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Abstract

Soil water is essential for maintaining global food security and for understanding hydrological, meteorological, and ecosystem

processes under climate change. Successful monitoring and forecasting of soil water dynamics at high spatio-temporal resolutions

globally are hampered by the heterogeneity of soil hydraulic properties in space and complex interactions between water and

the environmental variables that control it. Current soil water monitoring schemes via station networks are sparsely distributed

while remote sensing satellite soil moisture maps have a very coarse spatial resolution. In this study, an empirical surface

soil moisture (SSM) model was established via data fusion of remote sensing (Sentinel-1 and Soil Moisture Active and Passive

Mission - SMAP) and land surface parameters (e.g. soil texture, terrain) using a quantile random forest (QRF) algorithm. The

model had a spatial resolution of 100 m and performed moderately well across the globe under cropland, grassland, savanna,

barren, and forest soils (R = 0.53, RMSE = 0.08 m m). SSM was retrieved and mapped at 100 m every 6-12 days in selected

irrigated cropland and rainfed grassland in the OZNET network, Australia. It was concluded that the high-resolution SSM

maps can be used to monitor soil water content at the field scale for irrigation management. The SSM model is an additive and

adaptable model, which can be further improved by including soil moisture network measurements at the field scale. Further

research is required to improve the temporal resolution of the model and map soil water content within the root zone.
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Abstract 24 

Soil water is essential for maintaining global food security and for understanding hydrological, 25 

meteorological, and ecosystem processes under climate change. Successful monitoring and 26 

forecasting of soil water dynamics at high spatio-temporal resolutions globally are hampered by 27 

the heterogeneity of soil hydraulic properties in space and complex interactions between water 28 

and the environmental variables that control it. Current soil water monitoring schemes via in situ 29 

station networks are sparsely distributed while remote sensing satellite soil moisture maps have a 30 

very coarse spatial resolution. In this study, an empirical surface soil moisture (SSM) model was 31 

established via data fusion of remote sensing (Sentinel-1 and Soil Moisture Active and Passive 32 

Mission - SMAP) and land surface parameters (e.g. soil texture, terrain) using a quantile random 33 

forest (QRF) algorithm. The model had a spatial resolution of 100 m and performed moderately 34 

well across the globe under cropland, grassland, savanna, barren, and forest soils (R
2
 = 0.53, 35 

RMSE = 0.08 m
3
 m

-3
). SSM was retrieved and mapped at 100 m every 6-12 days in selected 36 

irrigated cropland and rainfed grassland in the OZNET network, Australia. It was concluded that 37 

the high-resolution SSM maps can be used to monitor soil water content at the field scale for 38 

irrigation management. The SSM model is an additive and adaptable model, which can be further 39 

improved by including soil moisture network measurements at the field scale. Further research is 40 

required to improve the temporal resolution of the model and map soil water content within the 41 

root zone.  42 
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1. Introduction 43 

Water plays a fundamental role in terrestrial ecosystems and human society. Soil water is a 44 

critical factor for a number of terrestrial biochemical, climate, and atmospheric processes and is 45 

the source of water for most of the crops that we eat (Vereecken et al., 2014). Monitoring and 46 

forecasting soil water content and fluxes (e.g. evapotranspiration, deep drainage) are essential for 47 

maintaining global food security (Hoekstra and Mekonnen, 2012) and understanding 48 

hydrological, meteorological, and ecosystem processes under climate change (Seneviratne et al., 49 

2010; Trugman et al., 2018;  Stoy et al., 2019).  50 

Successful monitoring and forecasting soil water content and fluxes at high spatio-51 

temporal resolutions globally is hampered by many factors, including heterogeneity of soil 52 

hydraulic properties in space (Robinson et al., 2008), complex interactions between water, 53 

environment, and human activities (Vereecken et al., 2014), and computational challenges 54 

(Chaney et al., 2018). Current regional and continental soil water monitoring networks are too 55 

sparsely distributed (e.g. ~100 km) to be used for field-scale research and application (e.g. 56 

irrigation) while remote sensing satellite soil moisture missions often have a coarse spatial 57 

resolution (> 1 km) (Ochsner et al., 2017). 58 

Recent technological advances provide a potential solution to mapping soil water 59 

variability at the field scale. First, high-resolution remote sensing satellite missions have been 60 

launched to monitor soil water dynamics and land surface parameters (e.g. vegetation, terrain, 61 

and soil properties) have become available (Reuter et al., 2007; Friedl et al., 2010; Hengl et al., 62 

2017; Fisher et al., 2017), which characterize the heterogeneity of land cover, soil, and terrain 63 

features at the field scale. Second, machine learning and supercomputers have been increasingly 64 

used to model complex interactions between water content and fluxes with environmental 65 

variables (Lu et al., 2015 and 2017; Adeyemi et al., 2018; Chaney et al., 2018; Prasad et al., 66 

2018). Therefore, it is possible to combine these remote sensing and land surface datasets for 67 

improved delineation of soil water variability at the field scale. 68 

Though earlier attempts have made successes on mapping surface soil moisture (SSM) at 69 

finer resolutions (i.e. 500 m to 1 km) using empirical and mechanistic models with European 70 

Space Agency Sentinel-1 (ESA-Sentinel-1) and/or National Aeronautics and Space 71 

Administration - Soil Moisture Active Passive (NASA-SMAP) Mission data with different 72 

spatial and temporal resolutions (Lievens et al., 2017; Bauer-Marschallinger et al., 2018; Das et 73 
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al., 2019; Guevara and Vargas, 2019; Reichle et al., 2019), one unresolved research question 74 

remains: how much further can we improve the spatial and temporal resolutions of the models to 75 

characterize the heterogeneity of SSM at scales relevant for management of food and water 76 

resources? 77 

To answer the question, this paper will focus on two objectives: 1) to develop an empirical 78 

machine learning model that is able to retrieve and map SSM across the globe at 100-m every 6-79 

