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Abstract

Individual grains move through gravel bed rivers in cycles of motion and rest with variable characteristics, so tracer grains

spread apart as they transport downstream in a type of diffusion. Experiments and Newtonian simulations have demonstrated

nuanced diffusion characteristics, with at least three distinct ranges of behavior as the observation time of tracers increases and

each range exhibiting a different spreading rate. Although these observations are nearly 20 years old, no physical model has

been developed to describe them, leaving us uncertain of the generating processes. In this work, we develop the first physical

model describing three bedload diffusion ranges by incorporating sediment motion, rest, and burial into a random walk concept

of individual bedload trajectories. Using the model, we attribute multiple bedload diffusion ranges to the interplay between

motion, rest, and burial processes, and we relate the multi-range diffusion characteristics to measurable transport parameters.
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Key Points:6

• Random walk model describes coarse gravel tracers diffusing through a river as7

they gradually become buried8

• Interchange of grains between motion, surface rest, and burial states generates9

three diffusion ranges as the observation time increases10

• Sediment burial dominates long-time properties and may develop a fourth “ge-11

omorphic” range of tracer diffusion12
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Abstract13

Individual grains move through gravel bed rivers in cycles of motion and rest with14

variable characteristics, so tracer grains spread apart as they transport downstream15

in a type of diffusion. Experiments and Newtonian simulations have demonstrated16

nuanced diffusion characteristics, with at least three distinct ranges of behavior as the17

observation time of tracers increases and each range exhibiting a different spreading18

rate. Although these observations are nearly 20 years old, no physical model has19

been developed to describe them, leaving us uncertain of the generating processes.20

In this work, we develop the first physical model describing three bedload diffusion21

ranges by incorporating sediment motion, rest, and burial into a random walk concept22

of individual bedload trajectories. Using the model, we attribute multiple bedload23

diffusion ranges to the interplay between motion, rest, and burial processes, and we24

relate the multi-range diffusion characteristics to measurable transport parameters.25

1 Introduction26

Many environmental problems including channel morphology (Hassan & Bradley,27

2017), contaminant transport (Macklin et al., 2006), and aquatic habitat restoration28

(Gaeuman, Stewart, Schmandt, & Pryor, 2017) rely on our ability to predict the diffu-29

sion characteristics of coarse sediment tracers in river channels. Diffusion is quantified30

by the time dependence of the positional variance σ2
x of a group of tracers. With the31

scaling σ2
x ∝ t, the diffusion is said to be normal, since this is found in the classic32

problems (Taylor, 1920). However, with the scaling σ2
x ∝ tγ with γ 6= 1, the diffu-33

sion is said to be anomalous (Sokolov, 2012), with γ > 1 defining super-diffusion and34

γ < 1 defining sub-diffusion (Metzler & Klafter, 2000). Einstein (1937) developed one35

of the earliest models of bedload diffusion to describe a series of flume experiments36

(Ettema & Mutel, 2014). Interpreting individual bedload trajectories as a sequence of37

random steps and rests, Einstein originally concluded that a group of bedload tracers38

undergoes normal diffusion.39

More recently, Nikora et al. realized coarse sediment tracers can show either nor-40

mal or anomalous diffusion depending on the length of time they have been tracked41

(Nikora, 2002; Nikora, Heald, Goring, & McEwan, 2001). From numerical simula-42

tions and experimental data, Nikora et al. discerned “at least three” scaling ranges43

σ2
x ∝ tγ as the observation time increased. They associated the first range with “lo-44

cal” timescales less than the interval between subsequent collisions of moving grains45

with the bed, the second with “intermediate” timescales less than the interval between46

successive resting periods of grains, and the third with “global” timescales composed47

of many intermediate timescales. Nikora et al. proposed super-diffusion in the local48

range, anomalous or normal diffusion in the intermediate range, and sub-diffusion in49

the global range. They attributed these ranges to “differences in the physical pro-50

cesses which govern the local, intermediate, and global trajectories” of grains (Nikora51

et al., 2001), and they called for a physically based model to explain the diffusion52

characteristics (Nikora, 2002).53

Experiments support the Nikora et al. conclusion of multiple scaling ranges54

(Fathel, Furbish, & Schmeeckle, 2016; Martin, Jerolmack, & Schumer, 2012), but they55

do not provide consensus on the expected number of ranges or their scaling properties.56

