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Abstract

Fracture initiation and propagation from a wellbore within a rock formation exhibit nonlinear and inelastic behaviors. When

the rock material undergoes plastic deformation prior to failure, the classical Griffith theory is no longer valid. In this study, a

variational phase-field approach is applied to model the inelastic behavior of granite rock in a punch through shear test. The

rock failure and the fracture initiation and propagation during the loading was simulated and compared to the corresponding

experimental investigations. In this numerical approach, the total local free energy is fully coupled with solid deformation and

computes the plastic strain rate. The code is scripted in Multiphysics Object Oriented Simulation Environment (MOOSE).

The model is shown capable of reproducing the three point bending benchmark problem and the evidenced phenomena from

Punch Through Shear (PTS) test encompassing mixed mode fracture pattern (Mode I, and Mode II), and wing fractures. The

numerical results show a good agreement in stress-displacement curve with experimental data for critical energy release rate of

. Therefore, the granite sample’s fracture toughness for Mode II is calculated to be 4.85 at no confining pressure.
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Abstract 13 

Fracture initiation and propagation from a wellbore within a rock formation exhibit 14 

nonlinear and inelastic behaviors. When the rock material undergoes plastic deformation prior to 15 

failure, the classical Griffith theory is no longer valid. In this study, a variational phase-field 16 

approach is applied to model the inelastic behavior of granite rock in a punch through shear test. 17 

The rock failure and the fracture initiation and propagation during the loading was simulated and 18 

compared to the corresponding experimental investigations. In this numerical approach, the total 19 

local free energy is fully coupled with solid deformation and computes the plastic strain rate. The 20 

code is scripted in Multiphysics Object Oriented Simulation Environment (MOOSE).   The 21 

model is shown capable of reproducing the three point bending benchmark problem and the 22 

evidenced phenomena from Punch Through Shear (PTS) test encompassing mixed mode fracture 23 

pattern (Mode I, and Mode II), and wing fractures. The numerical results show a good agreement 24 

in stress-displacement curve with experimental data for critical energy release rate of Gc =25 

600 N/m. Therefore, the granite sample’s fracture toughness for Mode II is calculated to be 4.85 26 

MPa√m at no confining pressure. 27 

1 Introduction 28 

In geologic formations, the rock deformation occurs due to tectonic plate movement (Lei 29 

& Wang, 2016) or human activities such as hydraulic fracturing (Speight, 2016). The rock 30 

deformation can be characterized based on the rock material, the temperature, and different stress 31 

states. Based on the stress state the rock can either deform in tensile mode (Mode I), where the 32 

rock element is stretched, compressional mode, where the rock element is compressed, and the 33 

shear mode (Mode II), where a side to side shearing is exerted on the rock element. The rock 34 

deformation in response to deviatoric stresses may undergo an elastic deformation or rock 35 

failure.  36 

The subject of rock failure was studied since 1960s by examination of natural rock 37 

formations or laboratory experiments on core rock samples through in-situ tests or by rock 38 

excavation during engineering construction (Tang & Hudson, 2010). Accordingly, the rock 39 

failure is placed between two extreme situations; pure brittle fracture and pure ductile fracture 40 

(Zhang, 2010).  41 

Ductile fracture (plastic fracture) is a fracture of rocks undergoing plastic deformation 42 

prior to failure (Pineau & Besson, 2001). Rice (1968) proposed the basic elastic–plastic fracture 43 

mechanics approach with a path independent J-integral. Elices and Liorca (2002) reported a 44 

tensile stress test that the material eventually reaches the point that rate of strain hardening is less 45 

than the loss in cross-sectional area, so that it forms the necked region. They evidenced that 46 

within the necked region, a central crack is nucleated radially and propagated along localized 47 

shear planes at 45° to the axis, to form a cup-and-cone ductile fracture after a tensile test. 48 

Therefore, a ductile fracture presents three different zones including a fibrous, a radial, and a 49 

shear lip zone (Affonso, 2006). A fibrous zone is a region where the fracture initiates and 50 

propagates stably at the onset of the highest stress tri-axiality (i.e. the ratio of lithostatic stress to 51 

the von Mises equivalent stress) (Affonso, 2006; Nam, Kim, Han, Kim, & Kim, 2014). A region 52 

with a rough surface, with unstable fracture propagation, corresponds to the radial zone. A shear 53 

lip zone is a region with a 45° of inclination from the external load direction, where the stress tri-54 

axiality is reduced (Affonso, 2006). Moreover, Mouritz (2012) is stated that, the stress 55 

distribution ahead of a ductile fracture is uneven and forms the elastic and plastic zone. The local 56 
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stress increases as it gets closer to the crack tip (i.e. singularity within the J-integral path 57 

(Karihaloo & Xiao, 2003)). At a certain distance from the crack tip, the local stress approaches 58 

the yield stress σy of the rock. Therefore, the rock deformation within that distance from the 59 

crack tip is plastic and the region is called the plastic zone. Outside the plastic zone, the rock is 60 

stressed below the yield strength and, thus, deforms elastically and the region is called elastic 61 

zone (Mouritz, 2012). The formation of crack tip plastic zone is energy absorbent. Thus, the 62 

applied stress needed to cause crack growth increases with the length of the fracture. This 63 

behavior makes ductile fracture more difficult to grow to the critical size which causes failure in 64 

the rock (Mouritz, 2012).  65 

The computational modeling of plastic fracturing is expected to predict the plastic 66 

deformation in crack tip plastic zone other than the elastic zone deformation, and fracture 67 

propagation. 68 

Several studies have focused on numerical simulation of ductile fracture, see Besson 69 