12 days over 4 years (2016–2019) by synergistic fusion of remote sensing data from Sentinel-1 80 

and SMAP with land surface parameters via a machine learning algorithm (quantile random 81 

forest); 2) to apply the SSM model to selected irrigated cropland and rainfed grassland in the 82 

semi-arid region of Australia to demonstrate the potential application of the high-resolution 83 

machine learning based SSM maps for irrigation management. Our working hypothesis is a 84 

combination of remote sensing and land surface parameters data will improve the model 85 

performance of SSM retrieval at the field scale (i.e. 100 m). 86 

 87 

2. Materials and Methods 88 

2.1. Remote Sensing and Land Surface Data 89 

Ground SSM measurements from various soil moisture networks were used as training and 90 

validation data for the remote sensing and land surface data that were used as covariates to 91 

retrieve SSM across the globe. Both remote sensing and land surface datasets were spatially 92 

explicit with the remote sensing data time-varying and the land surface datasets time-constant 93 

(Figure 2 and Table 1). 94 

Table 1 (near here) 95 

2.2. NASA SMAP Mission 96 

The SMAP mission was launched by the NASA, which provides land surface measurements 97 

across the globe with a revisit time of 2-3 days. It relies on the simultaneous measurements of L-98 

band backscatter from an active synthetic-aperture radar (SAR) and brightness temperature from 99 

a passive L-band radiometer to retrieve SSM (Lievens et al., 2017). The sensors operate at a 100 

constant incidence angle. The use of L-band microwave signals enables detection of land surface 101 

moisture under moderate vegetation cover, through cloud cover, and during day and night. Since 102 

the failure of the radar in 2015, the SMAP mission can only retrieve SSM based on the passive 103 

radiometer. In this study, the SMAP_L3_SM_P product was used, which retrieves SSM at 0–104 
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0.05 m with a resampled spatial resolution of 36 km × 36 km and a revisit time of 2-3 days 105 

across the globe based on a physical model using the brightness temperature and other ancillary 106 

datasets (O’Neill et al., 2015). 107 

SMAP data were downloaded from Earth Data (https://earthdata.nasa.gov/) using the R 108 

platform (Version 3.6.0) with the package “smapr” (Version 0.2.1) from March 1
st
 to October 1

st
 109 

between 2016 and 2019. The period was selected to avoid frozen soils within the various soil 110 

moisture networks because of the poor performance of SSM retrieval over frozen ground. 111 

Afterward, the data were gap-filled pixel-wise using a simple temporal moving average with a 112 

window size of 3 days using the “imputeTS” package. The small window size was selected to 113 

avoid smoothing of SSM due to its strong variability over time. This generated SSM estimates at 114 

a 36 km × 36 km resolution on a daily basis during the study period, which were used as time-115 

varying covariates for modeling SSM. 116 

 117 

2.3. ESA Sentinel-1 mission 118 

Sentinel-1 mission was launched by the European Space Agency (ESA), which consists of C-119 

band SARs situated at a two-satellite constellation operating at dual polarizations: single co-120 

polarization with vertical transmit/vertical receive (abbreviated as VV) and dual-band cross-121 

polarization with vertical transmit/horizontal receive (abbreviated as VH). It measures the land 122 

surface backscatter intensity at VV and VH polarizations with a varying incidence angle with a 123 

spatial resolution of 5 m × 20 m and a revisit time of 6–12 days. The use of a C-band microwave 124 

signal leads to a reduced penetration depth of Sentinel-1’s sensors under moderate vegetation 125 

cover compared to SMAP. The relationship between SAR backscatter and the dielectric constant 126 

of the soil (a function of soil moisture) enables retrieval of SSM from the Sentinel-1 data. 127 

Because the empirical model of the Sentinel-1 mission only retrieves relative SSM instead of soil 128 

volumetric water content (Bauer-Marschallinger et al., 2018), and because the physical retrieval 129 

model is currently under development (Lievens et al., 2017), the backscatter and incidence angle 130 

data were selected as covariates. Here, classical physical models (e.g. Oh et al., 1992; Fung, 131 

1994; Dubois et al., 1995) were not used to retrieve SSM from the Sentinel-1 data because 132 

researchers have reported poor performance of the physical models when SSM is large and land 133 

surface roughness is high (Merzouki et al., 2011; Lievens et al,. 2017). 134 



6 

 

The backscatter data were preprocessed using the Sentinel-1 Toolbox 135 

(https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1) within the Google Earth Engine 136 

platform (https://developers.google.com/earth-engine/sentinel1), which involves thermal noise 137 

removal, radiometric calibration, and terrain correction using Shuttle Radar Topography Mission 138 

(SRTM) 30-m digital elevation model (Rabus et al., 2003). To minimize the speckle effects of 139 

the resampled Sentinel-1 radar data (Gao et al., 2017), additional preprocessing procedures were 140 

applied using the Google Earth Engine platform (Gorelick et al., 2017). This was suggested by 141 

Bauer-Marschallinger et al. (2018) and involved dynamic masking the extreme backscatter 142 

values outside the normal ranges for VV (–5 to –25 dB) and VH (–10 to –30 dB), spatial 143 

aggregating to 100 m × 100 m, and filtering with a 3 × 3 Gaussian filter. The processed Sentinel-144 

1 data included backscatter data and incidence angle values at a 100 m × 100 m resolution with a 145 

revisit time of 6–12 days, which were used as time-varying covariates for modeling SSM. 146 

To facilitate the retrieving of SSM from Sentinel-1 data, a number of temporal indices 147 

were calculated from the processed Sentinel-1 backscatter images pixel-wise to account for the 148 

land surface characteristics, such as temporal minimum, mean, maximum, and standard deviation 149 

(SD) of the backscatter data. These temporal statistics of the sensor measurements over time 150 

contain characteristics of the soil and vegetation in the field (Huang et al., 2019) and were used 151 

as time-constant covariates for modeling SSM. 152 

 153 

2.4. Terrain Parameters 154 

In addition to remote sensing datasets that can be directed used to retrieve SSM, terrain 155 

parameters that characterize topography characteristics have been used to indirectly model or 156 

downscale SSM (Entekhabi et al., 2010; Guevara and Vargas, 2019). In this study, a 500-m 157 

aggregated version of the Digital Elevation Model (DEM) from the Global Multi-resolution 158 

