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An ocean iodine cycling model is presented, which predicts upper ocean iodine speciation. The model comprises a three-

layer advective and diffusive ocean circulation model of the upper ocean, and an iodine cycling model embedded within this

circulation. The two primary reservoirs of iodine are represented, iodide and iodate. Iodate is reduced to iodide in the mixed

layer in association with primary production, linked by an iodine to carbon (I:C) ratio. A satisfactory model fit with observations

cannot be obtained with a globally constant I:C ratio, and the best fit is obtained when the I:C ratio is dependent on sea surface

temperature, increasing at low temperatures. Comparisons with observed iodide distributions show that the best model fit is

obtained when oxidation of iodide back to iodate is associated with mixed layer nitrification. Sensitivity tests, where model

parameters and processes are perturbed, reveal that primary productivity, mixed layer depth, oxidation, advection, surface

fresh water flux and the I:C ratio all have a role in determining surface iodide concentrations, and the timescale of iodide in

the mixed layer is sufficiently long for non-local processes to be important. Comparisons of the modelled iodide surface field

with parameterisations by other authors shows good agreement in regions where observations exist, but significant differences

in regions without observations. This raises the question of whether the existing parameterisations are capturing the full range

of processes involved in determining surface iodide, and shows the urgent need for observations in regions where there are

currently none.
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Key Points: 

• We develop a model for iodine speciation and cycling in the ocean 

• The predicted surface iodide distribution has a zonal structure not readily discernable by 
the limited observations to date 

• Ocean circulation is found to have an important role in determining the spatial 
distribution of iodide 
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Abstract 

An ocean iodine cycling model is presented, which predicts upper ocean iodine speciation. The 

model comprises a three-layer advective and diffusive ocean circulation model of the upper 

ocean, and an iodine cycling model embedded within this circulation. The two primary reservoirs 

of iodine are represented, iodide and iodate. Iodate is reduced to iodide in the mixed layer in 

association with primary production, linked by an iodine to carbon (I:C) ratio. A satisfactory 

model fit with observations cannot be obtained with a globally constant I:C ratio, and the best fit 

is obtained when the I:C ratio is dependent on sea surface temperature, increasing at low 

temperatures.  Comparisons with observed iodide distributions show that the best model fit is 

obtained when oxidation of iodide back to iodate is associated with mixed layer nitrification. 

Sensitivity tests, where model parameters and processes are perturbed, reveal that primary 

productivity, mixed layer depth, oxidation, advection, surface fresh water flux and the I:C ratio 

all have a role in determining surface iodide concentrations, and the timescale of iodide in the 

mixed layer is sufficiently long for non-local processes to be important. Comparisons of the 

modelled iodide surface field with parameterisations by other authors shows good agreement in 

regions where observations exist, but significant differences in regions without observations. 

This raises the question of whether the existing parameterisations are capturing the full range of 

processes involved in determining surface iodide, and shows the urgent need for observations in 

regions where there are currently none. 

 

 

Plain Language Summary 

Iodine in the ocean is important because small emissions of iodine species to the atmosphere 

have a significant impact on ozone and air quality. Iodine is converted between two chemical 

forms by phytoplankton and bacteria, but only one chemical form (iodide) results in atmospheric 

emissions. We have developed a model that predicts the amount of each type of iodine in the 

global oceans. We find that this distribution has a more complex structure than that suggested by 

the limited number of observations, with the ocean circulation playing an important role. The 

model improves our understanding of both ocean iodine cycling and the resultant impacts on 

ozone distribution and air quality, and also shows that biological and chemical changes to the 
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oceans due to increased atmospheric greenhouse gas concentrations are likely to result in 

significant changes in ocean iodine, with implications for atmospheric air quality and global 

elemental cycles.   

 

1 Introduction 

The biogeochemical cycling and speciation of iodine in the oceans has been studied for many 

years, and it is recognised as a “bio-intermediate” element cycled between oxidised and reduced 

forms and removed from surface waters by biological activity (e.g. Truesdale et al., 2000). 

Recently there has been increasing interest in understanding this speciation because of its 

potential utility as an indicator of productivity, (e.g. Ducklow et al., 2018, Campos et al., 1996, 

Wong, 2001, Tian et al., 1996), its application as a paleo-redox indicator (e.g. Lu et al., 2016; 

Zhou et al., 2016) and because reactions between iodide at the sea surface and ozone have been 

identified as a globally significant sink for tropospheric ozone, with implications for atmospheric 

chemistry and climate (Carpenter et al., 2013; Saiz-Lopez et al., 2014). The reaction of iodide 

and ozone is not only a sink for ozone (Ganzeveld et al., 2009) but also a source of molecular 

iodine (I2) and hypoiodous acid (HOI) to the atmosphere. These reactive iodine species photolyse 

to the highly reactive IO radical, influencing ozone cycling and other atmospheric chemistry 

reactions (e.g. Mahajan et al., 2010; Carpenter et al., 2013; Sherwen et al., 2016a). The iodine-

driven sea surface ozone sink has been identified as the most uncertain part of the tropospheric 

sink of ozone (Hardacre et al., 2015), and has been estimated to account for around 12% of the 

total (Sherwen et al., 2016b), and thus an understanding of ocean iodine cycling, and indeed 

global iodine biogeochemistry, is a key pre-requisite for adequate models of ozone and 

atmospheric oxidation processes. We focus on inorganic iodine forms, as the interconversion of 

these is the predominant feature of the marine iodine cycle (e.g. Chance et al., 2014), and 

because the reaction of ozone and iodide accounts for around 75% of the sea-to-air iodine flux 

(Sherwen et al., 2016; ACP, 16, 1161–1186). Volatile organic iodine compounds (VOI) such as 

methyl iodide, which are formed in the upper ocean by photodegradation of organic matter and 

direct production by phytoplankton (Stemmler et al, 2013), make up the remainder of the sea-to-

air iodine flux. However, VOI concentrations are typically several orders of magnitude lower 

than inorganic iodine concentrations, and they form a small component of the marine iodine 
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cycle, and will not be considered further in this study. We note that VOI production pathways 

may however be influenced by inorganic iodine cycling (e.g. Moore & Zafiriou, 1994). 

 

Iodine is primarily present in the oceans as the dissolved inorganic ions iodide (I-) and iodate 

(IO3-). In coastal surface water an additional organic iodine form has been identified as a 

significant component of the iodine pool, although this is not seen in the open ocean (Luther et 

al, 1991). Iodine is known to be cycled biologically within the oceans leading to slight surface 

depletion of total iodine concentrations (I- + IO3-) and a marked interconversion of iodine 

oxidation species with a euphotic zone maxima in iodide relative to iodate. In deep oxygenated 

waters iodate is the overwhelmingly dominant species as predicted from its thermodynamic 

stability (Wong, 1991; Elderfield and Truesdale, 1980; Chance et al., 2014). The uptake of iodate 

and iodide and the release of iodide have been demonstrated in microalgal (e.g. Chance et al., 

2007; de la Cuesta and Manley, 2009) and bacterial laboratory cultures (Hughes et al., 2019]) In 

coastal surface water an additional organic iodine form has been identified as a significant 

component of the iodine pool, although this is not seen in the open ocean (Luther et al., 1991). 

Surface water iodine speciation varies seasonally, with iodate decreases and iodide increases 

approximately in phase with cycles of primary production, although possibly with a time lag 

associated with delays between the uptake of iodate and its subsequent re-release as iodide (e.g. 