This lack of consensus probably stems from resolution issues. For example, experiments57

have tracked only moving grains, resolving the local range (Fathel et al., 2016; Furbish,58

Ball, & Schmeeckle, 2012; Furbish, Fathel, Schmeeckle, Jerolmack, & Schumer, 2017);59

grains resting on the bed surface between movements, resolving the intermediate range60

(Einstein, 1937; Nakagawa & Tsujimoto, 1976; Yano, 1969); grains either moving or61

resting on the bed surface, likely resolving local and intermediate ranges (Martin et62

al., 2012); or grains resting between subsequent floods, likely resolving the global range63
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(Bradley, 2017; Phillips, Martin, & Jerolmack, 2013). At long timescales, a significant64

fraction of tracers bury under the bed surface (Ferguson, Bloomer, Hoey, & Werritty,65

2002; Haschenburger, 2013; Hassan, Church, & Schick, 1991; Hassan, Voepel, Schumer,66

Parker, & Fraccarollo, 2013; Papangelakis & Hassan, 2016), meaning burial dominates67

long term diffusion characteristics (Bradley, 2017; Martin, Purohit, & Jerolmack, 2014;68

Voepel, Schumer, & Hassan, 2013), possibly at global or even longer “geomorphic”69

timescales (Hassan & Bradley, 2017) than Nikora et al. originally considered. As a70

result, three diffusion ranges can be identified by patching together multiple datasets71

(Nikora, 2002; Zhang, Meerschaert, & Packman, 2012), but they are not resolved by72

any one dataset.73

Newtonian bedload trajectory models also show multiple diffusion ranges, al-74

though they also do not provide consensus on the expected number of ranges or their75

scaling properties. The majority of these models predict two ranges of diffusion (local76

and intermediate) without predicting a global range. Among these, Nikora et al. (2001)77

used synthetic turbulence (Kraichnan, 1970) with a discrete element method for the78

granular phase (Cundall & Strack, 1979); Bialik, Nikora, and Rowiński (2012) used79

synthetic turbulence with a random collision model (Sekine & Kikkawa, 1992); and80

Fan, Singh, Guala, Foufoula-Georgiou, and Wu (2016) used a Langevin equation with81

probabilistic rests. To our knowledge, only Bialik, Nikora, Karpiński, and Rowiński82

(2015) have claimed to capture all three ranges from a semi-Newtonian approach.83

They incorporated a second resting mechanism into their earlier model (Bialik et al.,84

2012), implicitly suggesting that three diffusion ranges could result from two distinct85

timescales of sediment rest. However, Newtonian approaches have not evaluated the86

effect of sediment burial on tracer diffusion.87

Random walk bedload diffusion models constructed in the spirit of Einstein88

(1937) provide an alternative to the Newtonian approach and can include a second89

timescale of rest by incorporating sediment burial. Einstein originally modeled bedload90

trajectories as instantaneous steps interrupted by durations of rest lying on statistical91

distributions (Hassan et al., 1991), but this generates only one range of normal diffu-92

sion (Einstein, 1937; Hubbell & Sayre, 1964; Nakagawa & Tsujimoto, 1976). Recently,93

researchers have generalized Einstein’s model in a few different ways to describe multi-94

ple diffusion ranges. Lisle et al. (1998) and Lajeunesse, Devauchelle, and James (2018)95

promoted Einstein’s instantaneous steps to motion intervals with random durations96

and a constant velocity, providing two diffusion ranges – local and intermediate. Wu,97

Foufoula-Georgiou, et al. (2019) retained Einstein’s instantaneous steps but included98

the possibility that grains can become permanently buried as they rest on the bed,99

also providing two diffusion ranges – intermediate and global. Although no Einstein-100

type model of three bedload diffusion ranges has been developed, these earlier works101

suggest the minimal required components are (1) exchange between motion and rest102

intervals and (2) the sediment burial process.103

In this study, we incorporate these two components into Einstein’s original ap-104

proach to describe three diffusion ranges with a physically based model as called for by105

Nikora (2002). Einstein was a giant in river geophysics and fostered an entire paradigm106

of research leveraging and generalizing his stochastic methods (Gordon, Carmichael, &107

Isackson, 1972; Hubbell & Sayre, 1964; Nakagawa & Tsujimoto, 1976; Paintal, 1971;108