Terrain Elevation Data 2010 (GMTED2010) was used to calculate a number of primary and 159 

secondary terrain parameters (Olaya, 2009), including slope, aspect, terrain position index (TPI), 160 

and terrain ruggedness index (TRI) using the “terrain” function from the R package “raster” 161 

(Hijmans et al., 2015). Because SMAP SSM data had a coarser resolution (36 km), a finer-162 

resolution (e.g. 30–250 m) DEM was not used. Elevation data were not used for SSM modeling 163 

process because of the insufficient long-term SSM stations at high elevation across the world 164 

https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1
https://developers.google.com/earth-engine/sentinel1
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(e.g. Tibetan Plateau). In addition, topographic wetness index was not calculated because it was 165 

strongly correlated to TPI at the 500-m resolution. 166 

 167 

2.5. Soil Properties 168 

Soil physical and chemical properties affect soil water retention and redistribution in space and 169 

time (Mohanty and Skaggs, 2001). Although finer-resolution maps of soil properties are 170 

available in many countries where the soil moisture networks are installed (e.g. Grundy et al., 171 

2015; Ramcharan et al., 2018; Chaney et al., 2019), a consistent global map of soil properties 172 

was preferred for SSM modeling. In this study, 250-m resolution maps of soil properties were 173 

used, which include clay and sand content, bulk density (BD), soil organic carbon content from 174 

the SoilGrids (Hengl et al., 2017), and newly mapped field capacity and permanent wilting point 175 

(Hengl and Gupta, 2019). 176 

 177 

2.6. Land Cover  178 

Land surface characteristics vary with different LC types and had different impacts on the spatial 179 

and temporal variations of SSM and the performance of SSM models (Entekhabi et al., 2010). To 180 

facilitate the interpretation of the SSM models, 500-m annual land cover (LC) data were 181 

downloaded during 2016 from the MODIS repository (MCD12Q1.006, available at 182 

https://lpdaac.usgs.gov/products/mcd12q1v006/). The International Geosphere-Biosphere 183 

Programme (IGBP) classification was used, among which were six merged LC types were 184 

selected, including cropland, grassland, savanna, shrubland, forest, and barren. These LC types 185 

were not used as covariates for retrieving SSM (due to the coarse resolution) but were used to 186 

evaluate the performance of the SSM models under different LC types. 187 

 188 

2.7. Soil Moisture Monitoring Networks 189 

Soil moisture networks have been established across the world to provide long-term 190 

climate reference measurements for meteorological monitoring, hydrological modeling, and 191 

validating of remote sensing products (Dorigo et al., 2011; Quiring et al., 2016). Here, two types 192 

of soil moisture networks were used: regional-scale and continental-scale networks (Figure 1). A 193 

summary of the number of stations used in this study is provided in Table 2. Details about the 194 

site characterization of these networks can be found in the references mentioned above. 195 
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Table 2 (near here) 196 

Regional-scale soil moisture networks consist of the Murrumbidgee soil moisture 197 

monitoring networks of the OZNET in New South Wales, Australia (Smith et al., 2012), Soil 198 

Moisture Measurement Stations Network of the University of Salamanca, Spain (REMEDHUS) 199 

(Martínez-Fernández and Ceballos, 2005), and the Danish hydrological observatory (HOBE) in 200 

Denmark (Jensen and Illangasekare, 2011). These networks were selected because they were 201 

located at the regional scale (< 50,000 km
2
) and can be used to characterize variations of surface 202 

soil moisture within catchments, and span a variety of soil moisture and climatic regimes each 203 

with significant spatial variability. It was expected that soil moisture measurements from these 204 

regional-scale networks can provide detailed information for retrieving SSM within the coarse 205 

pixels of the SMAP SSM product (36 km). 206 

Continental-scale soil moisture networks consist of National Oceanic and Atmospheric 207 

Administration sponsored US Climate Reference Network (USCRN, Janis and Center, 2002) and 208 

the United States Department of Agriculture Natural Resources Conservation Service soil 209 

climate analysis network (SCAN, Schaefer et al., 2007). These networks are sparsely situated 210 

across the USA with several stations within each state, but they cover a variety of climate 211 

regimes, terrain parameters, land cover types, and soil texture classes. It was expected that the 212 

use of these widely spread networks can provide information on the relationship between climate 213 

regimes, terrain parameters, land cover types, and soil texture classes with SSM and improve the 214 

robustness of the SSM model. 215 

 216 

2.8. Establishing Empirical SSM Retrieval Models 217 

Random Forest is a nonparametric model based on similarities among observations to fit 218 

decision trees. To determine a split at a node in a tree, a random subsample of predictor variables 219 

is taken to select the predictor that minimizes the regression error. Nodes continue to be split 220 

until no further improvement in error is achieved. The prediction is achieved with an adaptive 221 

neighborhood classification and regression. Omitted observations, termed the “out-of-bag” 222 

sample, are used to compute the regression errors for trees (Breiman, 2001; Hastie et al., 2009). 223 

To estimate the quantiles of the predictions, the Quantile Random Forest (QRF) algorithm was 224 

applied using the R ‘quantregForest’ package (Version 1.3-7, Meinshausen and Meinshausen, 225 
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2017), which estimates the conditional distribution based on a weighted distribution of observed 226 

model response values (Meinshausen, 2006). 227 

 To train the QRF model and evaluate the model performance, SSM measurements from 228 

the various soil moisture networks were randomly split into training and validation datasets. To 229 

maximally represent the heterogeneous land surface conditions and variations of SSM, 75% of 230 

the measuring stations from the regional-scale (OZNET, REMEDHUS, HOBE) and continental-231 

scale (USCRN, SCAN) networks were randomly selected as the training dataset and the 232 

remaining 25% of the stations from these four networks were used as the validation dataset 233 