Chance et al., 2010). Oxidation of this iodide back to iodate is estimated to have a timescale of 

the order of months to years, although it has not been measured directly because it is so slow 

(Tsunogai, 1971; Campos et al., 1996; Edwards and Truesdale, 1997; Waite et al., 2006; de la 

Cuesta and Manley, 2009; Chance et al., 2010). Several authors have noted a relationship 

between iodide and nitrate concentrations in surface water and speculated that this may reflect a 

real biogeochemical coupling of these species, which could reflect the geochemical similarities 

of iodate and nitrate. The evidence for such coupling has until recently been equivocal at best 

(Hung et al., 2005; Waite and Truesdale, 2003; Campos et al., 1999; Truesdale et al., 2000). 

However, in a companion paper, Hughes et al. (2019) have demonstrated a link between the 

oxidation of ammonium to nitrite, and iodide to iodate, which has significant implications for our 

understanding of the ocean iodine cycle. 
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Although the global database for iodine speciation in ocean surface waters is rather limited, there 

are still clear large scale patterns evident with iodide concentrations (and iodide/iodate ratios) 

much higher in the oligotrophic surface ocean gyre waters (> 100 nM generally) than in high 

latitude waters (< 50 nM) (Chance et al., 2014), and this range of concentrations is sufficient to 

significantly affect the uptake of ozone and its global atmospheric cycling (Sherwen et al., 

2016b). The realisation of the importance of the role of iodine in surface ocean waters as a sink 

for ozone has led to efforts to incorporate this reaction into atmospheric models, which requires a 

global field of surface ocean iodide concentrations (Ganzeveld et al., 2009; Luhar et al., 2018). 

There have been some efforts to characterise the ocean surface iodide field in terms of other 

parameters that can be inferred indirectly or directly from satellite or other large scale ocean 

databases, such as temperature and nitrate, and use the derived statistical relationships to predict 

the ocean surface iodide field, which can provide a boundary condition for atmospheric 

chemistry models (Sherwen et al., 2016b). The iodide distributions predicted by these statistical 

relationships basically reflect the large-scale ocean distribution of iodide with higher 

concentrations in low latitude, high temperature, low nitrate waters, and low iodide 

concentrations at high latitudes in seasonally overturning cooler waters (Chance et al., 2014; 

MacDonald et al., 2014; Sherwen et al., 2019a). However, while the statistical relationships 

developed provide a generally good fit to the data, they are not based on the biogeochemical 

cycling of iodine in the oceans and hence their extrapolation beyond the data range for which the 

relationships are derived cannot be done with confidence, and hence predictions of change in the 

ocean iodide field with climate change, for example, are unreliable. It is also evident that iodide 

exhibits interannual variations (Chance et al., 2010), which may compromise these statistical 

methods.  

 

We therefore present here the first ocean iodine biogeochemical cycling model which includes 

realistic phytoplankton uptake and release parameterisations of iodine cycling based on ocean 

primary production fields and iodide oxidation derived from laboratory demonstrated 

mechanisms coupled to nitrogen cycling. This is all embedded within a realistic ocean physical 

mixing and transport field, allowing seasonal mixing between surface water where iodide is 

produced and sub-euphotic zone waters, and redistribution by the local and global scale 
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circulation. We demonstrate that all of these biological and physical iodine cycling processes 

interact together to yield the observed global iodine distribution. 

 

2. The iodine cycling model 

The iodine cycling model aims to capture the dominant biogeochemical processes involved in 

the cycling of iodine in the oxygenated ocean, and embed these in a simplified three-dimensional 

circulation model of the upper ocean, driven by fields derived from climatologies and an ocean 

general circulation model. Further technical details and model equations can be found in the 

Appendix, and here we summarise the key features of the model and its development. 

 

 

 

 

2.1 The physical ocean model 

 

The model is global in coverage, with a horizontal resolution of 1o in latitude and longitude, and 

three layers in the vertical (Figure 1). The upper layer is the seasonal mixed layer, its thickness 

varying throughout the year (Monterey and Levitus, 1997). The middle layer extends from the 

base of the seasonal mixed layer to the maximum seasonal mixed layer depth (MLD), multiplied 

by 1.05, to prevent zero-layer thickness when the top layer is at maximum depth. The bottom 

layer has a thickness of 500 m, or extends to the ocean bottom (GEBCO - Becker et al., 2009) if 

this is less, or has a minimum depth of 0.05 times the maximum MLD if the mixed layer extends 

to the sea floor, to maintain a finite layer thickness. This simplification of the deep ocean 

structure reflects the constancy of iodine concentration and speciation at depth. Each layer is 

assumed to be completely mixed in the vertical. Changes in MLD result in the exchange of water 

and tracers between the upper two layers, and the exchanged tracers are mixed into the 

thickening layer. There is constant vertical mixing of 1x10-4 m2s-1 between the middle and 

bottom layers. Each vertical column is subject to a horizontal mixing of 2000 m2s-1, and 

advection by the depth-dependent horizontal ocean currents derived from the OCCAM ocean 

GCM (see Aksenov et al., 2010 for details). Vertical advection is derived from the horizontal 
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divergence of this flow, and the precipitation minus evaporation and runoff flux is accounted for 

at the surface.  

 

 

 

 
 

Figure 1: Schematic representation of the three-layer ocean model, in which the iodine cycling 

model is implemented. The upper layer is the mixed layer. The middle layer extends below this 

to the depth of the seasonal maximum mixed layer depth (multiplied by 1.05 to avoid zero depth 

in the model). The bottom layer extends either to the ocean floor, or to a thickness of 500m, 

whichever is less (but also has a minimum thickness of 0.05 times the maximum mixed layer 

depth to avoid zero thickness). Below the bottom box iodide and iodate are assumed to have 

concentrations of 0 nM and 500 nM respectively. Each box is subject to mixing and advection, 
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and there is a fresh water flux due to precipitation, evaporation and runoff through the surface of 

the upper box. See text for more details. 

 

 

 

 

2.2 The biogeochemical iodine cycling model 

 

The iodine cycling model is embedded within this physical circulation model. Below the bottom 

model layer it is assumed that the concentrations of iodide and iodate are 0 nM and 500 nM 

respectively, broadly consistent with the observed global distributions in oxygenated waters 

(Chance et al., 2014).  

 

Production of iodide only occurs in the mixed layer in the model, and is assumed to be 

biologically mediated consistent with all the available evidence (Campos et al., 1996; Tian et al., 

1996; Wong, 2001; Chance et al., 2007; Chance et al., 2010; Ducklow et al., 2018; Hepach et al., 

2019). It is linked to the uptake of carbon by primary production via an iodine to carbon ratio, 

thought to be in the range 10-5 to 10-3 (Elderfield and Truesdale, 1980, Jickells et al., 1988; 

Chance et al., 2010; Hepach et al., 2019). Primary productivity is taken from the climatology of 

Behrenfeld and Falkowski (1997), which uses satellite observations to determine chlorophyll 

concentrations, and hence has no data where and when solar irradiance is low or zero. We could 

simply assume productivity is zero under these conditions, and this is supported at most 

longitudes where productivity is essentially zero at the poleward extent of the data, but in the 

North Atlantic in spring the bloom extends to the northern limit of the data. We therefore 

extrapolate the productivity polewards from the last available data point to zero over 10o of 

latitude. We also assume no productivity under sea ice through multiplying the productivity by 

(1 – sea ice concentration) (Stroeve and Meier, 2018). It should be noted that for most longitudes 

and seasons this results in the extrapolated productivity being zero in these regions beyond the 

data, so the correction is small.  
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The phytoplankton mediated conversion of iodate to iodide is assumed to occur during the 

senescence phase, and is lagged 60 days from primary production (Chance et al., 2007; Chance 

et al., 2010; Bluhm et al., 2010; Hepach et al., 2019). It is assumed that the appearance of iodide 

in the water column occurs in tandem with the removal of iodate (as would be the case for a 

dissimilatory reduction mechanism), and hence that the particulate iodine reservoir in biomass is 

negligible. This is consistent with the near conservative behaviour of total inorganic iodine seen 

in the upper ocean, where variations of 25% in speciation are accompanied by changes of only a 

few percent in total iodine (Truesdale et al., 2000). The widely reported inverse relationship 

between iodide and iodate also supports our assumption that iodate removal from the water 

column and iodide formation/release are directly coupled. It is found that the long-term 

equilibrium iodide concentrations are not sensitive to this lag timescale changing in the range 0 – 

120 days (see Section 4.3).  

