 cm/day) to very heavy category (>10 261 

cm/day) rainfall indicates that both the models underestimate the frequency over the Indian 262 

landmass, BoB and Arabian Sea regions (Figure 3a to 3g) for the lead time. However, closer 263 

analyses reveal that EXPT forecast shows relative improvement in forecasting heavy to very 264 

heavy rainfall over central Indian landmass region (Figure 3c, 3e and 3f) as compared to CTRL 265 

forecast (Figure 3b, 3d and 3f). While the above analyses is consistent with the rainfall PDF 266 
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distribution over the continental India (Figure 2), the present analyses further bring out the 267 

regional heterogeneities  in frequency of different rainfall categories over the ISM domain. 268 

The JJAS mean OLR bias is shown in Figure 4 for different lead times. The OLR bias depicts 269 

that CTRL forecast overestimates over northern, northwestern India and BoB region as 270 

compared to NOAA data. However, the magnitude of the biases slightly decreases with lead days 271 

(Figure 4a). On contrary, EXPT forecasted OLR displays better distribution over the continental 272 

Indian region for day-1 lead time (Figure 3b). The overestimation of OLR over the northern part 273 

of India in CTRL is largely resolved in EXPT. However, the negative bias over the southern 274 

peninsula and northeast India increases with further lead times as shown in Figure 4b. It is found 275 

(Figure not shown) that modified conversion parameter enhances the detrainment of moisture in 276 

the upper-troposphere leading to increase in upper level cloudiness and thus low OLR at the top 277 

of the atmosphere is noted in EXPT. Similar decrease in OLR also reported by Han et al., (2016) 278 

in Global/Regional Integrated Model system (GRIMs) over Korea. Moreover, Ganai et al., 279 

(2019) also reported slight underestimation of OLR at the top of the atmosphere over the ISM 280 

region in CFSv2.  281 

3.2. JJAS Convective and Large-Scale Rainfall 282 

Han et al., (2016) and Ganai et al., (2019) have demonstrated that the modified C0 tends to 283 

reduce (enhance) the convective (large-scale) rainfall in weather and climate models 284 

respectively. Keeping the above studies in mind, the impact of modified C0 in operational GFS 285 

T1534 is investigated in Figure 5. To define the convective and large-scale rainfall in GFS 286 

T1534, similar methodology as in Ganai et al., (2019) is followed. The convective rainfall is 287 

subtracted from the total rainfall to get the grid-scale or large-scale rainfall in the model. Here, 288 
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the comparison of convective and large-scale rainfall is made between the models only 289 

considering the fact that the definitions used to partition the convective and large-scale rainfall 290 

are different in observation and in model. The spatial distribution of convective (Figure 5a) and 291 

large-scale (Figure 5b) rainfall bias clearly demonstrates that the convective (large-scale) rainfall  292 

decreased (enhanced) over central India and northeast Indian region as compared to CTRL 293 

forecast for all the lead time. However, over the west coast, Arabian Sea and BoB, the magnitude 294 

of the convective rainfall is more in EXPT (Figure 5a). The improvement in different component 295 

of the total rainfall is further evident from the convective (large-scale) rainfall fraction over the 296 

continental Indian region as depicted in Figure 5c (5d). The CTRL forecast shows around 70% 297 

convective and 30% large-scale rainfall whereas in EXPT, it is around 60% (convective) and 298 

40% (large-scale) for all the lead times. Therefore, the present analyses demonstrate the 299 

reduction of convective rainfall and enhancement in large-scale rainfall in EXPT forecast over 300 

continental India. Moreover, it also indicates that the improvement in total rainfall in EXPT is 301 

contributed by the proper representation of convective and large-scale rainfall over the ISM 302 

region.  303 

3.3 Wind circulation 304 

One of the major characteristic features of Indian summer monsoon is the presence of low-level 305 