(Figure 1). The coefficient of determination (R
2
), mean error (bias), and root mean squared error 234 

(accuracy) were calculated for both calibration and validation datasets using the measured SSM 235 

at the stations and predicted SSM from the QRF models. The 5% and 95% quantiles of the 236 

predictions were also calculated to present the confidence of the SSM prediction. 237 

Fig. 1–2 (near here) 238 

 239 

2.9. Prediction of SSM on an Irrigated Farm in Australia 240 

SSM was predicted at the field scale in Australia during the 2018 growing season. The flowchart 241 

of the algorithm is presented in Figure 2. The study area was located in the Yanco site of the 242 

OZNET, New South Wales, Australia. The annual precipitation was approximately 402 mm with 243 

annual minimum and maximum temperatures of 11.5 and 24.2 ℃. Furrow irrigation is often used 244 

over the growing season every one to two weeks. SSM was retrieved and mapped using the 245 

established QRF model across a number of irrigated fields and rainfed (totally 13,822 ha in size) 246 

on selected days during the early season from November to December 2018. This period was 247 

selected due to a reported drought in the region (BBC, 2018; BOM, 2018). 248 

To demonstrate the usefulness of the high-resolution QRF model and evaluate the 249 

impacts of water stress on plant productivity, MODIS satellite-based 500-m 8-day cumulative 250 

gross primary productivity (GPP, g C m
-2

 per 8 days, 251 

https://lpdaac.usgs.gov/products/mod17a2hv006/) and evapotranspiration (ET, mm H2O per 8 252 

days, https://lpdaac.usgs.gov/products/mod16a2v006/) were downloaded across the study fields. 253 

The 8-day cumulative GPP and ET data were temporally interpolated with the centers of the 8-254 

day periods matched with the dates of the SSM maps. Water use efficiency was calculated across 255 

the fields as the ratio of GPP to ET (g Carbon per mm H2O). 256 
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 257 

3. Results 258 

3.1. Model Performance of the QRF and SMAP Product 259 

The importance of the variables is presented in Figure 3. SMAP was ranked as the most 260 

important time-varying variables, followed by Sentinel-1 backscatter data measured at VV and 261 

VH polarizations, and incidence angle of the Sentinel-1. In terms of the time-constant variables, 262 

sand content was most important, followed by the temporal mean of VH backscatter data, 263 

topographic ruggedness index, topographic position index, aspect, clay content, and other 264 

variables. 265 

The model performance of the fitted QRF model is also presented in Figure 3. The model 266 

has an RMSE of 0.02 m
3
 m

-3
 and R

2
 of 0.95 for the training dataset and a reduced performance 267 

with an RMSE of 0.08 m
3
 m

-3
 and R

2
 of 0.53 for the validation dataset. The SSM estimates from 268 

SMAP had an overall similar performance (no significant difference) for the same validation 269 

dataset with an RMSE of 0.08 m
3
 m

-3
 and R

2
 of 0.50. 270 

Table 3 and Fig. 3–4 (near here) 271 

 272 

3.2. Model Performance of the QRF and SMAP Product within Different Land Cover Types 273 

Pearson’s correlation coefficient (r), mean error (ME), and root mean squared error 274 

(RMSE) calculated between measured SSM from the station soil moisture networks and 275 

predicted SSM from the QRF model or SMAP were used to evaluate the model performance 276 

within different land cover types. When all networks were considered (Table 3), the empirical 277 

QRF model established via combination of SMAP, Sentinel-1 and land surface parameters 278 

outperformed the SMAP SSM estimates for cropland (r = 0.73 vs. 0.64, RMSE = 0.08 vs. 0.10 279 

m
3
 m

-3
) and savanna (r = 0.73 vs. 0.54, RMSE = 0.09 vs. 0.11 m

3
 m

-3
). Both QRF and SMAP 280 

models had similar performance under barren (r = 0.77 vs. 0.77, RMSE = 0.05 vs. 0.06 m
3
 m

-3
) 281 

and forest (r = 0.58 vs. 0.63, RMSE = 0.09 vs. 0.08 m
3
 m

-3
) soils. However, the QRF model was 282 

worse than the SMAP in grassland (r = 0.63 vs. 0.67, RMSE = 0.07 vs. 0.07 m
3
 m

-3
) and 283 

shrubland soils (r = 0.22 vs. 0.63, RMSE = 0.07 vs. 0.05 m
3
 m

-3
). 284 

Similar patterns were observed for each network within different land cover types (Table 285 

3) and for the temporal dynamics of measured and estimated SSM at several selected validation 286 

stations (Figure 4). It was evident that the QRF model was more accurate than SMAP under 287 
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cropland (OZNET – Uri_Park, r = 0.81 vs. 0.79, RMSE = 0.06 vs. 0.14 m
3
 m

-3
) and Savanna 288 

(HOBE – 3.06, r = 0.55 vs. 0.56, RMSE = 0.06 vs. 0.12 m
3
 m

-3
), similar to SMAP under barren 289 

(SCAN – Lovelock NNR, r = 0.70 vs. 0.67, RMSE = 0.05 vs. 0.06 m
3
 m

-3
) and forest (SCAN – 290 

Reynolds Homestead, r = 0.60 vs. 0.57, RMSE = 0.08 vs. 0.15 m
3
 m

-3
), and worse than SMAP 291 

under grassland (REMEDHUS – Las_Arenas, r = 0.82 vs. 0.79, RMSE = 0.09 vs. 0.07 m
3
 m

-3
) 292 

and shrubland (USCRN – CA_Fallbrook_5_NE, r = 0.05 vs. 0.04). 293 

It should also be noted that large variations of model performance (i.e. Pearson’s r, ME, 294 

RMSE) were observed for all land cover types among different ground SSM stations, indicating 295 

strong heterogeneity of land surface parameters at the field scale. In summary, we note that the 296 

QRF model was able to successfully retrieve SSM dynamics under cropland (r = 0.73, RMSE = 297 