 

The rate of iodide production at low iodate concentrations is limited with an e-folding scale of 50 

nM, to ensure that conversion from iodate to iodide tends to zero as iodate is depleted, but this 

only has a significant impact when iodate concentrations are less than around 100 nM, which is 

very rarely encountered in the model or observations. It should also be noted that any 

dependency of iodate to iodide reduction on iodate at higher iodate concentrations is not 

explicitly included in the model, because the I:C ratio is held constant regardless of the modelled 

ambient iodate concentration. Ie. With the exception of rare locations with unusually low iodate 

concentrations, the model implicitly assumes that the rates of both iodate reduction and bacterial 

iodide oxidation are biologically determined, and are independent of substrate concentration. 

 

The processes governing the oxidation of iodide to iodate have not been well understood, but it is 

clear that the oxidation is slow with estimates varying from months to decades (Tsunogai, 1971; 

Jickells et al., 1988; Luther et al., 1995; Campos et al., 1996; Edwards and Truesdale, 1997; 

Campos et al., 1999; Truesdale et al., 2000; Waite and Truesdale, 2003), allowing time for 

physical water transport processes to play an important role in the iodide distribution. This 

uncertainty in oxidation rate estimates is at least, in part, due to a lack of knowledge as to 

whether or not the oxidation is biologically mediated. Truesdale et al.’s (2001) study in the Black 

Sea pointed to a possible role for nitrifying bacteria, and Long et al. (2015) found that iodide 
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oxidation varied proportionally with nitrification in the South China Sea. In a companion paper, 

recent work by Hughes et al. (2019) reported on results from bacterial culture experiments, 

which supported a link between nitrification and the oxidation of iodide to iodate. Mixed layer 

nitrification results in the oxidation of ammonium, produced by the senescence of cells, to nitrite, 

and then nitrate (Figure 2), with the former transformation being linked to the oxidation of 

iodide. However, this is not the only route for ammonium loss in the euphotic zone, since it is 

also taken up by primary production, and is subject to physical mixing and advection by the 

ocean circulation. The uptake of nitrite is thought to be negligible, and nitrate from mixed layer 

nitrification is available, together with ‘new’ nitrate derived from upwelling, for driving primary 

production. A biogeochemical model including the process of mixed layer nitrification has been 

developed by Yool et al. (2007), resolved globally at a resolution of 1o latitude and longitude, 

and we have used this approach to allow us to separate the nitrogen cycle into the deep ocean 

nitrification route, and the mixed layer nitrification route, resolved globally at a resolution of 1o 

latitude and longitude. The proportion of nitrate available for production that comes from 

regeneration in the mixed layer (Figure 2, flux ‘D’), is shown in Figure 3 (from Yool et al., 

2007). 
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Figure 2: Schematic of nitrogen cycling in the ocean. Production is driven by nitrate (NO3-) 

originating from below the mixed layer, nitrate from nitrification within the mixed layer, and 

also ammonium (NH4+). Uptake of nitrite (NO2-) is much less and assumed to be zero. The 

proportion of nitrate supplied from below and within the mixed layer has been determined by 

Yool et al. (2007), allowing D/(D+E) to be calculated, and hence the proportion of ammonium 

which undergoes oxidation to nitrite. It is this flux which is also associated with oxidation of 

iodide to iodate (Hughes et al., 2019). 

 

 

Production of iodide is linked to carbon fixation by an iodine to carbon (I:C) ratio, and hence via 

the Redfield ratio, is also linked to nitrogen uptake. Linking oxidation of iodide to nitrification in 

turn requires a stoichiometric link to nitrogen and carbon. We achieve this by using the well-

established Redfield ratio of C:N = 106:16, and I:C = 3 x 10-4 reflecting the range reported in the 

literature, giving I:N = 0.002 for the oxidation of iodide with respect to nitrogen during mixed 

layer nitrification, provided we assume that the I:C and C:N associated with primary production 

is the same for bacterial nitrification. The experiments reported by Hughes et al. (2019) show 

that iodide oxidation only occurs when ammonium oxidising bacteria are present in culture 

media, and suggest a much higher ratio for I:N of 4.5, but this is in the experimental context of a 

much higher nitrate concentration environment than is found in the ocean. Indeed, it cannot be 

the case that the ratio has this average value throughout the ocean, as the much lower surface 

ocean concentrations of iodine compared with nitrogen would result in the complete oxidation of 

iodide back to iodate, and near zero iodide concentrations, given the short timescale of order 2 

days for mixed layer nitrification to occur (Yool et al., 2007).  

 

We will see below that iodide oxidation by this mechanism has a profound effect on the iodide 

concentrations, as it results in a spatially variable, rapid, partial oxidation of the iodide inventory, 

with the remainder being subject to removal by ocean mixing and advection, and much slower 

chemical oxidation to iodate, which occurs implicitly below the layers represented in the model. 

This may also provide an explanation for the huge range of oxidation timescales reported in the 

literature (Chance et al., 2010; Campos et al., 1996; Waite et al., 2006; de la Cuesta and Manley, 

2009; Edwards and Truesdale, 1997), with long timescales associated with environments where 



Confidential manuscript submitted to Global Biogeochemical Cycles 

 12 

nitrification is weak/absent, and much shorter timescales where nitrification is active. While the 

recycling of iodine between the iodate and iodide forms is substantial, the net cycling of total 

iodine (I- + IO3-) between the surface and deep ocean is small (there is generally <10% difference 

in total iodine concentration between surface and deep waters) and is ignored here, with  total 

iodine treated as effectively conservative (Chance et al., 2014).  

 
The deep ocean iodine cycle is represented in the model by the downwelling of iodide to the 

deep ocean, and the return of iodate to the bottom model level by upwelling, with a concentration 

of 500 nM. This assumes that iodide oxidation rates in the deep ocean are fast relative to deep 

ocean water residence times of decades to millenia, and takes no account of low oxygen 

environments where iodate reduction could occur, although these are of very limited extent in the 

present day ocean. 

 

2.3 Observed iodide concentrations 

 

In any modelling study, observations are crucial to validate the model. Here we have used a 

compilation of most of the iodide observations in the literature prior to 2014. A compilation of 

these observations is described in Chance et al. (2014). To this we have added recent 

observations from the Indian Ocean (Chance et al., 2019a), and some unpublished data from the 

coast off Peru (Croot, unpublished, included in the database described in Chance et al. (2019b)). 

The individual observations of iodide were then binned into a one-degree latitude and longitude 

grid, for each of the three model levels, for each month of the year, and averaged where multiple 

observations occurred. Comparisons with the model were then made for the same month, in each 

location where observed iodide concentration data was present.  

 

2.4 Modelling strategy 

 

In order to refine the iodine cycling model, we need to determine the I:C ratio, and oxidation 

rate/mechanism which allows us to achieve the best spatial fit to the observed iodide distribution. 

Ideally, we would like to find universal parameters that allow us to fit the data globally, both in 

coastal and open ocean locations, and are within the range reported in the literature. Iodide 



Confidential manuscript submitted to Global Biogeochemical Cycles 

 13 

concentrations will be determined by a balance between production and loss, with production 

and weaker oxidation acting to increase the biogeochemical residence time (and vice versa), in 

conjunction with the residence time for water in the mixed layer, which is dependent on 

advection and mixing. 