Yang & Sayre, 1971; Yano, 1969). Einstein’s model can be viewed as a pioneering109

application of the continuous time random walk (CTRW) developed by Montroll and110

Weiss (1965) in condensed matter physics to describe the diffusion of charge carriers in111

solids. To incorporate motion intervals and sediment burial, we utilize the multi-state112

CTRW developed by Weiss (1976, 1994) that extends the CTRW of Montroll and113

Weiss (1965). Below, we develop and solve the model in section 2, and we discuss the114

predictions of our model, present its implications for local, intermediate, and global115
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ranges of bedload diffusion, and suggest next steps for bedload diffusion research in116

sections 3 and 4.117

2 Bedload trajectories as a multi-state random walk118

2.1 Model assumptions119

We construct a three-state random walk where the states are motion, rest, and120

burial, and we label these states as i = 2 (motion), i = 1 (rest), and i = 0 (burial).121

Our target is the probability distribution p(x, t) to find a grain at position x and time t122

if we know it started with the initial distribution p(x, 0) = δ(x). We characterize times123

spent moving or resting on the surface by exponential distributions ψ2(t) = k2e
−k2t

124

and ψ1(t) = k1e
−k1t, since numerous experiments show thin-tailed distributions for125

these quantities (Ancey, Böhm, Jodeau, & Frey, 2006; Einstein, 1937; Fathel, Furbish,126

& Schmeeckle, 2015; Martin et al., 2012; Roseberry, Schmeeckle, & Furbish, 2012).127

We expect our conclusions will not be contingent on the specific distributions chosen,128

since all thin-tailed distributions provide similar diffusion characteristics in random129

walks (Weeks & Swinney, 1998; Weiss, 1994). We consider grains in motion to have130

characteristic velocity v (Lajeunesse et al., 2018; Lisle et al., 1998), and we model131

burial as long lasting enough to be effectively permanent (Wu, Foufoula-Georgiou, et132

al., 2019), with grains resting on the surface having a probability per unit time κ to133

become buried, meaning Φ(t) = e−κt represents the probability that a grain is not134

buried after resting for a time t, while 1 − Φ(t) represents the probability that it is135

buried. We specify the initial conditions with probabilities θ1 and θ2 to be in rest and136

motion at t = 0, and we require θ1 + θ2 = 1 for normalization.137

2.2 Governing equations138

Using these assumptions, we derive the governing equations for the set of prob-139

abilities ωij(x, t) that a transition occurs from state i to state j at position x and140

time t using the statistical physics approach to multi-state random walks (Schmidt,141

Sagués, & Sokolov, 2007; Weeks & Swinney, 1998; Weiss, 1994). Denoting by gij(x, t)142

the probability for a particle to displace by x in a time t within the state i before it143

transitions to the state j, the transition probabilities ωij(x, t) sum over all possible144

paths to the state i from previous locations and times:145

ωij(x, t) = θigij(x, t) +

2∑
k=0

∫ x

0

dx′
∫ t

0

dt′ωki(x
′, t′)gij(x− x′, t− t′). (1)

Defining another set of probabilities Gi(x, t) that a particle displaces by a distance146

x in a time t within the state i and possibly remains within the state, we perform a147

similar sums over paths for the probabilities to be in the state i at x, t:148

pi(x, t) = θiGi(x, t) +

2∑
k=0

∫ x

0

dx′
∫ t

0

dt′ωki(x
′, t′)Gi(x− x′, t− t′). (2)

Finally, the overall probability to be at position x at time t is149

p(x, t) =

2∑
k=0

pk(x, t) (3)

This joint density is completely determined from the solutions of equations (1-2). We150

only need to specify the distributions gij and Gi.151

2.3 Joint probability distribution152

We construct these distributions from the assumptions described in section 2.1.153

Since particles resting on the bed surface bury in a time t with probability Φ(t),154
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and resting times are distributed as ψ1(t), we obtain g12(x, t) = δ(x)k1e
−k1te−κt and155

g10(x, t) = δ(x)k1e
−k1t(1− e−κt). Since motions have velocity v for times distributed156

as ψ2(t), we have g21(x, t) = δ(x − vt)k2e
−k2t. Since burial is quasi-permanent, all157

other gij = 0. The Gi are constructed in the same way except using the cumulative158

probabilities
∫∞
t
dt′ψi(t) = e−kit, since these characterize motions and rests that are159

ongoing (Weiss, 1994). We obtain G1(x, t) = δ(x)e−k1t and G2(x, t) = δ(x− vt)e−k2t.160