0.08 m
3
 m

-3
), grassland (r = 0.63, RMSE = 0.07 m

3
 m

-3
), savanna (r = 0.73, RMSE = 0.09 m

3
 m

-298 

3
), forest (r = 0.58, RMSE = 0.09 m

3
 m

-3
), and barren (r = 0.77, RMSE = 0.05 m

3
 m

-3
) soils. 299 

 300 

3.3. Delineating SSM Variations at the Field scale via Data Fusion 301 

Coarse-resolution SMAP SSM maps can not be used to reveal spatial SSM variations at the field 302 

scale compared to the data fusion based QRF model (Figure 5). In the selected fields within the 303 

OZNET network in Australia, SSM was retrieved and mapped using the QRD from November 304 

9
th

 to December 15
th

, 2018. During this early cropping season, SSM varied greatly over time 305 

(0.06–0.18 m
3
 m

-3
). Instead of showing uniform values for the whole region at different days 306 

from the 36-km SMAP model (0.19, 0.14, 0.07, and 0.18 m
3
 m

-3
), the mean SSM values of the 307 

QRF maps displayed strong heterogeneity in space with ranges of SSM of 0.06, 0.12, and 0.06 308 

m
3
 m

-3
 under the dry (December 3

rd
), intermediate (transitional) (November 21

st
, December 15

th
), 309 

and wet (November 9
th

) conditions, respectively. 310 

MODIS-estimated 8-day cumulative GPP and ET also displayed strong variations in 311 

space and over the study period (15–27 g C m
-2

 per 8 days and 400–1,200 mm H2O per 8 days) 312 

(Figure 5). Note that GPP and ET values were higher in the northern parts of the region 313 

associated with the irrigated crops and lower in the southern parts of the region associated with 314 

the rainfed grassland. 315 

Three sites were selected across the region, including two irrigated cropland fields (1 and 316 

2) and one rainfed grassland. As shown in Figures 5 and 7, irrigated cropland 1 had a higher 317 

SSM on November 9
th

 (0.18 m
3
 m

-3
) and other days than irrigated cropland 2 (0.17 m

3
 m

-3
) and 318 
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rainfed grassland (0.15 m
3
 m

-3
). This was consistent with the higher GPP and ET values 319 

observed (e.g. November 9
th

) for irrigated cropland 1 (41 g C m
-2

 per 8 days and 1,760 mm H2O 320 

per 8 days), cropland 2 (27 g C m
-2

 per 8 days and 1,000 mm H2O per 8 days) and rainfed 321 

grassland (16 g C m
-2

 per 8 days and 670 mm H2O per 8 days). Also note that different water use 322 

efficiency values were observed between the two irrigated cropland sites and the rainfed 323 

grassland. 324 

 325 

Fig. 5–7 (near here) 326 

 327 

4. Discussion 328 

4.1. Model Performance under Different Land Cover Types 329 

In terms of the model performance, the empirical data fusion based SSM model is superior or 330 

similar to the 36-km SMAP_L3 SSM product under many land cover types except for grassland 331 

and shrubland. Improved model accuracy under cropland and savanna is most likely due to the 332 

use of high-resolution (5–20 m) Sentinel-1 data compared to SMAP (~ 36 km), which 333 

characterize field-scale variations in SSM (Figures 5–7). However, due to the use of a C-band 334 

microwave signal, it is expected that the Sentinel-1’s radar has a reduced penetration depth as 335 

compared to the L-band SMAP passive microwave radiometer under moderate to dense 336 

vegetation cover conditions (Lievens et al., 2017). This helps explain the poor performance of 337 

the SSM model under shrubland. In terms of grassland, the slightly worse performance of the 338 

SSM model can also be due to the grazing or harvesting practices that change the vegetation 339 

characteristics (e.g. leaf area). 340 

 341 

4.2. A tradeoff between Spatial and Temporal Resolutions of Remote Sensing Soil Moisture 342 

Products 343 

Current remote sensing soil moisture missions operating at the global scale are based on 344 

reflectance in the optical band (e.g. MODIS), passive microwave (e.g. SMOS, SMAP, SMAR2, 345 

ASCAT), active microwave (e.g. Sentinel-1, RADARSAT-2) and gravity (GRACE). As shown 346 

in Figure 8 and summarized by others (Robinson et al., 2008; Vereecken et al., 2014; Wang et 347 

al., 2009; Ochsner et al., 2013), there is a tradeoff between the spatial and temporal resolutions 348 

of these satellites. In general, optical and active microwave satellites have a fine spatial 349 
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resolution less than 1 km but the temporal resolution (revisit time) is more than one week. By 350 

contrast, passive microwave satellites have a coarse spatial resolution larger than 10 km but the 351 

temporal resolution is higher (1-3 days). The gravity-based mission (GRACE) measures soil 352 

water in the deep profile, and has a large spatial resolution (> 100 km) with a temporal resolution 353 

of approximately one month. 354 

 The SSM model established here has a spatial resolution of 100 m and revisit time of 6-355 

12 days (depending on the location of the study sites) across the globe. Many researchers have 356 

attempted to retrieve SSM at a similar (100 m) or higher (30 m) spatial resolution using Sentinel-357 

1 data at the field scale using a larger number of ground-based SSM measurements (e.g. 358 

Alexakis et al., 2017; Gao et al., 2017; Attarzadeh et al., 2018). However, the model 359 

performance deteriorates with increasing spatial resolution. Based on the work of Bauer-360 

Marschallinger et al. (2018) and others, the radar signal has a large noise (speckle effect) at the 361 

field scale due to the interference with heterogeneous vegetation, terrain surface, and soil 362 

properties. Upscaling Sentinel-1 data to a larger spatial resolution (e.g. 500 m) is required to 363 

reduce the sensor’s noise. As such, the SSM established here may not be transformed to a finer 364 

resolution without reducing the model performance. To delineate the SSM variations at such a 365 

fine resolution (e.g. plot scale, Figure 8), soil core sampling (Li et al., 2019) or ground-based 366 

proximal soil sensors (Robinson et al., 2008; Striegl amd Loheide, 2012) should be used instead. 367 

