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Abstract

A number of studies in recent years have reported about the lunar tidal enhancements in the equatorial electrojet (EEJ) from
ground- and space-based magnetometer measurements during stratospheric sudden warming (SSW) events. In this study, we
make use of the ground magnetometer recordings at Huancayo observatory in Peru for the years 1978 — 2013 to derive a
relationship between the lunar tidal enhancements in the EEJ and tropospheric eddy heat fluxes at 100 hPa during the SSW
events. Tropospheric eddy heat fluxes are used to quantify the amount of wave activity entering the stratosphere. Anomalously
large upward wave activity is known to precede the polar vortex breakdown during SSWs. We make use of the superposed
epoch analysis method to determine the temporal relations between lunar tidal enhancements and eddy heat flux anomalies
during SSWs, in order to demonstrate the causal relationship between these two phenomena. We also compare the lunar tidal
enhancements and eddy heat flux anomalies for vortex split and for vortex displaced SSWs. It is found that larger lunar tidal
enhancements are recorded for vortex split events, as compared to vortex displaced events. This confirms earlier observation;
larger heat flux anomalies are recorded during vortex split SSW events than the heat flux anomalies during vortex displaced
SSW events. Further, the temporal relations of lunar tidal enhancements in the EEJ have been compared separately for both
the QBO phases and with the phases of the moon with respect to the central epoch of SSWs by means of the superposed epoch
analysis approach. The EEJ lunar tidal enhancements in the east phase of QBO are found to be larger than the lunar tidal
enhancements in the west phase of QBO. The phase of moon relative to the central SSW epoch also affects the lunar tidal
enhancement in the EEJ. It is found that the lunar tidal enhancements are significantly larger when the day of new or full moon

lies near the central SSW epoch, as compared to cases when new or full moon occur further away from the central SSW epoch.
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Introduction

Composite of lunar tidal power from EEJ during different QBO phases and
solar flux conditions

Atmospheric lunar tide

QBO east phase

« The atmospheric lunar tide is a global-scale oscillation of the atmosphere due to the

Composite of lunar tidal power for SSWs (during QBO east phase) estimated from Huancayo recordings
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