(850 hPa) south westerly jet and upper-level (200 hPa) tropical easterly jet (Ramage, 1971; Rao, 306 

1976) over the ISM domain. Both the low-level and upper-level circulation plays a crucial role in 307 

summer monsoon activity over the region. Both the models are able to capture the above wind 308 

circulations reasonably well (Figure 6) as compared to ERA5 for day-1 lead time. However, finer 309 

details reveal that the strength of the low-level south westerly and upper-level easterly jet over 310 

Indian landmass region is overestimated by 2-4 ms
-1

 in CTRL as compared to ERA5 reanalyses 311 
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(Figure 6a and 6c) for day-3, day-5 and day-8 lead time. It is possible that stronger low-level jet 312 

brings more moisture (Figure shown later) over the continental India which has resulted in 313 

rainfall overestimation in CTRL over the region. On the contrary, the strength of the above jets 314 

appears to be better resembled in EXPT as compared to ERA5 for all the lead times (Figure 6b 315 

and 6d). Although the strength of the south westerly and easterly jets are better captured in 316 

EXPT over the Indian landmass region, the low-level (upper-level) jet is found to be slightly 317 

overestimated (underestimated) over the equatorial Indian Ocean region for all the lead days. 318 

Consistent with the better wind circulation at 850 hPa and 200 hPa over Indian landmass region 319 

in EXPT, the easterly shear (difference between zonal wind at 200 and 850 hPa) shows 320 

considerable improvement as compared to ERA5 over the ISM region as shown in Figure 7b. It 321 

is worth to mention that easterly wind shear plays an important role for northward propagation of 322 

monsoon intraseasonal oscillation (Jiang et al., 2004). Figure 7a indicates that CTRL forecast is 323 

able to predict the shear reasonably well for day-1 lead time, however, with further lead times 324 

(day-3, day-5 and day-8), the shear appears to be underestimated over the Indian landmass 325 

(15°N-25°N) region. On the other hand, EXPT is able to predict proper easterly wind shear over 326 

the above region for all the lead times. Overall, the above analyses suggest that EXPT is able to 327 

predict better large-scale monsoonal wind circulation due to better large-scale heating associated 328 

with large-scale rainfall over the ISM region.  329 

3.4. Evaluation of dynamical and thermodynamical processes 330 

In order to evaluate the processes responsible for better model forecast with modified C0in GFS 331 

T1534, various dynamical and thermodynamical processes are investigated over the central 332 

Indian landmass region. Both the models show overestimation of vertical motion for day-1 lead 333 

time from 900hPa and above as compared to ERA5 as depicted in Figure 8a. However, for day-3 334 



16 
 

lead time the vertical velocity slightly underestimates in both the models. Additionally, the 335 

magnitude of the vertical velocity suggests relative improvement in EXPT as compared to CTRL 336 

throughout the troposphere for day-1 and day-3 lead  (Figure 8a).Consistent with stronger low-337 

level wind circulation, the vertical profile of moisture convergence shows slight overestimation 338 

in the lower level in both the models for day-1 lead time (Figure 8b). However, EXPT forecast 339 

indicates relative improvement over CTRL for day-1 lead time. Since the modified C0 forecast 340 

shows better performance in predicting large-scale rainfall and wind circulation over the ISM 341 

domain, it will be worth to evaluate the large-scale heating distribution over the region (Figure 342 

8c). The large-scale apparent heat source (Q1) is computed following Yanai et al., (1973).The 343 

CTRL forecast produces stronger heating due to cumulus induced subsidence above 800 hPa as 344 

compared to ERA5 for day-1 lead time. On contrary, EXPT resembles better with ERA5 where 345 

the convective heating is decreased throughout the troposphere (Figure 8c). Similar results were 346 

also shown by Han et al., (2016) with GRIMs model. For day-3 lead time, both the models 347 

appear to slightly underestimate the heating at 800-300hPa but marginal improvement can be 348 

noted in EXPT as compared to ERA5 (Figure 8c). It is likely that in EXPT relatively improved 349 

vertical motion resulted from lower and middle level moisture convergence leading to enhanced 350 

detrainment of moisture from the upper level, which in turn increases the large-scale rainfall and 351 

influences the associated large-scale heating distribution.  352 

In order to further gain insight about the rainfall and moist-convective processes, the vertical 353 

profile of relative humidity as a function of rain rate is analyzed during JJAS of 2018-2019 354 