Fig. 8 (near here) 368 

 369 

4.3. Irrigation Management at the Field Scale via Data Fusion of Remote Sensing and Land 370 

Surface Parameters Data 371 

Compared to traditional in situ soil moisture sensors that are installed on the farm to monitor 372 

SSM at limited individual stations or SMAP_L3 SSM products (e.g. radiometer) that rely on 373 

space-borne sensors to monitor SSM with a very coarse resolution (36 km), the retrieved SSM 374 

maps can delineate field-scale variations in SSM (Figures 5 and 7), which can be potentially used 375 

for monitoring SSM and irrigation scheduling at the field scale. The maps of SSM identify 376 

regions with a high irrigation priority and the pixel resolution (100 m × 100 m: 1 ha) is suitable 377 

for irrigation management at the farm scale, whereby furrow irrigation is often used in this 378 

region to supply water on a field by field basis. 379 
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In terms of the temporal resolution, the rate-limiting factor of the current SSM model is 380 

the Sentinel-1 data, which are currently available 6–12 days globally (depending on the region of 381 

interest). Future research is required to gap-fill the SSM maps within the 6–12 days to obtain 382 

close to real-time SSM maps. This could be realized using space-time statistical method (Jost et 383 

al., 2005) or mechanistic models (Or and Lehmann, 2019).  384 

In addition, future research is required to map soil water content below the surface, 385 

particularly within the root zone, as soil water content often varies greatly with depth within the 386 

soil profile. This can be potentially achieved by data assimilation of the empirical machine 387 

learning SSM model with a mechanistic water balance model (e.g. Das and Mohanty, 2006; 388 

Huang et al., 2017). Alternatively, to calculate soil water stored within the root zone, empirical 389 

and analytical models can be established based on the retrieved SSM maps over a long-term 390 

period (Arya et al., 1983; Jackson et al., 1987; Wagner et al., 1999; Gouweleeuw, 2000; Jackson, 391 

2002; Ceballos et al., 2005; Albergel et al. 2008; Sadeghi et al., 2019a,b). 392 

 393 

4.4. Developing an Additive and Adaptable SSM Model via Machine Learning 394 

Only small numbers of the validation stations were available for certain land cover types (e.g. 395 

grassland in OZNET and REMEDHUS, and shrubland and forest in all networks). This could 396 

contribute to the moderate performance of QRF model under these land cover types because 397 

machine learning algorithms often require a large number of training dataset to capture the 398 

variations in the model response (i.e. SSM) and the feature space (i.e. environmental covariates). 399 

The accuracy of the SSM model also needs to be further improved in cropped areas where 400 

accurate characterization of soil water conditions is crucial for sustaining crop yield and 401 

maximizing water use efficiency. 402 

Additional SSM measurements from vegetation-specific (e.g. cotton, olives, vegetables, 403 

fruits) ground soil moisture networks should be collected to provide dataset covering these 404 

feature spaces to improve the empirical QRF model. This is equivalent to the “spiking” 405 

techniques used to calibrate the global soil visible near-infrared spectroscopy library using local 406 

spectra data (Guerrero et al., 2010; Wetterlind and Stenberg, 2010; Viscarra Rossel et al., 2016). 407 

In this regard, the empirical data fusion-based QRF model established here is an additive and 408 

adaptable model and can be improved with addition of localized SSM measurements from in situ 409 

soil moisture networks in the future. 410 
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Fig. 9 (near here) 411 

  412 

5. Conclusions 413 

An empirical surface soil moisture (SSM) model was established via data fusion of remote 414 

sensing data (Sentinel-1 and SMAP) and land surface parameters (e.g. soil texture, terrain 415 

parameters) using quantile random forest (QRF) algorithm. The model had a spatial resolution of 416 

100 m and performed moderately well (R
2
 = 0.53, RMSE = 0.08 m

3
 m

-3
) across the globe under 417 

cropland, grassland, savanna, barren, and forest soils. Particularly, the empirical QRF model 418 

performed better than the 36-km SMAP SSM model under cropland and savanna soils.  419 

SSM was retrieved and mapped at 100 m every 6-12 days during the plant growing 420 

seasons in 2018 in selected cropland and grassland fields in the OZNET network, Australia. It 421 

was concluded that the high-resolution SSM maps can be used to monitor soil water content at 422 

the field scale for irrigation management. The SSM model is an additive and adaptable model, 423 

which can be further improved by including soil moisture measurements at the field scale for 424 

specific vegetation/crop types. Further research is required to improve the temporal resolution of 425 

the SSM model and map soil water content within the root zone. 426 

 427 
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Figure Captions 1 

Figure 1. Locations of regional-scale soil moisture monitoring networks HOBE (Denmark), 2 
OZNET (Australia), REMEDHUS (Spain), and continental-scale soil moisture networks SCAN 3 
and USCRN (USA). Note: Training and validation stations were highlighted in different colors. 4 

Figure 2. Flowchart of the global surface soil water model established using data fusion and 5 
machine learning. 6 

Figure 3. Variable importance of the quantile random forest (QRF) model and a comparison of 7 
model performance on training and validation datasets generated based on data fusion based 8 
QRF model and SMAP-L3 surface soil moisture (SSM) product. 9 

Figure 4. Plots of measured surface soil moisture (SSM) (black lines) under various land cover 10 
types at several soil moisture stations and estimated SSM from SMAP (blue lines) and the data 11 
fusion based quantile random forest (QRF) model (red lines, with 5 and 95 percentiles marked in 12 
dashed lines). Note: no SSM estimates were made during October to February. 13 

Figure 5. Predicted surface soil moisture (SSM, m
3
 m

-3
) from the quantile random forest (QRF) 14 

model during the 2018 cropping season across selected fields within OZNET network in New 15 
South Wales, Australia. 16 