(2009) for a comprehensive review. It was stated that the Rice`s J-integral approach has some 70 

major issues such as: i) the crack initiation and propagation from a stress concentrator cannot be 71 

predicted, ii) the critical value for j-integral as a fracturing criterion is not a material property and 72 

depends on the geometry and loading boundary condition. The same drawbacks were seen in 73 

criteria such as critical Crack Tip Opening Displacement (CTOD) (Davies & Wells, 1961), and 74 

Crack Tip Opening Angle (CTOA) (Dawicke, Piascik, & Newman, 1997; James & Newman, 75 

2003; Mahmoud & Lease, 2003). For example, the critical CTOA was shown to decrease with 76 

increasing sample thickness, while it was bounded to lower and higher values (Mahmoud & 77 

Lease, 2003). Bouchard, Bay, and Chastel (2003) implemented other fracturing criteria such as 78 

the maximal circumferential stress criterion (MCSC) (McClintock, 1963), the Minimum Strain 79 

Energy Density Criterion (MSEDC) (Maiti & Smith, 1984), and the criterion of the Maximal 80 

Strain Energy Release Rate (MSERR) (Hussain, Pu, & Underwood, 1974), using advanced finite 81 

element remeshing and nodal relaxation techniques. They showed that, MSEDC is less accurate 82 

than two other criteria. The MCSC requires mesh refinement at the crack tip so that the results 83 

might be influenced by the mesh structure. Finally, they concluded that the accuracy of 84 

MSERRC is mesh-independent and provides good results for brittle fracturing. Each of these 85 

criteria were implemented through finite element remeshing technique, where a real mesh 86 

discontinuity represented the fracture and the walls of the fracture were considered as the moving 87 

boundaries within the computational domain. 88 

Generally, fracture propagation models can be classified into discrete and continuous 89 

approaches. Discrete methods compute the sudden changes in the displacement field and 90 

introduce them as discontinuities. Among those are the extended finite element method 91 

(Sukumar, Moës, Moran, & Belytschko, 2000), cohesive elements, element-erosion techniques 92 

(Johnson & Stryk, 1987), and remeshing techniques (Areias, Rabczuk, & Msekh, 2016; 93 

Bouchard et al., 2003).  94 

Discrete fracture methods require complicated procedures to track the fractures. In rock 95 

engineering and rock fracture, it is important to study the fluid flow within the fracture, 96 

especially in hydraulic fracturing, where a rock formation is stimulated by hydraulic forces. 97 

However, discrete approaches fail to provide a domain within the fracture to model the fluid 98 

flow. Other discrete fracture modeling such as the cracking particle method (Rabczuk & 99 

Belytschko, 2004), peridynamics (Madenci & Oterkus, 2014), and dual horizon peridynamics 100 
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(Ren, Zhuang, Cai, & Rabczuk, 2016) may have higher accuracy, yet, the fluid flow through the 101 

opening of fractures cannot be modeled due to the absence of crack path continuity. 102 

On the other hand, continuous approaches including gradient damage model (Peerlings, 103 

DE Borst, Brekelmans, & DE Vree, 1996), screened Poisson models (Areias, Msekh, & 104 

Rabczuk, 2016), and phase-field models (C. Miehe, Welschinger, & Hofacker, 2010), introduce 105 

an intrinsic length scale as the finite width of the fracture. This may simplify the implementation 106 

and provides a continuous opening of the fracture for later fluid flow modeling. Continuous 107 

approaches, however, are unable to describe the softening in ductile fracturing (Ambati, 108 

Gerasimov, & De Lorenzis, 2015). Typically, the softening and damage localization phase are 109 

handled by either the remeshing or the Extended Finite Element Method (XFEM). This led to use 110 

of combined discrete and continuous methods such as Gurson–Tvergaard–Needleman (GTN) 111 

model (Crété, Longère, & Cadou, 2014) with the XFEM. Accordingly, additional complications 112 

arise for a consistent and seamless transition between continuous and discrete fracture 113 

descriptions.  114 

Among those continuous methods, phase-field approach was reported to be consistent in 115 

modeling sharp interfaces (C. Miehe et al., 2010). In this method, a smooth transition of an order 116 

parameter, the crack phase-field from 0 to 1, approximates the sharp fracture discontinuity. The 117 

change in the crack phase-field parameter due to the change in stress-strain field models the 118 

brittle fracture propagation on a fixed mesh (Bourdin, Francfort, & Marigo, 2000; C. Kuhn & 119 

Müller, 2008; Charlotte Kuhn & Müller, 2010; Christian Miehe & Mauthe, 2016; C. Miehe et al., 120 

2010).  121 

The extension of phase-field approach to model the ductile fracturing was studied in 122 

Hofacker and Miehe (2012) and Ulmer, Hofacker, and Miehe (2013). In these studies, the total 123 

energy is the sum of elastic deformation energy, plastic deformation energy, and fracture energy. 124 