(Figure 9a-9b). The bias analyses reveals that CTRL forecasts have a systematic underestimation 355 

of lower-level moisture over the central Indian landmass region for all the lead time (Figure 9a). 356 

Similar underestimation of lower-level moisture was also reported by Mukhopadhyay et al., 357 



17 
 

(2019) in older version of GFS T1534 over the region. In contrast, EXPT suggests relative 358 

improvement in lower-level moisture distribution for all the lead time over the central India 359 

region (Figure 9b). However, the upper-troposphere appears to be moister in EXPT due to the 360 

detrained moisture from the upper level in the modified scheme. Further, it is worth to mention 361 

that the lower-level moisture plays an important role in triggering, sustaining and maintaining the 362 

growth of the convective system. Hence, it is likely that better lower-level moistening in EXPT 363 

has resulted in realistic moist-convective feedback in the atmosphere. Moreover, to gain further 364 

understanding about the lower-level stability, the vertical profile of temperature as a function of 365 

rain rate is showed in Figure 10a-10b. Consistent with Figure 9b, the lower troposphere is 366 

relatively cooler in EXPT (Figure 10b) as compared to CTRL forecast (Figure 10a) due to more 367 

evaporation of large-scale precipitation for all the lead time. It further enhances the moisture in 368 

the lower troposphere and makes the atmosphere conducive for convection. These results are 369 

consistent with the previous studies with modified C0 (Han et al., 2016; Ganai et al., 2019). The 370 

analyses in the present section bring out the better model fidelity with modified conversion 371 

parameter in representing large-scale heating and dynamical processes, which eventually 372 

improve the precipitation distribution over continental India.  373 

3.5 Verification of model forecast 374 

In order to further investigate the forecast skill of EXPT objectively, various skill scores are 375 

computed in the present section. We first calculate the Bias score (B) and Equitable Threat Score 376 

(ETS) based on a contingency table. This contingency table categorizes the observation and 377 

forecast into hits, ‘a’, false alarms, ‘b’, miss, ‘c’ and correct negatives ‘d’ with respect to a 378 

particular threshold. Based on these categories the Bias Score and ETS is calculated (Wilks 379 

2011). 380 



18 
 

𝐵 =
𝑎+𝑏

𝑎+𝑐
             (2) 381 

𝐸𝑇𝑆 =
𝑎−𝑎𝑟𝑒𝑓

𝑎+𝑏+𝑐−𝑎𝑟𝑒𝑓
      (3) 382 

Figure 11a-d shows the Bias Score and Figure 11e-h shows the ETS for Day 1 to Day 4 rainfall 383 

forecast respectively. A Bias Score of 1 indicates a perfect forecast, greater than 1 indicates 384 

overforecasting and less than 1 indicates underforecasting. The EXPT shows a better Bias score 385 

than CTRL consistently for all lead time, although we find some over forecasting in case of 386 

EXPT for higher thresholds in case of Day 2. Another point of note is the better performance of 387 

EXPT for higher thresholds even at Day 4 lead time. In case of ETS, a score of 1 indicates a 388 

perfect forecast. In Figure 11e-h we can clearly see that the CTRL is marginally better than 389 

EXPT for 2cm/day threshold for all lead times but EXPT fares consistently better than CTRL for 390 

higher thresholds at all lead times. This indicates EXPT to have a better forecast skill than 391 

CTRL. 392 

Further we also quantify the difference between CTRL and EXPT by calculating the Root Mean 393 