 

We will therefore run two suites of model experiments, one with the oxidation of iodide over a 

defined timescale, and the other with oxidation linked to nitrification. In both of these the I:C 

ratio will be varied over a range consistent with the values reported in the literature. 

 

3. Results from a simple iodine cycling model 

 

Before considering the results from the full iodine cycling model, we will consider a much 

simpler, conceptual box model, which will aid interpretation of the full model results. 

 

The production and loss of iodide over an annual cycle can be captured by considering the 

dominant processes involved, and assuming a vertical mixing timescale for iodide in the mixed 

layer of around one year. In the subtropical gyres this timescale is likely to be considerably 

longer (e.g. Jickells et al., 1988), but elsewhere it is plausible, and provides a simple approach to 

investigate the dominant processes involved in determining iodide concentrations. 

 

In this simple model, the annual production of iodide is assumed to be equal to the production of 

organic carbon, multiplied by an I:C ratio. Following an annual cycle of mixed layer deepening 

and shoaling, the proportion of iodide remaining in the mixed layer is assumed to equal 

MLDmin/MLDmax, with the remainder removed from the mixed layer during shoaling. The 

oxidation pathway driven by mixed layer nitrification converts a proportion of the iodide 

produced back to iodate. The residual iodide inventory is then distributed throughout the annual 

mean mixed layer to give a mean mixed layer concentration.  

 

Figure 3 shows the components of this simple model. Productivity is high in regions where 

nutrients are supplied to the mixed layer by deep mixing, and in coastal regions, particularly 

where there is upwelling. This favours high iodide in these regions. Oxidation of iodide by 
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nitrification is greatest in the subtropical gyres, lower in equatorial regions, and lowest at high 

latitudes, resulting from the link to the nitrification model of Yool et al. (2007). This results in 

the greatest oxidation of iodide in the subtropical gyres and lower latitudes outside of equatorial 

regions. MLD variations are generally greatest at high latitudes, resulting in the greatest loss of 

iodide through mixing, so long as the lifetime of iodide with respect to oxidation is comparable 

to the seasonal timescale of mixed layer cycling. The MLD itself is also greatest at high latitudes, 

although this has strong seasonal variability. These competing factors result in generally higher 

iodide concentrations at low latitudes, with the highest concentrations occurring where 

productivity is high, MLDs are shallow, seasonal MLD variations are small, and oxidation by 

nitrification is weak. In both the Atlantic and Pacific this is on the eastern side of the basin, 

where predicted iodide concentrations are greatest. High iodide is also predicted in the Arctic, 

where productivity is lower, but MLDs are shallow, and have little seasonal variation. The 

subtropical gyres have low iodide, due to low productivity and strong oxidation of iodide linked 

to mixed layer nitrification. The full model (Section 4) will show that the iodide residence time is 

considerably longer than a year in these gyres, resulting in an underestimate by this simple 

model. 
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Figure 3: Parameters driving a simple model of oceanic iodide cycling and resultant iodide 

fields: (a) ratio of minimum to maximum mixed layer depth, (b) annual mean mixed layer depth, 

(c) proportion of ammonium subject to nitrification in the mixed layer (Yool et al., 2007), (d) 

ocean productivity (Behrenfeld and Falkowski, 1997), (e) predicted mixed layer iodide 

inventory, and (f) predicted mixed layer iodide concentration. 

 

 

4. The full iodine cycling model 

 

The model was run for a range of I:C ratios, from 4.7 x 10-6 to 1.2 x 10-3, increasing in multiples 

of two. This range of values covers that reported in the literature (Elderfield and Truesdale, 1980, 

Jickells et al., 1988; Chance et al., 2010; Hepach et al., 2019). Two methods of iodide oxidation 

were used, firstly a simple parameterisation representing the actual processes by a timescale for 

(a)

(d) (f)(e)

(c)(b)
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conversion of iodide to iodate, and secondly via a coupling to the nitrogen cycle through 

nitrification.  

 

4.1 Oxidation parameterised by a timescale conversion of iodide to iodate 

 

The model was run with oxidation timescales of 1, 2, 4, 8 and 16 years, reflecting the large range 

of rates estimated in the literature (e.g. Campos et al., 1996; Edwards and Truesdale, 1997). 

Equation 4a in the Appendix describes the process. 

 

For each model grid point where observations were available, the difference between the model 

and observed mixed layer iodine concentration was plotted as a function of SST (Figure 4), and 

hence broadly latitude. Increasing the I:C ratio increases production of iodide, and decreasing the 

oxidation timescale increases the rate of conversion back to iodate. Hence with a low I:C ratio 

and long oxidation timescale, the predicted concentrations are generally higher than observed, 

whereas with a small I:C ratio, and short oxidation timescale, the model underestimates iodide 

concentrations relative to observed values.    

 

At low SSTs (<  5o C) agreement between model and observations is only achieved with higher 

I:C ratios, with the oxidation timescale having little influence. This is because there is a strong 

seasonal cycle in MLD, which acts to remove iodide from the mixed layer within an annual 

timescale, and is the dominating iodide loss process.  
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Figure 4: Normalised difference between modelled and observed iodide concentrations, as a 

function of SST, for a range of I:C production ratios, and iodide oxidation timescales. The RMS 

errors for coastal (< 200 m) and open ocean (> 200 m) locations are shown in red and blue 

respectively.  

 

 

 

For SSTs from 5o C to 15o C model/observation differences can be minimised with appropriate 

I:C ratios and oxidation rates. At higher I:C ratios the predicted iodide concentrations in coastal 

locations tend to be overestimated in comparison with open ocean locations, whereas with lower 

I:C ratios and longer oxidation timescales both coastal and deep ocean locations are well 

represented by the model. The best fits lie in the parameter space between I:C = 7.5 x 10-5 with 

an oxidation timescale of 16 years, and an I:C = 6 x 10-4 with an oxidation timescale of 1 year. 

 

Above 15o C the model/observation fit is more problematic. There is a consistent tendency across 

the I:C and oxidation timescale parameter space for a relative overestimation of modelled iodide 
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compared to the available data between 15o C and 25o C (in the subtropical gyres), compared 

with an underestimation above these temperatures (in equatorial regions). This is the case in both 

coastal and open ocean locations. This could indicate that the I:C ratio is higher in equatorial 

regions than in the gyres, or that oxidation is more rapid in the subtropical gyres. A variation in 

I:C ratio could be due to different types of plankton dominating primary production. An analysis 

of plankton type distributions (Alvain et al., 2008) does indeed show a separation of types 

between these regions, with Synechococcus dominating in equatorial regions, whereas 

Prochlorococcus dominates in the subtropical gyres. The difference between model and observed 

iodide is consistent with work by Wong et al. (2002), who found that Synechococcus have some 

of the highest rates of iodide production.  

 

A sensitivity experiment was performed, in which the rate of production of iodide from iodate 

was temperature dependent, increasing by 2, 4, 8 and 16-fold for a doubling of SST. It was found 

that an eight-fold increase in production of iodide for a doubling in SST was required to remove 

the equatorial low-iodide bias, which is a far greater temperature dependency than permitted by 

physical chemistry alone (Luther et al., 1995). We therefore conclude that this is unlikely to be 

the reason for the model bias.  

 

The dependence of iodide production on productivity is well established, but it is also noted that 

the model iodide biases are consistent with this dependency, with over prediction in mid-latitude 

coastal regions, and an under prediction in the low latitudes. A sensitivity experiment was 

performed in which the observed productivity was replaced with its globally averaged seasonal 

cycle. Interestingly, this considerably reduced the model biases, and we will see in Section 4.2 

that this is consistent with a link between production and oxidation, via the process of 

nitrification. 

