Evolution of Electric Sector Water Use Under Alternative Electricity Futures

Saroj Khanal¹, Stuart Cohen¹, Jordan Macknick¹, Ariel Miara², Maxwell Brown¹, and Vincent Tidwell³

¹National Renewable Energy Laboratory Golden ²Advanced Science Research Center at the Graduate Center, CUNY ³Sandia Natl Laboratories

November 22, 2022

Abstract

Increasing competition for water resources in the United States could create future challenges for allocating and using thermal cooling water in the U.S. electric power sector. While thermal power plant retirements and the growth of wind and solar technologies can reduce national aggregate power sector cooling water use, local water constraints and growing demand for agricultural or municipal supply could create greater needs for higher-cost alternative water supplies such as groundwater or recycled wastewater. For some regions, these incentives could change future electricity planning and operational decisions. These relationships and impacts are studied here using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS), a national electric sector planning model that has recently been upgraded to include a highly detailed representation of thermal cooling water demand and supply. Thermal power technologies are differentiated by both cooling technology and water source type to track and constrain thermal cooling water use in a way that incorporates both physical and legal water considerations in the United States. This capability is exercised under a range of electricity sector futures with alternative technology costs, fuel prices, and water constraints to illustrate ways that U.S. electric sector water use could evolve under uncertain future electric sector drivers. In exploring changes to regional generation and transmission planning and operation, water requirements, and cost, we highlight the environmental and economic impacts of future power sector water decisions.

Saroj Khanal¹, Stuart Cohen¹, Jordan Macknick¹, Ariel Miara¹, Maxwell Brown¹ and Vincent Carroll Tidwell² ¹National Renewable Energy Laboratory, Golden, CO, United States, ²Sandia National Laboratories, Albuquerque, NM, United States

Background and Motivation

- Increasing competition for water resources in the United States could create future challenges for allocation and usage in the power sector
- Power sector demands for water consumption and withdrawal depend on the evolution of the generation mix, the water intensity of which depends on uncertain market and technology drivers
- Local water constraints could increase demand for highercost alternative water supplies and, in turn, influence regional electricity planning and operational decisions
- Understanding these relationships requires a highly detailed representation of water supply and cooling water demand for electricity generation in the United States

Methods

ReEDS (Regional Energy Deployment System)

- NREL's flagship electric sector capacity expansion model for North America (nrel.gov/analysis/reeds/)
- Objective minimizes cost of operations and investment
- Includes a detailed characterization of variable renewable generation technologies
- Major constraints:
- Electricity demand
- ✓ Operating reserves
- ✓ Planning reserve margins
- ✓ Federal and state policies
- High spatial resolution: 134 U.S. balancing areas and 356 wind and CSP resource regions

Cooling water formulation in ReEDS

- Recent updates increased detail to more accurately represent existing electric sector water use
- Thermal power technologies are differentiated by multiple cooling technologies and water source types
- Unit-level water usage can be tracked, allowing for an exploration of usage by technology and source
- Water demand is represented at balancing area resolution
- Formulation is exercised across a range of scenarios to illustrate how U.S. electric sector water use could evolve within the context of uncertain future drivers

0			
Scenario	ATB ¹ RE Cost Scenario	Retirement Scenario	AEO ² 2019 Natural Gas Price Scenario
Mid Case	Mid	Reference	Reference
Low RE Cost	Low	Reference	Reference
High RE Cost	High	Reference	Reference
Low Retire + High RE Cost	High	Longer coal and nuclear lifetimes	Reference
Low Retire + High RE Cost + Low NG Price	Low	Longer coal and nuclear lifetimes	High Oil and Gas Resource and Technology
¹ ATB = Annual Technology Baseline, annual documentation of technology and fuel costs from NREL			

Scenario Design

(https://www.hrei.gov/analysis/data-tech-baseline.html). ²AEO = Annual Energy Outlook, annual scenario analysis with projections for U.S. energy markets from the U.S. Energy

Information Administration (https://www.eia.gov/outlooks/aeo/).

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Science and the U.S. Environmental Protection Agency. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Evolution of Electric Sector Water Use Under Alternative Electricity Futures

Results