Square Error (RMSE) with respect to reanalysis for zonal (U) and meridional (V) wind forecast 394 

at 850 hPa and 200 hPa (Figure 12a-b). Overall the RMSE increases with lead time for both U 395 

and V wind. The RMSE at 200 hPa is higher than at 850 hPa. Though the CTRL and EXPT 396 

show similar behaviour, EXPT does not deteriorate further from CTRL and shows better RMSE 397 

for U200 indicating a better simulation of the Tropical Easterly Jet (TEJ) during monsoon season 398 

(Figure 6d). 399 

Lastly, to better elaborate on the performance of both CTRL and EXPT with respect to rainfall 400 

forecast for JJAS season, “Chiclet diagram” (Carbin et al., 2016; Wang et al., 2017; Ganai et al., 401 
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2019) is displayed over central India landmass region in Figure 13 for the summer monsoon of 402 

2019. The usefulness of “Chiclet diagram” has been echoed by Wang et al., (2017) and Ganai et 403 

al., (2019) in CFSv2 and GFS T1534 respectively. It is evident from Figure 13a and 13b that 404 

both the models are showing similar pattern over the central India region. Moreover, detailed 405 

analyses reveal that for the first week of July both the models underestimated the heavy rainfall 406 

amount over central India in day-2 to day-8 lead time as compared to observation. On the 407 

contrary, for the month of August and September, EXPT (Figure 13b) shows notable 408 

improvement in terms of predicting magnitude of the rainfall amount for all the lead times as 409 

compared to CTRL (Figure 13a). From mid of August, CTRL shows systematic positive bias in 410 

rainfall amount for all the lead time and it has been largely resolved in EXPT. 411 

4. Summary and conclusions 412 

The present manuscript evaluated the performance of operational high resolution (~12.5 km) 413 

deterministic weather forecast model GFS T1534 with modified rate of cloud condensate to 414 

precipitation conversion parameter (C0) in the SAS convection parameterization scheme for two 415 

summer monsoon seasons of 2018 and 2019 over the ISM region. While Ganai et al., (2019) has 416 

demonstrated the impact of modified C0 in climate model CFSv2 in simulating the monsoon 417 

features over India, the present study deals with the impact of the same modification in 418 

operational forecasting system. The forecast evaluation indicates that EXPT shows better fidelity 419 

in capturing the mean rainfall over Indian landmass region for all the lead time as compared to 420 

CTRL. However, systematic prominent positive biases over west coast, northeast India and 421 

southern BoB remain in EXPT which needs further improvement. The rainfall PDF analysis 422 

indicates notable improvement in forecasting moderate and heavier category rainfall in EXPT as 423 

compared to CTRL which shows gross underestimation of the above category rainfall. However, 424 
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it is found that the modified C0 appears to slightly overestimate the lighter category rainfall over 425 

continental India region. Further, the above findings are also established from the spatial map of 426 

different category-wise rainfall over the ISM domain.  427 

The improvement in the total rainfall is appeared to be contributed by proper representation of 428 

convective and large-scale rainfall over the ISM region. Similar to climate model (CFSv2), the 429 

enhancement (decrease) of large-scale (convective) rainfall is noted in EXPT as compared to 430 

CTRL. The reduced rate of conversion of cloud condensate to convective precipitation in 431 

modified C0 above the freezing level leads to increase in detrainment of moisture in the upper 432 

troposphere resulting in an increase in large-scale precipitation. As the upper level cloudiness 433 

increases due the above process, the OLR at the top of the atmosphere is slightly decreased in 434 

EXPT. Moreover, the wind circulation features shows improved pattern in EXPT over ISM 435 

region for all the lead time. It is possibly the improved heating distribution throughout the 436 

troposphere has resulted in realistic circulation over the ISM region. In addition to dynamical 437 

and thermodynamical processes, the lower tropospheric moistening is improved in EXPT as 438 

compared to CTRL for all the lead time. Finally, the model skill score analyses demonstrated 439 

that the skill of the model relatively improved for heavier category rainfall over the continental 440 

