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Abstract

Earthquakes are commonly modeled as shear cracks, where the slip profile of an earthquake rupture is the spatial distribution of
relative displacement between fault surfaces. It is an accumulated result of all the processes during the earthquake: nucleation,
propagation, and arrest. Understanding the characteristics of a slip profile gives insight into the associated stress changes, which
is generally immeasurable on natural faults, and is useful for understanding the underlying friction law. Most models focus on
simplicity for application purposes. For instance, the elastic crack model (Bilby & Eshelby, 1968) established that a perfect
crack with uniform shear stress drop leads to an elliptical slip profile; Cowie and Scholz (1992) proposed a crack model with
constant-stress cohesive zones at the crack tips, which results in “bell-shaped” slip profiles. However, the elliptical model results
in unphysical stress singularities at crack tips, and the plateau in stress drop distribution near crack tips in the “bell-shaped”
model is infeasible for friction dominated ruptures because it is commonly believed that slip is always accompanied by shear
stress drop, e.g. slip-weakening friction law (Andrews, 1976). We present results from recent large-scale laboratory experiments
where all the rupture processes are contained in a 3-meter long saw-cut granite fault (Ke et al., 2018) and slip local fault slip
and shear stress changes are measured at 16 locations along the fault. Guided by the laboratory experiments, we derived an
analytical model to faithfully represent measured slip profiles 3(x), and shear stress changes Azt(x), resulting from laboratory
earthquakes. Field measurements of slip profiles revealed that slip profiles are commonly tapering roughly linearly toward the
tips. The proposed model includes this feature, and thus fits slip profiles measured from natural earthquakes on isolated faults
better than other idealized analytical models. For more complex natural earthquakes, our model can be used as a basis function.
Our results suggest that inelastic earthquake processes can be solely originated from friction, and the shape of an earthquake
rupture is likely between the elliptical and bell-shaped idealized models.
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profiles and enable further rupture sequence analysis.
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Conclusions

* Large scale granite samples enable ruptures to nucleate,
propagate, and terminate within the simulated fault.

» Slip profiles on natural faults and on contained laboratory
earthquakes share a similar shape.

* The proposed slip profile model effectively removes stress
singularity ahead of crack tips.

* The proposed slip protile model fits well to both slip and
strain measurements from laboratory earthquakes.

» Fitted slip profiles are quantitatively validated through
measurements of spatial distribution of shear stress changes.

* A well-posed crack model enables further analysis on the
stress evolution throughout a rupture sequence.
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