Figure 6. Maps of MODIS estimated cumulative gross primary productivity (GPP, g C m
-2

 per 17 
8-day), evapotranspiration (ET, mm H2O per 8-day), and water use efficiency (WUE, g C per 18 
mm H2O) during the 2018 growing season across selected fields within OZNET network in New 19 
South Wales, Australia. 20 

Figure 7. Plots of measured and predicted surface soil moisture (SSM, m
3
 m

-3
) from the quantile 21 

random forest (QRF) model and NASA-SMAP, MODIS cumulative gross primary productivity 22 
(GPP, g C m

-2
 per 8-day), evapotranspiration (ET, mm H2O per 8-day), and water use efficiency 23 

(WUE, g C per mm H2O) at three selected sites (irrigated cropland 1 and 2, rainfed grassland) 24 
during the 2018 growing season within OZNET network in New South Wales, Australia. 25 

Figure 8. Spatial and temporal resolutions of current remote sensing soil moisture monitoring 26 
satellites. Note: satellites used in this study are highlighted in black and other satellites designed 27 
to monitor soil moisture are marked in grey. 28 

 29 
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Table 1 Remote sensing and land surface datasets used for modeling surface soil moisture (SSM) and 

interpretation. 

Dataset Measuring/Estimated variable Spatial resolution Measuring interval 

NASA-SMAP 

(L3_SM_P) 

Brightness temperature retrieved to 

surface soil moisture (0–0.05 m) 
36 km 2-3 days 

ESA-Sentinel-1 

Time-varying backscatter, incident 

angle, and time-constant temporal 

statistics (min, mean, max, standard 

deviation) 

5×20 m 6-12 days/N.A. 

GMTED2010 digital 

elevation model 

Slope, aspect, flow direction, 

topographic position index, 

topographic roughness index 

500 m N.A. 

SoilGrids & 

Openlandmap 

Clay, silt, sand contents, soil 

organic carbon content, bulk 

density, field capacity, permanent 

witling point at depth 0–0.05 m 

250 m N.A. 

MODIS 

(MCD12Q1.006) 
Land cover types 500 m N.A. 

Station soil moisture 

monitoring networks 

Soil water content at depth 0–0.05 

m 
N.A. 30-min 
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Table 2 Summary statistics of land cover types and surface soil moisture (SSM) at various regional-scale (HOBE, OZNET, REMEDHUS) and 

continental-scale (SCAN, USCRN) soil moisture monitoring networks for training and validation datasets. 

Network Country 
No. 

Stations 
Land cover 

SSM (Training) SSM (Validation) 

No. 

stations 
Min. Mean Median Max SD 

No. 

stations 
Min. Mean Median Max SD 

HOBE Denmark 24 

Cropland (54%), Savanna 

(27%),  

Forest (18%) 

18 0.03 0.19 0.18 0.49 0.08 6 0.00 0.18 0.17 0.38 0.09 

OZNET Australia 19 
Cropland (52%), Grassland 

(48%) 
14 0.00 0.14 0.14 0.40 0.09 5 0.00 0.15 0.15 0.40 0.08 

REMEDHUS Spain 12 
Cropland (79%), Grassland 

(11%), Shrubland (10%) 
8 0.00 0.10 0.09 0.33 0.07 4 0.05 0.20 0.18 0.45 0.09 

SCAN USA 147 

Cropland (27%), Grassland 

(53%), Savanna (9%), 

Shrubland (5%),  

Forest (2%),  

Barren (4%) 

109 0.00 0.16 0.13 0.58 0.12 38 0.00 0.18 0.16 0.55 0.12 

USCRN USA 76 

Cropland (11%), Grassland 

(48%), Savanna (16%), 

Shrubland (13%),  

Forest (10%),  

Barren (3%) 

56 0.00 0.16 0.14 0.55 0.11 20 0.00 0.21 0.19 0.61 0.11 
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Table 3 Comparison between measured surface soil moisture (SSM) with the predicted SSM from the quantile random forest (QRF) 

and SMAP based on the validation dataset. Note: r, Pearson’s correlation coefficient; ME, mean error; RMSE, root mean squared 

error; values inside the brackets are the minimum and maximum values calculated among all validation stations and values outside the 

brackets are overall values calcualted by merging measurments from all the stations within a same land cover type. 

Network 
Land 

cover 
Station names 

No. 

Stations 

No. 

measurements 

QRF SMAP 

r 

ME 

(m3 m-

3) 

RMSE 

(m3 m-

3) 

r 

ME 

(m3 m-

3) 

RMSE 

(m3 m-

3) 

HOBE 

Cropland 1.09, 3.04, 3.09 3 393 

0.79  

[0.65, 

0.88] 

0.01 

[0.00, 

0.01] 

0.03 

[0.03, 

0.03] 

0.74  

[0.60, 

0.84] 

0.04 

[0.03, 

0.06] 

0.06 

[0.05, 

0.07] 

Savanna 1.01, 3.06 2 431 

0.62  

[0.55, 

0.58] 

-0.01 

[-0.08, 

0.05] 

0.08  

[0.06, 

0.11] 

0.30  

[0.54, 

0.56] 

0.04  

[-0.05, 

0.11] 

0.11  

[0.09, 

0.12] 

Forest 1.04 1 135 0.58 0.52 0.58 0.52 0.58 0.52 

OZNET 
Cropland Kyeamba_Mouth, Spring_Bank, Uri_Park, Wollumbi 4 159 

0.60  

[0.46, 

0.86] 

0.01  

[-0.01, 

0.05] 

0.06  

[0.04, 

0.08] 

0.63  

[0.41, 

0.83] 

0.08  

[0.06, 

0.12] 

0.13  

[0.11, 

0.14] 

Grassland Cheverelis 1 29 0.88 0.90 0.88 0.90 0.88 0.90 

REMEDHUS 
Cropland Canizal, Guarrati, Las_Bodegas 3 394 

0.46  

[0.29, 

0.82] 

-0.10  

[-0.13, 

-0.03] 

0.13  

[0.05, 

0.15] 

0.42  

[0.29, 

0.81] 