The elastic deformation and fracture energy functions are considered as the same as brittle 125 

fracture energy function. The plastic deformation energy is defined as a chosen function 126 

including plastic fracture mechanics parameters such as the elastic modulus, the yield stress, and 127 

the strain hardening exponent. Ambati et al. (2015) presented a phase-field model for ductile 128 

fracture, in which the degradation function applied to the tensile portion of the elastic strain 129 

energy were coupled to the one applied to the plastic strain energy, to provide higher accuracy 130 

than previous phase field approaches. Most recently, Dittmann, Aldakheel, Schulte, Wriggers, 131 

and Hesch (2018) proposed a phase-field model based on a triple multiplicative decomposition 132 

of the deformation gradient to improve the accuracy of ductile material behavior or Huang and 133 

Gao (2019) used a phase-field with the modification of the crack driving force function by 134 

including the plastic contribution.  135 

This numerical study is based on the punch through shear test (PTS) that was performed 136 

to calculate the Mode II fracture toughness. The PTS-testing was applied to a cylindrical granite 137 

sample with the drilled circular notches. The notches provided a friction free initiation locus for 138 

fractures. More details of the PTS-testing is described in Backers, Stephansson, and Rybacki 139 

(2002). In this paper, we used the total free energy derivatives to compute the evolution of crack 140 

phase-field parameter that follows the standard Allen-Cahn equation, where the strain energy 141 

density is coupled with plasticity constitutive equation. The distinct benefit of the proposed 142 

phase-field model is to facilitate the use of the common feature of all phase-field models, i.e. 143 

their reliance of total free energy functional, with a material behavior under the loading. For the 144 

rock behavior under the loading, the normality hypothesis of plasticity (Dunne & Petrinic, 145 
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2005a) is used to compute the stress field when there is inelastic strain. At each time step, the 146 

stress field is updated through the strain energy density to ensure the thermodynamically 147 

consistency of the model. The code is built on the libMesh finite element library of Multiphysics 148 

Object Oriented Simulation Environment (MOOSE) (Gaston et al., 2015), which provides an 149 

implicit coupling with an extensive scalable parallel algorithm including parallel adoptive mesh 150 

refinement unstructured grids and adoptive time step size. In conclusion, the numerical 151 

simulation of the mechanical processes during the PTS testing such as the solid deformation and 152 

the fracture initiation and propagation, provided a tool to couple such mechanical processes with 153 

the fluid flow and heat transfer in the well-bore and field operations such as hydraulic fracturing 154 

and enhanced geothermal reservoirs.  155 

2 Variational phase-field method for elastic-plastic fracturing 156 

The crack phase-field c is defined in a bounded solid domain with an external boundary 157 

and an internal discontinuity boundary assumed as the fracture boundary. The fracture topology 158 

is a sharp interface between the solid domain (i.e. unbroken material, c = 0) and the fracture 159 

domain (i.e. fully broken material, c = 1). To avoid the discontinuity between unbroken and 160 

fully broken material, the regularization crack surface density function γ(c) (C. Miehe et al., 161 

2010) is defined to diffuse the fracture topology with the regularized crack phase-field c ∈ (0,1) 162 

over the regularization length of l: 163 

 164 

𝛾(𝑐) =
1

2𝑙
𝑐2 +

𝑙

2
|∇𝑐|2 (1) 

 165 

 2.1 The evolution of crack phase-field 166 

The deformation of diffused fracture surface can be described by the evolution of crack 167 

phase-field), where the fracture initiates, propagates in an arbitrary direction, bifurcates, and 168 

merges with other existing fractures in the range of [0, T] of time. Because the fracture is energy 169 

dissipative in nature (C. Miehe et al., 2010), the irreversibility of the fracturing process is 170 

ensured by satisfying a positive changes of crack surface density function with time. 171 

 172 

𝜕𝛾

𝜕𝑡
≔

𝜕𝛾

𝜕𝑐

𝜕𝑐

𝜕𝑡
= (

1

𝑙
𝑐 −

𝑙2

2
∇2𝑐)

𝜕𝑐

𝜕𝑡
≥ 0 (2) 

 173 

In this phase-field approach, the fracture energy density function Ef is introduced to 174 

ensure the above constraints: 175 

 176 

𝐸𝑓 = 𝐺𝑐𝛾 (3) 

 177 

where Gc is a threshold value of elastic energy release rate in the Griffith theory. 178 

For the solid domain response of a fracture evolution, it is assumed that the fracture only 179 

occurs in tension, thus, the energy dissipation is anisotropic. Therefore, the free energy storage 180 

density function ψ (accordingly the stress tensor σ) is decomposed into the stored energy density 181 
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due to tension ψ+(ε) (tensile stress component σ0
+) and due to compression ψ−(ε) (compressive 182 

stress component σ0
−)  as following 183 

 184 

𝜓(ε(𝑢), 𝑐) = ((1 − c)2(1 − 𝑘) + 𝑘) 𝜓+(ε) + 𝜓−(ε) (4a) 

𝜎 ≔
∂𝜓(ε(𝑢), 𝑐)

∂ε
= ((1 − c)2(1 − 𝑘) + 𝑘) 𝜎0

+ + 𝜎0
− (4b) 