To solve equations (1-2) with these gij and Gi, we take Laplace transforms in161

space and time (x, t → η, s) using a method similar to Weeks and Swinney (1998) to162

unravel the convolution structure of these equations, eventually obtaining163

p̃(η, s) =
1

s

(s+ κ+ k′)s+ θ1(s+ κ)ηv + κk2

(s+ κ+ k1)ηv + (s+ κ+ k′)s+ κk2
, (4)

where k′ = k1 + k2. Inverting this result using known Laplace transforms (Arfken,164

1985; Prudnikov, Brychkov, Marichev, & Romer, 1988) obtains165

p(x, t) = θ1

[
1− k1

κ+ k1

(
1− e−(κ+k1)t

)]
δ(x) (5)

+
1

v
e−Ωτ−ξ

(
θ1

[
k1I0

(
2
√
ξτ
)

+ k2

√
τ

ξ
I1

(
2
√
ξτ
)]

(6)

+ θ2

[
k1δ(τ) + k2I0

(
2
√
ξτ
)

+ k1

√
ξ

τ
I1

(
2
√
ξτ
)])

(7)

+
1

v

κk2

κ+ k1
e−κξ/(κ+k1)

[
(θ1/Ω)Q2(ξ/Ω,Ωτ) + θ2Q1(ξ/Ω,Ωτ)

]
(8)

for the joint distribution that a tracer is found at position x at time t. This result166

generalizes the earlier results of Lisle et al. (1998) and Einstein (1937) to include167

sediment burial. In this equation, we used the shorthand notations ξ = k2x/v, τ =168

k1(t − x/v), and Ω = (κ + k1)/k1 (Lisle et al., 1998). The Iν are modified Bessel169

functions of the first kind and the Qµ are generalized Marcum Q-functions defined170

by Qµ(x, y) =
∫ y

0
e−z−x(z/x)(µ−1)/2Iµ−1(2

√
xz)dz and originally devised for radar171

detection theory (Marcum, 1960; Temme, 1996). Burial generates the Marcum Q-172

functions, since we assumed resting grains could bury with an exponential probability,173

while the rest probability follows a modified Bessel distribution (Einstein, 1937; Lisle174

et al., 1998).175

Figure 1 depicts the distribution (8) alongside simulations generated by a direct176

method based on evaluating the cumulative transition probabilities between states on177

a small timestep (Barik, Ghosh, & Ray, 2006). When grains do not become buried,178

as in panel (a) of figure 1, the distribution becomes Gaussian-like at relatively large179

observation times, exemplifying normal diffusion and satisfying the central limit the-180

orem. When grains become buried, as in panel (b) of figure 1, the Q-function terms181

prevent the distribution from approaching a Gaussian at large timescales, exemplifying182

anomalous diffusion (Weeks & Swinney, 1998) and violating the central limit theorem183

(Metzler & Klafter, 2000; Schumer, Meerschaert, & Baeumer, 2009).184

2.4 Positional variance185

To obtain an analytical formula for tracers diffusing downstream while they grad-186

ually become buried, we derive the first two moments of position by taking derivatives187

with respect to η of the Laplace space distribution (4) using an approach similar to188

Shlesinger (1974) and Weeks and Swinney (1998), and we use these to calculate the189

positional variance σ2
x = 〈x2〉 − 〈x〉2. The first two moments are190

〈x(t)〉 = A1e
(b−a)t +B1e

−(a+b)t + C1, (9)

〈x2(t)〉 = A2(t)e(b−a)t +B2(t)e−(a+b)t + C2, (10)

–5–
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Figure 1. Joint distributions for a grain to be at position x at time t are displayed for the

choice k1 = 0.1, k2 = 1.0, v = 2.0. Grains are considered initially at rest (θ1 = 1, θ2 = 0).