-0.10  

[-0.13, 

-0.02] 

0.13  

[0.06, 

0.16] 

Grassland Las_Arenas 1 102 0.82 0.79 0.82 0.79 0.82 0.79 

SCAN 

Cropland 

Abrams, Fort Reno #1, Molly Caren #1, North 

Issaquena, Perthshire, Princeton #1, Rock Springs Pa, 

Scott, Tidewater #1, Tunica, Uapb Dewitt, Uapb Point 

Remove, Uapb-Earle 

13 817 

0.66  

[0.00, 

0.79] 

-0.01 

[-0.07, 

0.07] 

0.08  

[0.05, 

0.11] 

0.61  

[0.04, 

0.78] 

0.02 

[-0.05, 

0.15] 

0.10  

[0.06, 

0.15] 

Grassland 

Alcalde, Bodie Hills, Crossroads, Jordan, Lindsay, 

Nephi, Stephenville, Torrington #1, Vermillion, Vernon, 

West Summit, Mandan #1, Price, Reese Center, Sheldon, 

Tule Valley, Violett, Walnut Gulch #1 

18 1,878 

0.60 

[0.07, 

0.89] 

-0.01  

[-0.09, 

0.07] 

0.07 

[0.04, 

0.11] 

0.64  

[0.07, 

0.87] 

-0.01  

[-0.08, 

0.07] 

0.07 

[0.03, 

0.10] 

Savanna Pee Dee, Powell Gardens, Morris Farms 3 199 

0.79 

[0.54, 

0.71] 

-0.03  

[-0.08, 

0.00] 

0.07 

[0.04, 

0.10] 

0.41 

[0.57, 

0.70] 

0.06  

[-0.04, 

0.14] 

0.11 

[0.06, 

0.15] 

Shrubland Spooky 1 126 0.16 0.08 0.08 0.19 0.05 0.05 

Forest Reynolds_Homestead 1 45 0.60 0.02 0.08 0.56 0.14 0.15 

Barren Death Valley Jct., Lovelock NNR   2 222 

0.79 

[0.26, 

0.70] 

0.04 

[0.04, 

0.05] 

0.05 

[0.05, 

0.06] 

0.78 

[0.22, 

0.67] 

0.05 

[0.05, 

0.05] 

0.06 

[0.05, 

0.06] 

USCRN Cropland IA_Des_Moines_17_E, KY_Versailles_3_NNW, 4 364 0.68  -0.03 0.07  0.57  -0.02  0.08 
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NE_Lincoln_8_ENE, MO_Joplin_24_N [0.62, 

0.82] 

[-0.07, 

0.00] 

[0.05, 

0.09] 

[0.63, 

0.77] 

[-0.09, 

0.05] 

[0.06, 

0.11] 

Grassland 

MT_Dillon_18_WSW, MT_Wolf_Point_34_NE, 

NC_Asheville_13_S, NE_Whitman_5_ENE, 

OK_Stillwater_2_W, OR_John_Day_35_WNW, 

SD_Aberdeen_35_WNW, SD_Pierre_24_S, 

TX_Muleshoe_19_S, MT_Lewistown_42_WSW, 

OR_Riley_10_WSW 

11 1,022 

0.65  

[0.48, 

0.91] 

-0.01 

[-0.08, 

0.07] 

0.07  

[0.03, 

0.10] 

0.70  

[0.47, 

0.92] 

-0.01 

[-0.09, 

0.06] 

0.07  

[0.03, 

0.10] 

Savanna IN_Bedford_5_WNW, MN_Goodridge_12_NNW 2 149 

0.50  

[0.45, 

0.83] 

-0.07 

[-0.14, 

-0.04] 

0.12  

[0.08, 

0.19] 

0.67  

[0.50, 

0.81] 

-0.03 

[-0.07, 

-0.01] 

0.08  

[0.06, 

0.13] 

Shrubland CA_Fallbrook_5_NE 1 163 0.68 -0.04 0.05 0.87 -0.04 0.04 

Forest CO_Boulder_14_W 1 152 0.58 -0.03 0.07 0.61 0.00 0.06 

Barren ID_Arco_17_SW 1 39 0.85 0.05 0.07 0.87 0.03 0.05 

Overall 

Cropland – 27 2,127 

0.73  

[0.00, 

0.88] 

-0.02 

[-0.13, 

0.07] 

0.08 

[0.03, 

0.15] 

0.64  

[0.04, 

0.84] 

0.00  

[-0.13, 

0.15] 

0.10  

[0.05, 

0.16] 

Grassland – 31 3,031 

0.63  

[0.07, 

0.91] 

-0.01 

[-0.09, 

0.07] 

0.07  

[0.03, 

0.11] 

0.67  

[0.07, 

0.92] 

-0.01 

[-0.09, 

0.07] 

0.07  

[0.03, 

0.10] 

Savanna – 7 779 

0.73  

[0.45, 

0.83] 

-0.02 

[-0.14, 

0.05] 

0.09  

[0.04, 

0.19] 

0.54  

[0.50, 

0.81] 

0.03  

[-0.07, 

0.14] 

0.11  

[0.06, 

0.15] 

Shrubland – 2 289 

0.22  

[0.16, 

0.68] 

0.01  

[-0.04, 

0.08] 

0.07 

[0.05, 

0.08] 

0.78  

[0.19, 

0.87] 

0.00  

[-0.04, 

0.05] 

0.05  

[0.04, 

0.05] 

Forest – 3 332 

0.58  

[0.58, 

0.60] 

-0.05 

[-0.11, 

0.02] 

0.09  

[0.07, 

0.11] 

0.63  

[0.52, 

0.61] 

0.01  

[-0.03, 

0.14] 

0.08  

[0.06, 

0.15] 

Barren – 3 261 

0.77  

[0.26, 

0.85] 

0.04  

[0.04, 

0.05] 

0.05 

[0.05, 

0.07] 

0.77  

[0.22, 

0.87] 

0.04  

[0.03, 

0.05] 

0.06 

[0.05, 

0.06] 
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