 185 

and depends on the displacement u and the phase-field c, where ε is the solid strain. The 186 

k ≈ 0 is a small positive parameter for the discretization method to remain well-posed for partly-187 

broken material. Subsequently, the term kψ+(ε) characterizes the artificial elastic rest energy 188 

density around the diffused fracture boundary. The stress tensor σ is called cracked stress in the 189 

fracturing material, while σ0 is an imaginary stress called uncracked stress defined in the 190 

material with the same boundary condition but without the fracture.   191 

Finally, the total free energy density E can be expressed as the summation of fracture 192 

energy density (see Eq. 3) and the free energy storage density (see Eq. 4a). 193 

 194 

E(ε(u), c) = ((1 − c)2(1 − 𝑘) + 𝑘)𝜓+(ε) + 𝜓−(ε) + 𝐺𝑐𝛾 (5) 

 195 

For the transient computations over the time interval [0, t0], where t0 is the current time 196 

step, the fracture only occurs at the maximum stored energy density due to tensile, i.e. 197 

 198 

H = max (𝜓+)𝑡0 (6) 

 199 

Therefore the total free energy is redefined as: 200 

 201 

E(ε(u), c) = ((1 − c)2 + 𝑘) H + 𝜓−(ε) +
1

2𝑙
𝐺𝑐(𝑐

2 + 𝑙2|∇𝑐|2) (7) 

 202 

The evolution of crack phase-field with time takes place at minimum total free energy, 203 

which forms the standard Allen-Cahn equation (Allen & Cahn, 1972; Gaston et al., 2015) 204 

 205 

𝜕𝑐

𝜕𝑡
+ 𝐿

∂E(ε(u), c)

∂c
= 0 (8) 

 206 

where L is the mobility. Referring to Eq. (2), (7) and (8), the numerical implementation of the 207 

evolution of total free energy density can result the following 208 

 209 

𝜕𝑐

𝜕𝑡
= −𝐿

∂E(ε(u), c)

∂c
≔ −𝐿 (−2(1 − 𝑐)(1 − 𝑘)𝐻 + 𝐺𝑐 (

1

𝑙
𝑐 −

𝑙2

2
∇2𝑐)) (9) 

 210 

 211 
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2.2 von Mises Plasticity 212 

Huang and Gao (2019) introduced a phase-field with three phases including 1- the solid 213 

domain with elastic deformation, 2- the fracture, and 3- the solid domain with plastic 214 

deformation. In this study, we follow the phase-field in C. Miehe et al. (2010) prescribed for 215 

elastic solid fracturing. However, the free energy storage density function ψ(ε(u), c) and the 216 

stress state σ(ε(u), c) are modified when the material undergoes a plastic deformation. 217 

The boundary condition of the solid material is prescribed with either the Dirichlet 218 

condition, where the displacement is known, or the Neumann condition, where the traction force 219 

is known. Therefore, the strain ε(u) is obtained for the material without the fracture: 220 

 221 

ε = (

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

) =

(

 
 
 
 

∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy

∂x

∂uy

∂y

∂uy

∂z
∂uz
∂x

∂uz
∂y

∂uz
∂z )

 
 
 
 

 (10) 

 222 

According to the classical additive decomposition of strain (Dunne & Petrinic, 2005b), 223 

the uncracked stress is obtained by 224 

 225 

𝜎0(𝜀(𝑢)) = 𝐸(𝜀 − 𝜀𝑝) (11) 

 226 

where εp is the plastic strain, and E is the Young modulus of the solid material. Here, the 227 

uncracked stress state is checked based on the von Mises yield surface function f criterion for the 228 

solid material under multiaxial loading condition.  229 

 230 

𝑓 = 𝜎𝑒,0 − 𝜎𝑦 (12) 

  231 

where σy is the yeild stress of the solid material, σe,0 is the uncracked effective stress in the solid 232 

domain, defined as  233 

 234 

𝜎𝑒,0 = (
1

2
(𝜎1,0 − 𝜎2,0)

2 +
1

2
(𝜎2,0 − 𝜎3,0)

2 +
1

2
(𝜎3,0 − 𝜎1,0)

2)

1
2
 (13) 

 235 

where σ1,0, σ2,0, and σ3,0 are the principal stresses of the material with no fracture. The von 236 

Mises yield criterion defines the stress limit at which the material becomes plastic, where the 237 

inside of the yield surface f < 0  is the elastic stress state, and the boundary f = 0 is the stress 238 

state with plastic deformations (Dunne & Petrinic, 2005b).  239 
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At the conditions necessary to initiate yielding (i.e. f = 0), the normality hypothesis of 240 

plasticity (Dunne & Petrinic, 2005b) determines that the direction in plastic strain increment 241 

tensor dεp is normal to the tangent to the yield surface at the load point and can be obtained by: 242 

  243 

d𝜀𝑝 = 𝑑𝑝
𝜕𝑓

𝜕𝜎
=
3

2
 𝑑𝑝

𝜎0́
𝜎𝑒,0

 (14) 

 244 

where σ0́ is the deviotoric uncracked stress tensor. Here, 
∂f

∂σ
 gives the direction of the plastic 245 

strain increment and dp determines the magnitude of plastic strain increment, that is called 246 

plastic multiplier or the effective plastic strain increment. Then, the uncracked stress increment 247 

dσ0 is obtained using radial return map algorithm. 248 

2.3 The radial return map plasticity algorithm 249 

This algorithm is unconditionally stable, while the accuracy depends on the time step 250 

size, ∆t. 251 

According to Eq. (11), the uncracked stress can be obtained at the new time step, using 252 

the updated plastic strain εpt+∆t. 253 

   254 

𝜎0𝑡+∆𝑡 = 𝐸(𝜀𝑡+∆𝑡 − (𝜀𝑝
𝑡
+ d𝜀𝑝)) (15) 