 

Another possible explanation for the poor fit of the model in some regions lies with the oxidation 

rate, which may vary spatially in the ocean. The representation of oxidation by a timescale is a 

simple approach designed to avoid use of a mechanism-dependent parameterisation, be it 

physical chemistry (and therefore temperature dependent) or biologically mediated, which may 

also be temperature dependent. It should be noted that removal by mixing occurs in parallel to 
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these processes, and is represented by the model. With the exception of processes in the sea 

surface microlayer, the purely chemical oxidation of iodide in the seawater is thought to be so 

slow it can be considered insignificant (Luther et al., 1995). This rate would increase with 

temperature, and therefore result in a greater oxidation of iodide in equatorial regions, where the 

model is underestimating concentrations. Inclusion of a temperature-dependent oxidation rate 

would therefore increase the tendency for the model to underestimate concentrations in 

equatorial regions.  

 

4.2 Oxidation driven by mixed layer nitrification 

 

Biologically mediated iodide oxidation by bacteria has been shown to occur (Gozlan, 1968; Fuse 

et al., 2003; Amachi et al., 2004; Amachi et al., 2005) and recent laboratory microcosm 

experiments have demonstrated that it may be brought about by nitrifying bacteria (Hughes et al., 

2019). This recent discovery prompted the inclusion of nitrification-linked oxidation in the 

model. 

 

This mechanism is discussed in Section 2.2, and is described by Equation 4b in the Appendix. 

The linking of the oxidation of iodide to nitrification, at a ratio stochiometrically consistent with 

that of iodide production, results in a proportion of the iodide produced being oxidised to iodate 

over a timescale of days, assuming iodide is released during senescence and ammonium 

oxidation has a timescale of days (Yool et al., 2007) while the remainder is subject to oxidation 

by an unspecified, possibly purely chemical process (which we will assume has a much longer 

timescale), and physical mixing. Figure 3 (top-right) shows the proportion of mixed layer nitrate 

supplied by nitrification, corresponding to the proportion of iodide subject to oxidation, as 

calculated by Yool et al. (2007). It is immediately apparent that the largest proportion of iodide 

subject to oxidation is in the subtropical gyres, where the model overestimates iodide 

concentrations.  

 

The model was run with the same range of I:C ratios, but with this alternative oxidation 

mechanism. The general response to changing I:C ratio is the same as with oxidation over a 

prescribed timescale (Figure 5), but the overestimation of iodide for SSTs in the range 15 oC – 25 
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oC is considerably reduced, both for coastal and open ocean locations, with the best fit obtained 

using an I:C ratio of 3.75 x 10-5 similar but about two times lower than in previous model runs. 

This value is within the range reported in the literature, and corresponds well to the ratio found 

for some types of phytoplankton (Hepach et al., 2019) and in oceanic studies (Campos et al., 

1996; Chance et al., 2010). 

 

 

 

 

 

 

 

Figure 5: Normalised difference between modelled and observed iodide concentrations, as a 

function of SST, for a range of I:C production ratios, with iodide oxidation driven by 

nitrification. The RMS errors for coastal (< 200 m) and open ocean (> 200 m) locations are 

shown in red and blue respectively. 

 

 

Linking oxidation to nitrification fundamentally changes the way iodine is cycled between iodate 

and iodide. Previous assertions that oxidation occurred at a given rate, which is possibly 

temperature dependent, and/or biologically mediated, and hence spatially variable, fail to capture 

a key aspect of the process which results from the link to nitrification. The oxidation of iodide 

back to iodate in tandem with the oxidation of ammonium results in a proportion of the iodide 

being oxidised rapidly in the surface layer (time scale order days, Yool et al., 2007), whilst the 

remainder is removed from the mixed layer by a slower physical mixing pathway to the ocean 

interior where much slower oxidation occurs. In regions where vertical mixing is strong (e.g. 

high latitudes), mixing is the dominant removal mechanism, and iodide has a residence time in 



Confidential manuscript submitted to Global Biogeochemical Cycles 

 21 

the surface waters of  around one year. However, where vertical mixing is much less intense (e.g. 

the sub-tropical gyres), the proportion of iodide remains unoxidized and therefore accumulates 

year-on-year, and is slowly mixed out, resulting in a much longer residence time of the iodide in 

the surface waters. This coupling of iodide oxidation to the euphotic zone biogeochemistry of 

nitrogen may help explain why there is such a large range of oxidation timescales reported in the 

literature (Tsunogai, 1971; Campos et al., 1996; Edwards and Truesdale, 1997; Truesdale, 2001; 

Zic and Branica, 2006; Zic et al., 2013), as the actual removal process comprises rapid oxidation 

of part of the iodide inventory in conjunction with nitrification, and the relatively slow physical 

removal of the remainder by mixing to the ocean interior, followed by slow chemical oxidation.  

 

4.3 Comparison with observed ocean sections 

 

We will now make comparisons between the modelled and observed iodide for five ocean 

sections: a trans-Atlantic meridional section (Truesdale et al., 2000), a South Atlantic meridional 

section (Campos et al., 1999), a South Atlantic zonal/meridional section (Bluhm et al., 2011), an 

East Atlantic meridional section (Baker (unpublished)), and an Indian Ocean section (Chance et 

al., 2019a). Data used for this comparison is available in Chance et al. (2019b). Data from the 

first four were taken from the database in Chance et al. (2014), and the Indian Ocean data is from 

Chance et al. (2019a). Data used for this comparison is available in Chance et al. (2019b). Model 

comparisons with ocean sections allows spatial and inter-basin comparisons to be made. 

 

We have seen in Section 4.2 that whilst a best fit between model and observations can be made 

by selecting an appropriate I:C ratio, there is still considerable variation between the model and 

observations at each particular SST. Figure 6 shows comparisons between model and observed 

iodide concentrations for each section, and for a range of I:C ratios. Taking each section in turn, 

it can be seen that the model can be made to fit each section with considerable skill, but that a 

different I:C ratio is required for each section. The two meridional Atlantic sections (extending 

from 45o S to 45o N) require a relatively low ratio of 1.9 x 10-5. The two south Atlantic sections 

require a higher I:C ratio, and it is apparent that within the latitudinal range of these sections the 

best fit requires an increasing I:C ratio with increasing latitude. The Campos et al. (1999) section 

is in best agreement with the model with an I:C of 3 x 10-4 south of 50o S, increasing to 3.8 x 10-5 
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at 30o S. The Bluhm et al. (2011) section fits best with an I:C of 3 x 10-4 – 6 x 10-4 between 70o S 

and 60o S. The Indian Ocean section fits best with an I:C of 3 x 10-4 south of 20o S, but with a 

much lower value of around 1 x 10-5 near the equator. It is clear that the I:C ratio required to fit 

the model to the observations is around ten times greater at high latitudes than low latitudes. 

However, it is also interesting to note that a relatively high ratio is required in the Indian Ocean 

south of only 20o S. 

 

 

 
 

Figure 6: Comparison between modelled and observed iodide for a range of I:C production 

ratios, for five ocean transects – from top to bottom Truesdale et al. (2000), Campos et al. 

(1999), Bluhm et al. (2011), Baker (unpublished), all taken from the database in Chance et al. 

(2014), and Chance et al. (2019a). 
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5. Discussion 

 

Having established that the model is capable of reproducing the observed iodide distributions 

with an appropriate I:C ratio consistent with the relatively wide range of values reported in the 

literature, and an oxidation mechanism that has been shown to occur in microcosm experiments, 

we will now use the model to broaden our understanding of the role of processes in the ocean 

iodine cycle. 