The solid lines are the analytical distribution in equation (8), while the points are numerically

simulated, showing the correctness of our derivations. Colors pertain to different times. Units are

unspecified, since we aim to demonstrate the general characteristics of p(x, t). Panel (a) shows

the case κ = 0 – no burial. In this case, the joint distribution tends toward Gaussian at large

times (Einstein, 1937; Lisle et al., 1998). Panel (b) shows the case when grains have rate κ = 0.01

to become buried while resting. Because of burial, the joint distribution tends toward a more

uniform distribution than Gaussian.

so the variance is191

σ2
x(t) = A(t)e(b−a)t +B(t)e−(a+b)t + C(t). (11)

In these equations, a = (κ + k1 + k2)/2 and b =
√
a2 − κk2 are effective rates having192

dimensions of inverse time, while the A, B, and C factors are provided in table 1.193

Table 1. Abbreviations used in the expressions of the mean (9), second moment (10) and

variance (11) of bedload tracers.

A1 =
v

2b

[
θ2 +

k1 + θ2κ

b− a
]

B1 = − v

2b

[
θ2 −

k1 + θ2κ

a+ b

]
C1 = − v

2b

[k1 + θ2κ

b− a +
k1 + θ2κ

a+ b

]
A2(t) =

v2

2b3

[
(bt− 1)[k1 + θ2(2κ+ k1 + b− a)] + θ2b+

(κ+ k1)(θ2κ+ k1)

(b− a)2
[(bt− 1)(b− a)− b]

]
B2(t) =

v2

2b3

[
(bt+ 1)[k1 + θ2(2κ+ k1 − a− b)] + θ2b−

(κ+ k1)(θ2κ+ k1)

(a+ b)2
[(bt+ 1)(a+ b) + b]

]
C2 =

v2

2b3
(κ+ k1)(θ2κ+ k1)

[ 2b− a
(b− a)2

+
a+ 2b

(a+ b)2

]
A(t) = A2(t)− 2A1C1 −A2

1 exp[(b− a)t]

B(t) = B2(t)− 2B1C1 −B2
1 exp[−(a+ b)t]

C(t) = C2 − C2
1 − 2A1B1 exp[−2at]

–6–



manuscript submitted to Geophysical Research Letters

Figure 2. The variance (11) is plotted for the parameters 1/k2 = 1.5s, 1/k1 = 30.0s,

and v = 0.1m/s. These values compare to laboratory flume experiments transporting small

(∼ 5mm) gravels (cf., Lajeunesse et al., 2010; Martin et al., 2012). The timescale of burial is

set to 1/κ = 7200.0s (two hours), and the initial condition is rest (θ1 = 1). The solid line is

equation (11) while the points are numerically simulated. When k2 � k1 � κ as in this plot,

there are four distinct scaling ranges of σ2
x: local, intermediate, global, and geomorphic. Within

each range, a slope key is added to demonstrate the scaling σ2
x ∝ tγ . There are three crossovers

between these ranges, denoted on the figure by vertical lines and labeled by timescales TL, TI ,

and TG. These timescales depend on k2, k1, and κ.

The positional variance (11) is plotted in figure 2 for conditions θ1 = 1 and194

k2 � k1 � κ. We interpret “�” to mean “of at least an order of magnitude greater”.195

These conditions are most relevant to tracers in gravel-bed rivers, since they mean all196

grains are initially at rest (Hassan et al., 1991; Wu, Foufoula-Georgiou, et al., 2019),197

motions are typically much shorter than rests (Einstein, 1937; Hubbell & Sayre, 1964),198

and burial requires a much longer time than typical rests (Ferguson & Hoey, 2002;199

Haschenburger, 2013; Hassan & Church, 1994). Figure 2 demonstrates that under these200

conditions the variance (11) shows three diffusion ranges with approximate power law201

scaling (σ2
x ∝ tγ) that we identify as the local, intermediate, and global ranges proposed202

by Nikora et al., followed by a fourth range of no diffusion (σ2
x = const) stemming from203

the burial of all tracers. We suggest to call the fourth range geomorphic, since any204

further transport in this range can occur only if scour re-exposes buried grains to the205

flow (Martin et al., 2014; Nakagawa & Tsujimoto, 1980; Voepel et al., 2013; Wu, Singh,206

Fu, & Wang, 2019).207

2.5 Diffusion exponents208

Two limiting cases of equation (11) provide the scaling exponents γ of the dif-209

fusion σ2
x ∝ tγ in each range. Limit (1) represents times so short a negligible amount210

of sediment burial has occurred, t � 1/κ, while limit (2) represents times so long211

motion intervals appear as instantaneous steps of mean length l = v/k2, 1/k2 → 0212