  

𝜀𝑝𝑡+∆𝑡 

However, the updated stress needs to be corrected when it is outside of the yield surface 255 

(i.e. f > 0) as it does not convey a physical meaning. Therefore, σ0t+∆t is stored as a trial stress 256 

σtr in order to be later corrected by plastic correction to be brought back onto the yield surface. 257 

The effective stress required to return the stress onto the yield surface is as follows (Dunne & 258 

Petrinic, 2005b): 259 

   260 

𝜎𝑒 = 𝜎𝑒
𝑡𝑟 − 3𝐺∆𝑝 (16) 

 261 

here G = E/2(1 + ν) is the shear modulus for an isotropic material, where 𝜈 is the Poisson ratio. 262 

In addition, plastic deformation causes the yield surface movement in stress space and this leads 263 

to a new yield surface f ′, defined as  264 

 265 

𝑓′ = 𝑓 + 𝑟 (17) 

 266 

where r is the hardening tensor in stress space. Substituting Eq. (16) and (12) into Eq. (17) for 267 

stress state in plastic deformation condition, where f ′ = 0,  it can be re-written as 268 

  269 

𝑓′ = 𝜎𝑒
𝑡𝑟 − 3𝐺∆𝑝 − 𝜎𝑦 = 0 (18) 

 270 

Substituting Eq. (18) into the following Newton`s method 271 

 272 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

𝑓 +
𝜕𝑓

𝜕∆𝑝
𝑑∆𝑝 = 0 (19) 

 273 

Finally, the plastic correction d∆p and effective plastic strain increment are obtained as 274 

 275 

𝑑∆𝑝 =
𝑓

3𝐺 +
𝜕𝑟
𝜕∆𝑝

=
𝜎𝑒
𝑡𝑟 − 3𝐺∆𝑝 − 𝜎𝑦 − 𝑟

3𝐺 +
𝜕𝑟
𝜕∆𝑝

 (20a) 

∆𝑝 = ∆𝑝𝑡𝑟 + 𝑑∆𝑝 (20b) 

 276 

So that the plastic strain tensor increment in Eq. (14) can be re-written  277 

 278 

∆𝜀𝑝 =
3

2
 ∆𝑝

∆𝑝𝑡𝑟
′

𝜎𝑒
𝑡𝑟  (21) 

 279 

Therefore, at the new time step the uncracked stress is updated as follows to return onto 280 

the new yield surface. 281 

 282 

𝜎0𝑡+∆𝑡 = 𝐸(𝜀𝑡+∆𝑡 − (𝜀𝑝
𝑡
+ ∆𝜀𝑝)) (22) 

 283 

Substituting the Eqs (20a,b), (21) into (22), the uncracked stress is re-written as   284 

 285 

𝜎0𝑡+∆𝑡 = 𝐸

(

 
 
𝜀𝑡+∆𝑡 − (𝜀𝑡

𝑝
+
3

2
 (∆𝑝𝑡𝑟 +

𝜎𝑒
𝑡𝑟 − 3𝐺∆𝑝 − 𝜎𝑦 − 𝑟

3𝐺 +
𝜕𝑟
𝜕∆𝑝

)
∆𝑝𝑡𝑟

′

𝜎𝑒
𝑡𝑟 )

)

 
 

 (23) 

 286 

Eq. (23) is solved at the end of each time step for uncracked stress state, when is 287 

decomposed to tensile and compressive stresses to be used in Eq. (4a) is given by 288 

 289 

  290 

𝜎𝑡+∆𝑡 = ((1 − c𝑡+∆𝑡)
2(1 − 𝑘) + 𝑘) 𝜎0

+
𝑡+∆𝑡

+ 𝜎0
−
𝑡+∆𝑡

 (24) 

 291 

where  292 

  293 

𝑐𝑡+∆𝑡 = c𝑡 +
𝜕𝑐

𝜕𝑡
∆𝑡 (25) 

 294 

Finally, the overall algorithm for coupling the elastic/plastic deformation with the phase-295 

field is implemented in MOOSE (Gaston et al., 2015) (see Fig. 1) to solve for displacements and 296 

crack phase-field at each time step. 297 
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 298 

 299 
Fig. 1   The algorithm implemented in MOOSE to couple the elastic/plastic deformation and crack phase-field. 300 

3 Punch Through Shear (PTS) test model 301 

The stress concentrations at a fracture tip in rocks is determined by describing the 302 

fracture toughness in Mode I (opening) KIC, Mode II (in-plain shear) KIIC, and Mode III (out-of-303 

plain shear) KIIIC with respect to the far-field stress. The fracture toughness is a material 304 

parameter that depends on the physical boundary conditions such as confining pressure pc 305 

(Meier, Backers, & Stephansso, 2009).  306 

On the other hand, the critical energy release rate Gc is a material property and is 307 

independent of physical boundary conditions. Therefore, the value of critical energy release rate 308 

remains the same for any set of confining pressure. At no confining pressure, the Mode II 309 

fracture toughness can be obtained using the following relation. 310 

 311 

KIIC = √E. GC (26) 

 312 

In this study, the punch through shear test (Backers et al., 2002; Kluge, Blöcher, 313 