 

5.1 Spatial variation of the I:C ratio 

 

The finding that the I:C ratio varies spatially raises the question of whether a global field of I:C 

can be derived from the model. There is no reason to expect the I:C ratio to be globally constant; 

even the Redfield ratio of C:N:P has in reality some variability, and the variability for other 

elements may be greater (Moore et al., 2013). The RMS error between the model and iodide 

observations was calculated for each model I:C ratio, in bins of 5oC increments in SST. An 

empirical function describing the optimum I:C ratio required to minimise the model RMS error is 

shown in Figure 7. The optimum I:C ratio decreases with increasing SST from 3 x 10-4 at 0o C to 

3.8 x 10-5 at SSTs of > 15o C. The spatial distribution of I:C derived from this function is shown 

in Figure 8a.  
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Figure 7: I:C production ratio which gives the best model – observation fit (lowest RMS error), 

as a function of SST.  

 

An alternative approach is to derive a zonally constant I:C, taking the zonal mean of the best fit 

I:C ratio for each iodide observation point. We have already seen that the best fit I:C ratios in the 

Indian Ocean south of 20oS are greater than in the Atlantic, so we derive a separate zonal mean 

for the Indian Ocean from the Atlantic and poorly observed Pacific oceans, with a smooth 

transition between the ocean basins. It should be noted that in the absence of any observations in 

the Arctic, the I:C ratio was set to that at the latitude of the northern most observation in the 

Atlantic. This I:C field is shown in Figure 8b. The SST-derived field has a much higher I:C ratio 

in the Arctic, which is a result of the observational evidence from the Southern Ocean with 

similar SSTs. The zonal mean approach results in more latitudinal structure in the I:C ratio, 

including a marked asymmetry in the subtropical Atlantic, and a much greater I:C in the 

subtropical Indian Ocean. 
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Figure 8: I:C production ratio derived from (a) a best fit to SST, using the relationship in Figure 

7, and (b) using the zonal mean of the best fit I:C for the Atlantic and Pacific, and Indian oceans. 

 

 

Figure 9 shows the comparison between the model and observations for each of the five ocean 

sections, for constant, SST-dependent and zonal basin mean I:C fields. The use of a globally 

constant I:C ratio results in a generally poor fit, with the model underestimating iodide at high 

latitudes and in the Indian Ocean south of 20oS. The high latitude fit can be improved by using a 

greater I:C ratio, but low latitude iodide is then overestimated. The SST dependent I:C ratio 

performs more consistently across the sections, with only the mid-latitude Indian Ocean showing 

significant discrepancies. The use of a zonal basin average I:C results in a much better fit in the 

Indian Ocean, where I:C is increased, but the model overestimates iodide in the low and mid 

latitude Atlantic. The location of the iodide observations in the Atlantic tends to coincide with 

anomalously low SST for the latitude, so longitudinal extrapolation of the I:C ratio favours a 

higher I:C ratio than the SST-derived ratio, due to the inverse relationship between I:C and SST / 

latitude. 



Confidential manuscript submitted to Global Biogeochemical Cycles 

 26 

 

 

 
Figure 9: Comparison between modelled (blue) and observed (red) iodide for five ocean 

transects – from top to bottom Truesdale et al. (2000), Campos et al. (1999), Bluhm et al. (2011), 

Baker (unpublished), Chance et al. (2019a). The first column shows results for the best fit 
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globally constant I:C production ratio, the second for an SST dependent I:C production ratio (see 

Figure 8a), and the last a zonal mean I:C production ratio for the Atlantic and Pacific, and Indian 

oceans. 

 

 

Overall, the modelled iodide is in best agreement with observations when the I:C ratio is 

parameterised as a function of SST, as shown by the RMS errors (Figure 10). The model still 

tends to underestimate iodide where SST > 20 oC, and overestimate for 5 oC < SST < 15 oC. It 

might be expected that the dependency of the I:C ratio on SST would eliminate this bias 

completely, but the residual differences between the model and observations is consistent with 

the ocean circulation playing an important role in redistributing iodide across SST contours. 

Selection of the best fit I:C ratio assumed the iodide depended only on the local I:C ratio, 

whereas advection could potentially bring iodide from lower latitude regions where the best fit 

I:C is lower, and higher latitude regions where the best fit I:C is greater. Since the I:C ratio was 

globally constant in the suite of model runs from which the local best fits were determined, the 

I:C ratio and iodide concentrations at lower latitudes would be too great, and at higher latitudes 

too small with respect to the SST-dependent I:C ratio case. Thus, in the runs used to determine 

the best fit I:C ratio, advection of iodide from regions with higher SST and I:C ratio is too great, 

and from lower SST and I:C ratio, too small. This is consistent with the tendency of the model to 

underestimate iodide at low latitudes, and overestimate at mid latitudes. This suggests that the 

surface water iodide residence time is sufficiently long that horizontal as well as vertical mixing 

processes may be important. We also suggest that the I:C ratio may vary systematically with SST 

which probably implies a variation with phytoplankton species and communities.  
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Figure 10: Normalised difference between modelled and observed iodide concentrations, as a 

function of SST, for a range of I:C production ratios, and iodide oxidation timescales. Left: for 

the best fit globally constant I:C production ratio, middle: for an SST dependent I:C production 

ratio (see Figure 8a), right: a zonal mean I:C production ratio for the Atlantic and Pacific, and 

Indian oceans (see Figure 8b). The RMS errors for open ocean (> 200 m), coastal (< 200 m) and 

all locations are shown in blue, red and black respectively. 

 

 

5.2 Comparisons with statistically-derived surface iodide fields 

 

Modelling the ocean iodine cycle has produced a new estimate of surface iodide concentrations, 

which can be compared with other estimates from existing statistical and non-parametric 

machine learning methods. These statistical methods attempt to fit the observed iodide data using 

a suite of correlations to other more widely observed ocean variables including temperature, 

salinity, mixed layer depth and nitrate. Here we will use the model configuration that uses an 
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SST-dependent I:C ratio, as this has a lower RMS error with observations than the latitude/basin 

I:C dependent approach. Comparing the model iodide field with observations, where they exist, 

shows a generally good agreement between the model and observed values (Figure 11a - c), with 

the model tending to slightly over-estimate iodide in the Atlantic, and under-estimate iodide in 

the Indian Oceans, as we have seen in previous sections. Elevated concentrations are generally 

confined to the eastern and coastal regions of the low and mid latitude ocean basins, and it is 

interesting to note that the majority of the observations are in these regions. High iodide is also 

predicted in the Arctic, but no direct observations are available to support this. However, periods 

of low tropospheric ozone in the atmospheric boundary layer during spring, driven from the 

ocean surface, have been observed in the Arctic (Wessel et al., 1998). This depletion of 

tropospheric ozone could be driven by iodine emissions from the Arctic Ocean.  
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Figure 11: Comparison of model predicted annual average mixed layer iodide concentration 

with observations and other predictions. From top to bottom: (a) from the model, using an SST 

dependent I:C production ratio, (b, c) from observations (Chance et al., 2019b), (d, e) from the 

parameterisation of Chance et al. (2014]) (f, g) from the parameterisation of MacDonald et al. 

(2014), (h, i) and from the machine learning parameterisation of Sherwen et al. (2019a; 2019b). 

Differences with the model are shown in the right-hand column.   
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Chance et al. (2014) proposed a parameterisation of iodide in terms of a number of oceanic 

variables (Figure 11d). This has a strong dependency on latitude, but does not predict much 

variation with longitude. Where observations exist, agreement with iodide concentrations 

predicted by the model and those predicted by the Chance et al. (2014) equation is good, but 

elsewhere large differences exist (Figure 11e).  