Indian region for all the lead time.  441 

The present study clearly brings out the better model fidelity with modified conversion 442 

parameter in forecasting the moderate and heavy category rainfall over Indian region. Several 443 

studies have shown increasing trend in heavy rainfall over continental Indian region and also in 444 

recent years heavy rainfall events over Mumbai, Kerala, Uttarakhand and many other parts of the 445 

country causes severe damage to the livelihood of the region. Therefore, in order to improve the 446 

forecast of heavy rainfall, the modified C0 can be incorporated in the present operational weather 447 
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forecast model. Moreover, it will be interesting to see in future works, the impact of the modified 448 

convection scheme in the operational extended range (4 weeks in advance) and seasonal forecast 449 

system over India. Although in the present study we have mainly focused on the mean features in 450 

the daily to seasonal scale, in future studies we will look into the sub-daily or diurnal scale 451 

features over ISM domain. 452 
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Figure 9. Vertical profile of bias in relative humidity (shaded in %) as a function of rain rate 486 

(mmday
-1

) in (a) CTRL and (b) EXPT with respect to observation (ERA5 vs. IMD-GPM merged 487 

data) over the central Indian landmass region during JJAS of 2018–2019 at different lead times. 488 
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-1
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for CTRL (red line) and EXPT (blue line),  (b) represents similar analysis but for V component 494 
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). 499 
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-1
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-1

) is plotted in the 502 
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Table 1. Model physics in operational GFS T1534  

Physics Description 

Convection Revised simplified Arakawa-Schubert deep convection (Pan and 

Wu, 1995; Han and Pan, 2011, Han et al., 2017) and mass flux 

based SAS shallow convection (Han and Pan, 2011) with Arakawa 

and Wu, (2013) scale-aware parameterization  

Cloud 

Microphysics 

Zhao and Carr, (1997), Sundqvist et al., (1989) formulated grid-

scale condensation and precipitation 

Gravity Wave 

Drag (GWD) 

GWD based on Alpert et al., 1988; Kim and Arakawa, (1995), 

Mountain blocking (Lott and Miller, 1997) and stationary 

convective-forced GWD (Chun and Baik 1998) 

PBL Hybrid Eddy-diffusivity Mass flux vertical turbulent mixing scheme 

(Han and Pan, 2011; Han et al. 2015) 

Radiation Shortwave and Longwave radiation based on Rapid Radiative 

Transfer Model (RRTM) (Iacono et al., 2008; Clough etal., 2005) 

with Monte Carlo Independent Column Approximation (McICA).  

 

 



Figure 1.



 

 

Figure 1. (a) JJAS mean rainfall (mmday
-1

) of IMD-GPM merged data during 2018-2019. The 

rainfall bias in (b) CTRL and (c) EXPT with respect to observation, (d) in EXPT with respect to 

CTRL for day-1, day-3, day-5 and day-8 lead times are shown.  

 

 



Table 2.  Various statistics (mean, spatial correlation coefficient (CC), root mean square error 

(RMSE), standard deviation) are calculated based on observed and model forecasted rainfall over 

continental Indian region for different lead time. 

 Lead day Mean 

(mm/day) 

CC RMSE 

(mm/day) 

Standard 

deviation 

(mm/day) 

IMD-GPM  7.1   14.9 

CTRL Day-1 9.2 0.56 16.7 12.7 

EXPT Day-1 8.2 0.51 16.5 12.3 

CTRL Day-3 7.6 0.56 17.2 11.6 

EXPT Day-3 7.4 0.55 17.7 12.3 

CTRL Day-5 7.6 0.54 17.9 11.4 

EXPT Day-5 6.9 0.53 18.0 11.5 

CTRL Day-8 7.9 0.54 18.5 11.2 

EXPT Day-8 7.5 0.56 18.7 11.7 
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Figure 2. All India rainfall PDF (%) vs. rain rate (cmday
-1

) categories during (a) JJAS, (b) June, 

(c) July, (d) August and (e) September for different lead times derived from CTRL and EXPT 

forecast and compared with IMD-GPM merged gridded data. 