Barnhoorn, & Bruhn, 2019) is applied on a cylindrical granite PGR6 sample with circular 314 

notches in the upper and lower surfaces (see Fig. 2). The center of the sample is remained intact 315 

before the test. In PTS-testing, the confining pressure was set to 40 MPa, when there was a pore 316 

pressure of 20 MPa within the rock matrix due to fluid flow. Consequently, the resulting 317 

effective pressure is 20 MPa. To simulate this stress state, as the fluid flow is not considered in 318 

numerical simulations, a confining pressure of 20 MPa is set to the lateral boundary condition. 319 

Therefore, the pore pressure was set to zero to resemble the condition of Terzaghi effective stress 320 

of 20 MPa in the experiment.   321 

This test was developed to measure the Mode II fracture toughness, KIIc of rock under 322 

different confining pressures. The axial load is exerted on the sample via uniaxial loading 323 

machine (see Fig. 2b). The details of the PTS-testing can be found in Kluge et al. (2019) and 324 

Backers et al. (2002). The load-displacement plot in Fig. 2a shows linear elastic behavior from 325 

the beginning of the test until 0.6 mm displacement, and plastic behavior from that point till the 326 

sample failure. 327 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

  

 
 

Fig. 2   a)  Uniaxial load-displacement and granite sample PGR6, b) uniaxial setup (Kluge et al., 2019). 328 

The numerical simulations were carried out to compute for the rock’s yield stress and 329 

critical energy release rate. The numerical model is proposed according to the sample geometry, 330 

its dimensions, and the principal loading as are given in Fig. 3. The granite sample characteristics 331 

and dimensions are summarized in table 1. 332 

 333 

 334 
Fig. 3   Numerical model, dimensions, and boundary conditions. 335 

 336 

    337 

 338 

 339 

 340 

 341 

 342 

 343 
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   Table 1 sample size and physical properties. 344 

Material: Granite: PGR6 

Upper notch length (mm): 5 

Lower notch length (mm): 15 

Notch thickness (mm): 1 

Intact length (mm): 30 

Sample diameter (mm): 50 

Elastic modulus 𝐸 (𝐺𝑃𝑎): 50 

Poisson ratio 𝜈 (-): 0.2 

Displacement rate, 𝐲  (
𝒎𝒎

𝒔
): 0.001 

Confining pressure pc(𝑀𝑃𝑎): 40 

 345 

The finite element numerical code, built on the libMesh library of MOOSE (Gaston et al., 346 

2015), computes for the rock’s solid displacement-stress field (Eq. , u and the crack phase-field c 347 

in a time dependent simulations. The 2D axisymmetric model domain is discretized as shown in 348 

Fig. 4. The numerical results were obtained and compared to PTS-testing experimental results 349 

for the granite sample. 350 

 351 

 352 

 353 
Fig. 4    2D axisymmetric computational grid consisting of 3348 quad elements and 85 boundary elements. 354 

 355 

For the finite element computations, adoptive time step size is set with the maximum of 356 

∆tmax = 0.2 s, the cutback factor of 0.8, and the growth factor of 1.1. The computations are run 357 

until the point of the failure of the sample, where the time step size is reduced to ∆t = 10−15s. In 358 

current numerical simulations, the domain element size h is set to h = 0.625 mm, the 359 

regularization length l is set to l = h, and h/2. Other numerical parameters are set as follows in 360 

Table 2. 361 

 362 

 363 

 364 

axis 
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Table 2 Numerical parameters set in MOOSE script for four different 365 

simulations (see Eqs. (9) and (24)). 366 

Parameter Simulation#1 Simulation#2  

Regularization length 𝑙 (𝑚𝑚) 0.625 0.625 

Elastic energy release rate 𝐺𝑐 (
𝑁

𝑚
) 600 600 

Yield stress 𝜎𝑦(𝑀𝑃𝑎) 375 300 

Shear modulus 𝐺(𝐺𝑃𝑎) 17.6 17.6 

Small positive parameter 𝑘(−) 10−4 10−4 

Parameter Simulation#3 Simulation#4 

Regularization length 𝑙 (𝑚𝑚) 0.3125 0.625 

Elastic energy release rate 𝐺𝑐 (
𝑁

𝑚
) 600 250 

Yield stress 𝜎𝑦(𝑀𝑃𝑎) 375 375 

Shear modulus 𝐺(𝐺𝑃𝑎) 17.6 17.6 

Small positive parameter 𝑘(−) 10−4 10−4 

 367 

4 Results and discussions 368 

In the PTS-testing experiments of Kluge et al. (2019) and Backers et al. (2002), it was 369 

observed that at about 30 % of the peak load, a shear fracture (Mode II), known as the wing 370 

fracture, initiated from the bottom notch and propagated upwards to the intact zones of the rock. 371 

During propagation, the wing fracture oriented horizontally towards the center of the sample. In 372 

addition, Backers et al. (2002) reported that at about 60 % of the peak load, a small wing fracture 373 

initiated at the top notch. The small wing fracture (i.e. doughnut fracture) propagated outwards to 374 

the sides of the sample. However, there is a concern if the so-called doughnut fracture is not a 375 