 

MacDonald et al. (2014) also parameterised iodide concentrations, but used a simpler approach, 

relating ln(I-) with SST-1 using a subset of the observational database in Chance et al. (2014) 

(Figure 11f). This parameterisation is currently the most widely used in atmospheric models (e.g. 

Sherwen, 2016; Sarwar, 2016). Iodide fields predicted using this relationship are again broadly 

consistent with observations where they exist, but are lower than the Chance et al. 

parameterisation over much of the low and mid latitudes, away from the regions with 

observations. The MacDonald parameterisation generally predicts lower iodide concentrations 

than the model at high latitudes, and higher concentrations at low latitudes (Figure 11g). This 

pattern is consistent with using just SST as a predictor of iodide, compared to the model 

approach which incorporates a range of processes.  

 

Sherwen et al. (2019a) adopted a machine-learning approach to predict iodide from an expanded 

compilation of iodide observations (Chance et al. 2019b). This approach assigns an iodide 

concentration to each oceanic location based on observed iodide values at locations with related 

combinations of biogeochemical and oceanographic properties. This machine learning based 

parameterisation yields a similar iodide distribution to that predicted by the multivariate equation 

in Chance et al., but with generally greater iodide at higher latitudes (Figure 11h). This is 

consistent with both methods using similar oceanic properties (e.g. SST, salinity, nitrate) to 

predict iodide. Comparison of model and machine learning predictions shows the latter technique 

predicts higher iodide throughout most of the ocean (Figure 11i).  

 

In each comparison, the modelled iodide has more longitudinal variation than the statistical 

methods suggest. Observations are currently insufficient to assess whether such a longitudinal 
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variation does in fact exist. Observations of iodide have mostly been concentrated around the 

periphery of ocean basins, leaving most of the subtropical gyres poorly sampled. It is in these 

regions that the Chance et al. (2014) and Sherwen et al. (2019a) parameterisations predict 

relatively high iodide concentrations, consistent with the observations at similar latitudes, 

whereas the model predicts lower iodide, predominantly as a result of taking into account lower 

productivity and increased nitrification-dependent oxidation in these regions. Meanwhile, the 

model predicts higher iodide concentrations in the Arctic than the other approaches. This is 

because, within the model, advection redistributes iodide within the ocean gyres, and also 

supplies iodide to the Arctic. The interaction of these, and other processes, means that iodide 

cannot simply be described by local oceanic conditions, but requires an ocean circulation model 

to support the biogeochemical transformations involved in the oceanic iodine cycle. Given this, 

we suggest that the modelled distribution of iodide is likely to give a more accurate estimate of 

the ocean surface iodide distribution than methods based on local relationships alone. Future 

observations of iodide in currently unsampled regions such as the Arctic and sub-tropical gyres 

will prove crucial in determining whether the modelled field is accurate.    

 

5.3 The role of individual processes in determining surface iodide  

 

Modelling of the ocean iodine cycle allows us to investigate which oceanic and/or 

biogeochemical processes are important in determining iodide concentrations. A suite of 

sensitivity experiments was performed to investigate this, using the I:C ratio dependent on SST 

(Figure 12). The production of iodide is dependent on productivity. The seasonal cycle of 

carbon, and hence iodide production could impact iodide concentrations via the seasonal MLD 

cycle. A model run with the local seasonal cycle of production replaced by the annual mean 

resulted in small decreases in iodide in some coastal and subtropical regions, where seasonal 

maxima in production coincide with shallow MLDs, and an increase around Antarctica, where 

production precedes the MLD minima (Figure 12a). Halving the productivity reduces iodide, 

with the greatest reductions in subtropical regions where iodide concentrations are greatest 

(Figure 12b).  
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Figure 12: Sensitivity of the modelled mixed layer iodide concentration to forcings and 

processes in the model. Annual mean mixed layer iodide concentration difference between 

perturbed and control run for: (a) production with seasonal cycle removed, (b) productivity 

halved, (c) seasonal mixed layer depth variations replaced by annual mean mixed layer depth, (d) 

mixed later depth doubled, (e) no oxidation of iodide, (f) no horizontal or vertical advection, (g) 

iodide release from cells at same time as carbon production, (h) iodide release from cells 120 

days after carbon production (standard model lag is 60 days), (i) zero surface fresh water flux 

due to precipitation, evaporation and runoff, (j) I:C production ratio halved. 

 

Removal of the seasonal cycle of MLD increases iodide over most of the ocean, consistent with 

the reduced loss from vertical mixing (Figure 12c). However, in the subtropical south Pacific, 

concentrations decrease. Examination of the iodate field shows increased mixed layer depletion 

of iodate widely across the subtropics, and in the Arctic, when MLD variations are removed, 

together with the supply of iodate from below the mixed layer. In the South Pacific subtropical 

gyre this depletion is sufficient to limit iodide production. Doubling the MLD effectively doubles 

the volume of water in which the iodide is stored, and therefore reduces iodide concentrations 

accordingly (Figure 12d). Iodide increases in some high latitude locations, but this is because the 
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MLD increase is limited by the ocean depth, so where the maximum MLD extends near to the 

ocean floor, the seasonal MLD variation is effectively reduced, reducing the seasonal loss each 

year.  

 

Oxidation of iodide to iodate acts to reduce iodide concentrations, hence removing the oxidation 

process increases iodide, especially in the subtropical gyres. It is here that oxidation is the 

dominant removal process, as vertical mixing is weak. At high latitudes, where removal is 

dominated by the seasonal cycle of MLD, oxidation has a much smaller impact (Figure 12e).  

 

Advection redistributes heat and salt, and also all other tracers, around the ocean. The impact of 

this advection depends on the life time of the tracers, and their spatial gradients. Removal of 

advection from the model results in increased iodide everywhere except the Arctic (Figure 12f). 

This shows that the vertical component of the circulation acts either to reduce iodide through the 

upwelling of iodide-depleted water, or remove iodide through the downwelling of iodide-rich 

water, the net effect of both of which is to remove iodide to depth, where it undergoes long-term 

oxidation to iodate. In the Arctic, however, iodide decreases without advection, showing that at 

least part of the iodide results from advection from the North Atlantic, probably associated with 

the spring bloom. Truesdale et al. (2003) also found iodide concentrations to be dependent on 

advection in the Skagerrak. 

 

Iodide is thought to be released from most types of phytoplankton cells during the senescence 

phase (Bluhm et al., 2010), with a lag estimated at around 60 days. The sensitivity of iodide 

concentrations to this lag was tested by using lags of zero and 120 days in the model. Earlier 

release results in an increase in iodide in some coastal locations, and the Arabian Sea. Delayed 

release results in a small decrease in iodide in some mid latitude locations (Figure 12g, h). These 

changes are due to the interaction of the release of iodide with seasonal MLD variations.  

 

The net surface fresh water flux, resulting from precipitation, evaporation and runoff, acts to 

dilute/concentrate the mixed layer. Removal of the freshwater flux has a corresponding impact 

on iodide concentrations. Net freshwater input dilutes iodide at high latitudes, whereas net 
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freshwater loss concentrates iodide. This has a significant impact where MLDs are shallow, and 

the flux is large (Figure 12i), for example the Arctic. 

 

Lastly, the I:C ratio for the production of iodide acts as a multiplier to the production of C, and 

the impact of changes in the I:C ratio correspond to changes in productivity (Figure 12j, b).  