–7–
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while v/k2 = constant. Limit (1) provides local exponent 2 ≤ γ ≤ 3 depending on the213

initial conditions θi, and intermediate exponent γ = 1. If grains start in motion or rest214

exclusively, meaning one θi = 0, the local exponent is γ = 3, while if grains start in215

a mixture of motion and rest states, meaning neither θi is zero, the local exponent is216

γ = 2. Limit (2) provides global exponent 1 ≤ γ ≤ 3 depending on the relative impor-217

tance of κ and k1. In the extreme k1/κ� 1, we find γ = 1 in the global range, while218

in the opposite extreme k1/κ→∞ we find γ = 3. We summarize when k2 � k1 � κ219

so all three diffusion ranges exist, equation (11) implies:220

1. local range super-diffusion with 2 < γ < 3 depending on whether grains start221

from purely motion or rest (γ = 3) or from a mixture of both states (γ = 2),222

2. intermediate range normal diffusion γ = 1 independent of model parameters,223

and224

3. global range super-diffusion 1 < γ < 3 depending on whether burial happens225

relatively slowly (γ → 1) or quickly (γ → 3) compared to surface resting times.226

Finally, the burial of all tracers generates a geomorphic range of no diffusion.227

3 Discussion228

3.1 Local and intermediate ranges with comparison to earlier work229

We extended Einstein (1937) by including motion and burial processes in a multi-230

state random walk (Weeks & Swinney, 1998; Weiss, 1994) to demonstrate that a group231

of bedload tracers moving downstream while gradually becoming buried will generate232

a super-diffusive local range (Fathel et al., 2016; Martin et al., 2012; Witz, Cameron,233

& Nikora, 2019), a normal-diffusive intermediate range (Nakagawa & Tsujimoto, 1976;234

Yano, 1969), and a super-diffusive global range (Bradley, 2017; Bradley, Tucker, & Ben-235

son, 2010), before the diffusion eventually terminates in a geomorphic range (Hassan236

& Bradley, 2017). Nikora (2002) highlighted the need for such a physical description,237

although they suggested to use a two-state random walk between motion and rest238

states with heavy-tailed resting times, and they did not discuss sediment burial. In239

the preliminary studies for this paper, we found that a two-state walk with heavy-240

tailed rests provides two diffusion ranges – not three: this conclusion is also suggested241

by Weeks, Urbach, and Swinney (1996) and Fan et al. (2016). Although heavy-tailed242

surface resting times have been documented (Fraccarollo & Hassan, 2019; Liu, Pelosi,243

& Guala, 2019), they are more often associated with sediment burial (Martin et al.,244

2012, 2014; Olinde & Johnson, 2015; Pelosi, Schumer, Parker, & Ferguson, 2016; Voe-245

pel et al., 2013), and surface resting times usually display light tails (Ancey et al.,246

2006; Einstein, 1937; Habersack, 2001; Nakagawa & Tsujimoto, 1976; Yano, 1969).247

These realizations and the need for a physical model of three diffusion ranges led us248

to develop a three-state random walk for bedload trajectories with light-tailed surface249

resting times and sediment burial.250

The local and intermediate range diffusion characteristics resulting from our251

model correspond closely to the original Nikora et al. concepts, while our global range252

has a different origin than Nikora et al. described. Nikora et al. (2001) explained253

that local diffusion results from the non-fractal (smooth) characteristics of bedload254

trajectories between subsequent interactions with the bed, while intermediate diffu-255

sion results from the fractal (rough) characteristics of bedload trajectories after many256

interactions with the bed. Our model represents these conclusions: non-fractal (and257

super-diffusive) bedload trajectories exist on timescales short enough that each grain258

is either resting or moving, while fractal (and normal-diffusive) bedload trajectories259

exist on timescales when grains are actively switching between motion and rest states260

(e.g., Einstein, 1937). We conclude that local and intermediate ranges stem from the261

interplay between motion and rest timescales, as demonstrated by earlier two-state262

–8–
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random walk models (Lajeunesse et al., 2018; Lisle et al., 1998) and by all Newtonian263

models that develop sequences of rests and motions (Bialik et al., 2012; Nikora et al.,264