Mode II fracture. Kluge et al. (2019) reported that the doughnut fracture was formed only due to 376 

the top notch walls collapse, thus, is not a shear mode fracture.  377 

The growth of the wing fractures occur along with elastic deformation of the granite 378 

sample. This was seen in the linear behavior of the axial force-displacement plot until 0.6 mm 379 

axial displacement (see fig. 2a). The elastic deformation and the growth of the wing fractures 380 

within the sample continued until the sample underwent a plastic deformation starting from the 381 

axial displacement of 𝑦 = 0.6 𝑚𝑚 to 𝑦 = 0.675 𝑚𝑚. Finally, the sample failure occurred at the 382 

axial displacement of 𝑦 = 0.675 𝑚𝑚, when a new fracture initiated and  propagated and 383 

connected the upper notch to the lower notch. In addition to the wing fracture and the fracture at 384 

failure,   385 

In this study, the numerical model is implemented by applying the governing boundary 386 

conditions (Fig. 3) and the stress-displacement as well as fractures’ initiation location and 387 

propagation directions were obtained from MOOSE phase-field solution. The crack phase-field 388 

parameter is set 𝑐 = 0 throughout the domain as the initial condition. The crack phase-field 389 

parameter through time increases where the stress concentration occurs at the corners of the 390 
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lower and the upper notches until it gets a value of 𝑐 = 1, which represents a fracture. In the 391 

numerical simulations, the input parameters were set as listed in table 2, simulation#1, and the 392 

corresponding results are shown in Figs 5, 6 and 7. 393 

Fig. 5 shows the crack phase-field contours and the stress-displacement plot of the model 394 

domain at different loading times. As the lower surface of the sample is displaced upward with 395 

the rate of y = 0.001 mm/s, similar to the PTS testing, the wing fractures initiated from the 396 

upper and the lower notches at time t = 318 s with the axial displacement of 𝑦 = 0.318 𝑚𝑚 and 397 

propagated persistently toward the intact areas of the domain. The wing fractures initiation is 398 

shown in Fig. 5b where the stress-displacement is depicted in the corresponding plot in Fig. 5. It 399 

was observed that the wing fractures were propagated while the sample underwent the elastic 400 

deformation until 𝑦 = 0.6 𝑚𝑚 (see Figs 5c, 5d, and 5e). The plastic deformation of the model 401 

was seen from 𝑦 = 0.6 𝑚𝑚 until the sample failure at 𝑦 = 0.662 𝑚𝑚 (see Figs. 5f, 5g, and 5h). 402 

The sample failure is depicted at Fig. 5h where another fracture initiated and propagated between 403 

the upper and lower notches. 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 
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(c)

 

(d) 

 

(e) 

 

(b) 

 

 

(f) 

 

(a) 

 

(h) 

 

(g) 

 
Fig. 5   Crack phase-field and domain stress-displacement (input parameters set as simulation#1) a) 𝑡 = 0 𝑠, 428 

𝑦 = 0 𝑚𝑚; b) 𝑡 = 318 𝑠, 𝑦 = 0.318 𝑚𝑚 fractures initiation; c) 𝑡 = 400 𝑠, 𝑦 = 0.4 𝑚𝑚; d) 𝑡 = 500 𝑠, 𝑦 =429 

0.5 𝑚𝑚; e) 𝑡 = 600 𝑠, 𝑦 = 0.6 𝑚𝑚, start of plastic fracturing; f) 𝑡 = 690, 𝑦 = 0.65 𝑚𝑚; g) 𝑡 = 700 𝑠, 𝑦 =430 

0.662 𝑚𝑚; h) 𝑡 = 702 𝑠, 𝑦 = 0.662 𝑚𝑚, sample failure. 431 
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Fig. 6 shows the comparison between the numerical and experimental PTS X-ray CT 437 

scan at the rock failure. The wing fractures and the fracture at failure are highlighted with red 438 

lines across each fracture at the CT image. 439 

 440 

PTS X-ray CT scan MOOSE finite element simulation 

  
Fig. 6 Comparison between a) PTS-testing experimental CT-scan (Kluge et al., 2019) and b) MOOSE phase-

field simulation at sample failure (displacement scale factor is 1). 

Here, the fracture was initiated from the lower notch and propagated towards the center 441 

of the sample is called frac-I. Similarly, the fracture that was initiated from the upper notch 442 

(doughnut fracture) and propagated towards the sides of the sample is called frac-II. The fracture 443 

that appeared just at the sample failure connecting the upper notch and the lower notch is called 444 

frac-III (see Fig. 6a). The numerical phase-field simulation with MOOSE showed the initiation 445 

and propagation of the wing fractures, frac-I and frac-II until the sample failure, where frac-III 446 

was initiated and propagated towards the notches. However, the simulations near to the failure 447 

could not model the complete propagation of frac-III as the adoptive time step size became too 448 

small (i.e. 10−15s) to show any further results due to the large strain rate.  449 

Fig. 7 shows the distribution of the stress components within the sample along the line Γ. 450 

Line Γ with the length of 0.05128 m is selected to include all fractures at the rock failure state 451 

(i.e. the lower left side of the line Γ is accounted as 0). The stress concentration at the fracture tip 452 

at the presence of each frac-I, frac-II, and frac-III is depicted in Fig. 7 in the form of stress peaks. 453 