 



Figure 3.



 

 

 



Figure 3. Spatial distribution of rainfall frequency (%) for different rain rate (cmday
-1

) 

categories during JJAS for (a) IMD-GPM merged data, (b, d and f) for CTRL and (c, e and g) for 

EXPT for different lead times.  

 



Figure 4.



 

Figure 4. Spatial distribution of OLR bias (Wm
-2

) in (a) CTRL and (b) EXPT with respect to 

satellite based NOAA observation at day-1, day-3, day-5 and day-8 lead time during JJAS of 

2018-2019. 



Figure 5.



 

Figure 5. Spatial distribution of (a) convective rainfall (mmday
-1

) and (b) large-scale rainfall 

(mmday
-1

) in EXPT with respect to CTRL for different lead times. (c) and (d) denote convective 

and large-scale rain fraction over continental Indian region for various lead days respectively. 

 



Figure 6.



 

Figure 6. Spatial distribution of wind circulation bias (ms
-1

) in (a) CTRL and (b) EXPT with 

respect to ERA5 reanalyses at day-1, day-3, day-5 and day-8 lead time at 850 hPa level. (c) and 

(d) represent similar analyses but for 200 hPa pressure level. 



Figure 7.



 

 

Figure 7. Easterly zonal wind shear (ms
-1

) (U200–U850) during JJAS as obtained from (a) 

CTRL and (b) EXPT at various lead times and compared with ERA5. 

 



Figure 8.



 

Figure 8. JJAS mean vertical profiles of (a) vertical velocity (hPas
-1

), (b) moisture convergence 

(gm/kgs
-1

) and (c) apparent heat source (Q1) (Kday
-1

) for ERA5 (black line), CTRL (red line) 

and EXPT (blue line) for day-1 and day-3 lead times over the central Indian landmass region. 
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Figure 9. Vertical profile of bias in relative humidity (shaded in %) as a function of rain rate 

(mmday
-1

) in (a) CTRL and (b) EXPT with respect to observation (ERA5 vs. IMD-GPM merged 

data) over the central Indian landmass region during JJAS of 2018–2019 at different lead times. 

 



Figure 10.



 

Figure 10. Vertical profile of bias in temperature (shaded in K) as a function of rain rate 

(mmday
-1

) in (a) CTRL and (b) EXPT with respect to observation (NOAA vs. IMD-GPM 

merged data) over the central Indian landmass region during JJAS of 2018–2019 at different lead 

times. 

 



Figure 11.



 

 

Figure 11. RMSE of (a) U component of wind (ms
-1

)at 850 hPa (solid) and at 200 hPa (dashed) 

for CTRL (red line) and EXPT (blue line),  (b) represents similar analysis but for V component 

of wind for JJAS 2018–2019 over the continental India.  

 



Figure 12.



 

 

 

Figure 12. (a-d) represent Bias score for CTRL (red bar) and EXPT (blue bar) for day-1 to day-4 

lead days respectively over continental Indian region during JJAS of 2018-2019. (e-h) represent 

ETS score for CTRL (red bar) and EXPT (blue bar) for day-1 to day-4 lead time respectively. X-

axis represents various rainfall thresholds (cmday
-1

). 
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Figure 13.



 

Figure 13. Chiclet diagram of daily precipitation bias (cmday
-1

) in (a) CTRL and in (b) EXPT 

with respect to observation as a function of the verification date (x axis) and lead time (y axis) 

over central Indian region. Time series of daily mean precipitation (cmday
-1

) is plotted in the 

lower panel in each plot. 
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