2001), even those including heavy-tailed rests (Fan et al., 2016).265

3.2 Global and geomorphic ranges with next steps for research266

Nikora et al. explained that divergent resting times generate a sub-diffusive267

global range. However, studies have demonstrated that heavy-tailed resting times268

can generate super-diffusion in asymmetric random walks (Weeks & Swinney, 1998;269

Weeks et al., 1996), and both experiments (Bradley, 2017; Bradley et al., 2010) and270

models (Pelosi et al., 2016; Wu, Foufoula-Georgiou, et al., 2019; Wu, Singh, et al.,271

2019) of bedload tracers undergoing burial have demonstrated global super-diffusion.272

While our results also show global range super-diffusion, they do not refute the Nikora273

et al. conclusion of sub-diffusion at large timescales. We assumed sediment burial274

was a permanent condition which developed an extremely sub-diffusive geomorphic275

range (γ → 0). In actuality, burial is a temporary condition since bed scour can276

exhume buried sediment back into transport (Wu, Singh, et al., 2019), probably after277

heavy-tailed intervals (Martin et al., 2014; Pelosi et al., 2016; Voepel et al., 2013). We278

anticipate that a generalization of our model including heavy-tailed intervals separating279

burial and exhumation would develop four ranges of diffusion, with a genuinely sub-280

diffusive scaling (0 < γ < 1) in the geomorphic range (Weeks & Swinney, 1998),281

leaving Nikora et al. with the final word on long-time sub-diffusion.282

The analytical solution of bedload diffusion in equation (11) reduces exactly to283

the analytical solutions of the Lisle et al. (1998) and Lajeunesse et al. (2018) mod-284

els in the limit without burial (κ → 0), the Wu, Foufoula-Georgiou, et al. (2019)285

model in the limit of instantaneous steps (k2 → ∞ and l = v/k2), and the original286

Einstein (1937) model in the limit of instantaneous steps without burial. These re-287

ductions demonstrate that the majority of recent bedload diffusion models, whether288

developed from Exner-type equations (Pelosi & Parker, 2014; Pelosi et al., 2016; Wu,289

Foufoula-Georgiou, et al., 2019) or advection-diffusion equations (Lajeunesse et al.,290

2018; Lisle et al., 1998), can be viewed equivalently as continuous time random walks291

applied to individual bedload trajectories. Within random walk theory, sophisticated292

mathematical descriptions of transport with variable velocities (Masoliver & Weiss,293

1994; Zaburdaev, Schmiedeberg, & Stark, 2008), correlated motions (Escaff, Toral,294

Van Den Broeck, & Lindenberg, 2018; Vicsek & Zafeiris, 2012), and anomalous diffu-295

sion (Fa, 2014; Masoliver, 2016; Metzler, Jeon, Cherstvy, & Barkai, 2014) have been296

developed. Meanwhile, in bedload transport research, variable velocities (Furbish et297

al., 2012; Heyman, Bohorquez, & Ancey, 2016; Lajeunesse et al., 2010), correlated298

motions (Heyman, Ma, Mettra, & Ancey, 2014; Lee & Jerolmack, 2018; Saletti & Has-299

san, 2020), and anomalous diffusion (Bradley, 2017; Fathel et al., 2016; Schumer et300

al., 2009) constitute open research issues. We believe further exploiting the linkage301

between existing bedload models and random walk concepts could rapidly progress302

our understanding of these issues.303

4 Conclusion304

We developed a random walk model to describe sediment tracers transporting305

through a river channel as they gradually become buried, providing a physical descrip-306

tion of the local, intermediate, and global diffusion ranges identified by Nikora (2002).307

Pushing their ideas somewhat further, we proposed a geomorphic range to describe308

diffusion characteristics at timescales larger than the global range when burial and309

exhumation moderate downstream transport. At base level, our model demonstrates310

that (1) durations of sediment motions, (2) durations of sediment rest, and (3) the311

sediment burial process are sufficient to develop three diffusion ranges. A next step312

–9–
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is to incorporate exhumation to better understand the geomorphic range. Ultimately,313

we emphasize that the multi-state random walk formalism used in this paper implic-314

itly underlies most existing bedload diffusion models and provides a useful tool for315

researchers targeting landscape-scale understanding from statistical concepts of grain-316

scale dynamics.317
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