Fig. 7a shows the stress distribution along the line Γ at time t = 359 s where frac-II meets the 454 

line at the length of 0.045 m. It is noted that σyy is compressive (i.e. negative values) within the 455 

domain far from the notches, in the intact area. The closer to the fracture tip, the less 456 

compressive σyy is investigated. At the fracture tip, the stress component σyy shifts up to the 457 

maximum tensile stress σyy = 0.3 GPa (see Fig. 7a length of 0.045 m). Fig. 7b shows the stress 458 

distribution along line Γ at time t = 420 s, where frac-I met the line and frac-II has crossed the 459 

line. Here, the stress distribution curve shows two peaks indicating stress concentration at the 460 

vicinity of the wing fractures, frac-I and frac-II at the length of 0.018 m and 0.045 m, 461 

respectively. Fig. 7c shows the stress distribution at time t = 700 s, just before sample failure at 462 

100% of leading (i.e. peak load). At this point, the maximum tensile stress is increased to 463 

σyy = 1.7GPa and 1.6GPa at the vicinity of frac-I and frac-II, respectively. Additionally, at this 464 

point of loading another fracture, frac-III, was initiating at the length of 0.027 m of the line Γ, 465 

where σxx and σxy get a peak value. Fig. 7d shows the stress distribution along line Γ at time of 466 

frac-I 

frac-II 

frac-III 

frac-I 

frac-III 

frac-II 

b 
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sample failure (i.e. t = 702 s). Once the sample fails, the frac-III is initiated and grown at the 467 

length of 0.027 m on the line Γ. It is depicted as the stress concentration σyy = 1.95 GPa and 468 

σxx = 1.55 GPa. Furthermore, it is noted that after growth of frac-III, the tensile stress 469 

concentration at the vicinity of frac-I and frac-II is decreased. The comparison between the Fig. 470 

7c and 7d shows that the stress concentration at the length of 0.045 m (i.e. where the frac-I exists 471 

on the line), σyymax
 reduces from 1.7 GPa to 1.15 GPa. This reduction in stress concentration is 472 

the result of energy loss due to plastic deformation of the rock. 473 

  

  
Fig. 7   Normal stresses and shear stress distribution along line Γ at a) time 𝑡 = 359𝑠, when the frac-II meets the line 474 

Γ, b) time 𝑡 = 420𝑠, when the frac-I meets the line Γ, c) time 𝑡 = 700𝑠, just before the sample failure, d) time 475 

𝑡 = 702𝑠, at sample failure 476 

 477 

For the validation purposes, the stress displacement curve, σyy − y of the PTS testing 478 

experiments and the numerical simulations with the input parameters of simulation#1-4 (see 479 

table 2) are compared in Fig. 8. The simulation#1-4 show the calibration process for the current 480 

simulations. The effect of altering the parameters such as regularization length 𝑙, the elastic 481 

energy release rate 𝐺𝑐, yield stress 𝜎𝑦, and shear modulus 𝐺 on the stress-displacement plot is 482 

shown in Fig. 8. In numerical simulations, σyy is calculated at the model upper boundary. 483 

Γ 
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Simulation#1 and experimental data showed the best agreement among other simulations, 484 

indicating that Gc = 600 N/m and σy = 375 MPa are the best selections for these material 485 

parameters. Other simulations showed earlier failure (simulation#4) or later failure 486 

(simulation#2, simulation#3) comparing to the experimental data. In addition, the elastic 487 

fracturing simulation result is depicted in blue dashed line for comparison with elastic-plastic 488 

fracturing curves. 489 

 490 

 491 
Fig. 8   Numerical validation against experimental results of Kluge et al. (2019) (see table 2 for different 492 

simulation). 493 

At the axial displacement of 𝑦 = 0.318 𝑚𝑚, the fracturing occurred during elastic 494 

deformation of the rock as indicated in Fig. 8. At 𝑦 = 0.6 𝑚𝑚, the plastic deformation was 495 

observed through nonlinear behavior of stress-displacement curve of the experimental data and 496 

simulation#1. The fracturing during plastic deformation continues until failure as it is depicted in 497 

Fig. 8. The failure occurred at 𝑦 = 0.675 𝑚𝑚 in experimental data and with 1.9 % error at 498 

𝑦 = 0.662 𝑚𝑚 in simulation#1. 499 

According to the axial loading on the rock, the Mode II fracture is observed in numerical 500 

and experimental PTS-testing. Using Eq. (26) for no confining pressure, and Gc = 600 N/m 501 

from simulation#1, the Mode II fracture toughness of the granite rock sample is 4.85 MPa√m.  502 

5 Conclusions 503 

The critical energy release rate and the fracture toughness of granite rock sample was 504 

measured and calculated through the PTS-testing and the numerical simulation via MOOSE 505 

phase-field, respectively. The stress displacement curve of the PTS-testing showed the plastic 506 

deformation of the granite sample before sample failure. Therefore, the numerical model was 507 

carried out to model the fracture initiation and propagation, considering the rock’s plastic 508 

behavior. The crack phase-field method was coupled to von Mises plasticity criterion, using 509 

radial return map plasticity algorithm. However, for elastic fracturing, the computations use the 510 

Hook’s law to calculate the uncracked stress field and then update for cracked stress field, using 511 

Elastic 

Fracturing 

Plastic 

Failure  
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the crack phase-field parameter. The method was implemented on structured mesh with adoptive 512 

time step size that provided a computationally efficient and accurate numerical simulation, 513 

including elastic-plastic fracture initiation and propagation. The numerical results showed a good 514 

agreement in stress-displacement curve of experimental data for critical energy release rate of 515 

Gc = 600 N/m. Therefore, the granite sample’s fracture toughness for Mode II is calculated to 516 

be 4.85 MPa√m at no confining pressure.  517 
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