 

These model sensitivity tests give an important insight into the processes driving ocean iodide 

concentrations, and show that surface iodide concentrations result from the interaction of several 

processes, which are dominated by primary productivity, the I:C ratio, MLD, oxidation, 

advection, and the oceanic fresh water flux. All of these are likely to change during the coming 

decades and centuries as atmospheric greenhouse gas concentrations increase, and impact 

climate and ocean chemistry. For instance, heating of the upper layers of the ocean may reduce 

MLDs, and nitrification rates may decrease due to ocean acidification (Beman et al., 2011), 

resulting in less oxidation. Both of these changes would act to increase iodide concentrations. 

Further studies would be needed to quantify potential future changes in the ocean iodide cycle.      

 

6. Conclusions 

 

We present the first physical and biogeochemical model for the cycling of iodine in the ocean. In 

the model production of iodide from iodate is driven by primary production, and it is found that 

the I:C ratio for production of iodide increases by an order of magnitude between low and high 

latitudes, yet this range lies within those reported in the literature. Evidence from oceanic and 

laboratory-based studies show a link between the oxidation of iodide and ammonium by 

nitrification. In the model it is found that the spatial distribution of observed iodide can best be 

reproduced if oxidation is also linked to nitrification, which has a distinctive spatial pattern. 

Using the model to explore the sensitivity of surface iodide reveals that the distribution results 

from several interacting processes, both physical and biogeochemical, and that changes in any of 

these is likely to result in changes to surface iodide concentrations. Significant differences are 

found between global surface iodide distributions derived from parameterisations, and those 

predicted by the model. The model predicts much greater longitudinal variations of iodide within 

ocean basins, which cannot be captured statistically from the predominantly meridional 
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observational transects. The model also predicts high iodide concentrations in the Arctic, where 

there are currently no observations. These aspects of the iodide distribution are consistent with 

advection of iodide within the ocean gyres and major currents linking ocean basins, reflecting the 

relatively long lifetime of iodide in surface waters, which cannot be captured by statistical 

relationships between iodide and local oceanic variables. The cycling of iodine in the ocean is 

linked to the atmospheric cycling of iodine and ozone in a large scale global biogeochemical 

cycle.  The model predicted surface iodide distribution differs sufficiently from that derived by 

statistical and machine learning techniques to impact atmospheric model predictions of ozone 

and air quality. We now await new observations of iodide in regions currently without 

observations (in particular the Arctic and centres of the subtropical gyres) to further validate our 

process-based prediction of surface iodide concentrations.  
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Appendix 

Model description 

 

The ocean iodine cycling model represents the interconversion of iodine between the two species 

iodate (IO3-) and iodide (I-). The model is initialised with all the iodine in the form of iodate, 

with a concentration of 500 nM, corresponding to the global mean of the sum of iodide and 
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iodate species (Chance et al., 2014). Conversion of iodate to iodide is driven by a global monthly 

climatology of primary production (Behrenfeld and Falkowski, 1997), at a rate linked to the rate 

of carbon assimilation multiplied by an iodine to carbon ratio, and lagged by 60 days from the 

associated primary production (Bluhm et al., 2010; Chance et al., 2010; Hughes et al., 2019). A 

saturation term is used to limit iodate to iodide conversion as iodate becomes depleted below 50 

nM, although this low iodate concentration is rarely seen in the existing observations or model 

runs. Iodide production occurs only in the mixed layer (Eq. 1), and results in a corresponding 

loss of iodate, and vice versa (Eq. 2). 

 

Two mechanisms for the oxidation of iodide to iodate are explored in this paper. In the first, 

oxidation occurs over a specified timescale, which parameterises the actual processes involved 

(Eq. 4a). Experiments with the model show that linking oxidation to nitrification in the mixed 

layer (Hughes et al., 2019) significantly improves the model fit to observations. The production 

of iodide, driven by the assimilation of carbon, also has an implied link to the nitrogen flux, 

which can be determined by a Redfield ratio. With oxidation driven by nitrification, the 

proportion of iodide oxidised to iodate is given by the proportion of nitrogen (in the form of 

ammonium) that is oxidised to nitrite in the surface ocean layer (Eq. 4b).        

 

The tracers iodide and iodate are subject to advection by the monthly mean velocities from the 

OCCAM ocean general circulation model (Aksenov et al., 2010) (Eq. 5, 6 and 7), and horizontal 

and vertical mixing at rates of Kh = 2000 m2s-1 and Kz  = 1 x 10-4 m2s-1 respectively. In addition, 

seasonal mixed layer depth changes result in the exchange of tracers between the upper two 

model layers, and complete mixing of existing and additional tracers in the thickening layer. 

 

Model equations 

 

In the mixed layer 

 
![#$]
!&

= 	𝑃𝑅𝑂𝐷&-./0 	× 	𝐼𝐶	 ×	𝐹5	 	× 	
6

7.8
− 	𝑂𝑋𝐼𝐷𝐴𝑇𝐼𝑂𝑁 + 	𝑇𝑅𝐴𝑁𝑆𝑃𝑂𝑅𝑇	,  (1) 
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![#@A$]
!&

= 	−	𝑃𝑅𝑂𝐷&-./0 	× 	𝐼𝐶	 ×	𝐹5	 	× 	
6

7.8
+ 	𝑂𝑋𝐼𝐷𝐴𝑇𝐼𝑂𝑁 + 	𝑇𝑅𝐴𝑁𝑆𝑃𝑂𝑅𝑇	,  (2) 

 

where PROD is the monthly mean production of carbon, LAG is the time lag for iodide 

production from carbon assimilation (60 days), IC is the ratio of iodide to carbon production, 

MLD is the seasonally varying mixed layer depth, and  

 

𝐹5 = 1 −	exp G−[𝐼𝑂H
-]
[𝐼𝑂H	IJKJ&- ]L M ,       (3) 

	 

is the iodide saturation term, where IO3-limit = 50 nM. 

 

Oxidation is represented by either a timescale, such that      

 

𝑂𝑋𝐼𝐷𝐴𝑇𝐼𝑂𝑁 = 	1/𝑇OPJQ5&JOR 	× 	 [𝐼-] ,       (4a) 

 

or is linked to mixed layer nitrification, such that 

 

𝑂𝑋𝐼𝐷𝐴𝑇𝐼𝑂𝑁 = 	−	𝑅𝐸𝐺𝐸𝑁 × 𝑃𝑅𝑂𝐷&-./0 	× 	𝐼𝐶	 ×	𝐹5	 	× 	
6

7.8
 ,    (4b) 

 

where REGEN is the proportion of nitrogen subject to nitrification in the mixed layer (Yool et 

al., 2007). 

 

The transport of iodide and iodate (represented by tracer T) is given by 

 

𝑇𝑅𝐴𝑁𝑆𝑃𝑂𝑅𝑇 = 	𝑢 !V
!P
+ 𝑣 !V

!X
+ 𝑤 !V

!Z
+ 𝐾\ ]

!^V
!P^

+ !^V
!X^
_ +	𝐾Z

!^V
!Z^

 ,    (5) 

 

where u, v and w are the layer-dependent zonal, meridional and vertical velocities. 

 
Below the mixed layer there is no production or oxidation of iodide, with changes in iodide and 

iodate being driven by advection and mixing (Eq. 6 and 7). 
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![#$]
!&

= 	𝑇𝑅𝐴𝑁𝑆𝑃𝑂𝑅𝑇  ,         (6) 

 
![#@A$]
!&

= 		𝑇𝑅𝐴𝑁𝑆𝑃𝑂𝑅𝑇          (7) 

 

In the deep ocean iodide and iodate are assumed to have concentrations of 0 nM and 500 nM 

respectively (Chance et al., 2014), and upward advection transports iodide and iodate with these 

concentrations into the bottom model layer (Figure 1).  

 

Each model simulation was run for 100 years, which allowed iodide and iodate concentrations to 

reach an equilibrium.  
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