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Abstract

Years of the Maritime Continent (YMC) is a multi-year international program with participants from over 15 countries. Its

overarching goal is to expedite the progress of improving understanding and prediction of local oceanic and atmospheric multi-

scale variability of the Indo-Pacific Maritime Continent (MC) and its global impact through observations and modeling exercises.

YMC is motivated by unique role of the MC in the local and global weather-climate system, our lack of understanding of the

key processes governing this role, and persistent systematic regional biases and errors in numerical models. YMC builds a

comprehensive database of the MC weather-climate system and educates the next generation of scientists who will be the core

workforce and leaders to further advance the study of the MC.
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Key Points: 22 

 23 

 The Indo-Pacific Maritime Continent (MC) plays a pivotal role in global weather-climate.  24 

 Years of the Maritime Continent (YMC) is an international program for improving 25 

understanding and prediction of local variability of the MC and its global impact.  26 

 Preliminary results from YMC reveal new information of physical processes key to multi-27 

scale variability in the MC.  28 

  29 
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Abstract 30 

Years of the Maritime Continent (YMC) is a multi-year international program with 31 

participants from over 15 countries.  Its overarching goal is to expedite the progress of improving 32 

understanding and prediction of local oceanic and atmospheric multi-scale variability of the 33 

Indo-Pacific Maritime Continent (MC) and its global impact through observations and modeling 34 

exercises.  YMC is motivated by the unique role of the MC in the local and global weather-35 

climate system, our lack of understanding of the key processes governing this role, and persistent 36 

systematic regional biases and errors in numerical models. YMC builds a comprehensive 37 

database of the MC weather-climate system and educates the next generation of scientists who 38 

will be the core workforce and leaders to further advance the study of the MC.  39 

 40 

 41 

  42 
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1. Introduction 43 

The Indo-Pacific Maritime Continent (MC) is a unique mixture of over 22,000 islands in the 44 

mid of Earth’s warmest body of water, the Indo-Pacific warm pool. This largest archipelago on 45 

Earth is known for its complex geophysical setting, its marine and land biodiversity, and its rich 46 

human history and culture. The MC plays a pivotal role in the global weather-climate continuum. 47 

The intricate distributions of land, sea and terrain of the MC cultivate intriguing scale 48 

interactions, which breed high-impact local events such as floods. Predicting extreme events 49 

associated with the diurnal cycle, synoptic weather systems, Madden-Julian Oscillation (MJO), 50 

and monsoons is of paramount socioeconomic benefit to the region.  51 

The MC hosts the world’s strongest atmospheric convection center. Its tremendous energy 52 

release fuels the global atmospheric circulation, including Rossby wavetrains that emanate out of 53 

the tropics and influence weather at higher latitudes. MJO teleconnections sensitively depend on 54 

the location of its convection center relative to the MC. The MC is, however, a known barrier for 55 

MJO propagation. Because of atmospheric deep convection penetrating the tropopause and 56 

generating gravity waves, the MC is a primary spot for vigorous stratosphere-troposphere 57 

interactions. The Indonesian Throughflow (ITF), the artery connecting the tropical Pacific and 58 

Indian Oceans, is a crucial branch of the global ocean circulation that affects climate in the 59 

region and afar. With many sources of natural and anthropogenic aerosol, the MC is an ideal 60 

natural laboratory to study their interactions with the rest of the weather-climate system.  61 

Current global climate models and weather prediction models suffer from persistent 62 

systematic biases in precipitation and limited predictions skills in the MC region. They cannot 63 

reproduce the observed diurnal cycle and they exaggerate the MJO barrier effect of the MC.  64 

Years of the Maritime Continent (YMC), a multi-year international project, is organized to 65 

expedite the progress of improving understanding and prediction of local multi-scale variability 66 

of the MC weather-climate system and its global impact through observations and numerical 67 

modeling.  This article briefly summarizes the background, motivation, objectives, scientific 68 

themes, main activities, preliminary results, and forthcoming plans of YMC.  69 

 70 

2. Scientific Issues 71 

2.1 Diurnal Cycle 72 
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The diurnal cycle can be considered the heart beat of the weather-climate system in the MC. 73 

Rainfall starts near coasts in the local afternoon and reaches its peak in early night. Around 74 

midnight, rainfall moves from the land to water, where it reaches its maximum in the early 75 

morning, with extensive anvils and stratiform rain that gradually dissipate around local noon. 76 

The amplitude of the diurnal cycle in precipitation is the largest near the coast of major islands 77 

and near mountain ranges, where it is 2-3 times larger than anywhere else in the tropics (Nitta & 78 

Sekine, 1994; Yang & Slingo, 2001; Mori et al., 2004). The convective diurnal cycle is 79 

determined by factors such as land-sea breezes, topography, meso-scale convective systems 80 

(MCSs), gravity waves, etc. (Houze et al., 1981; Hadi et al., 2002; Mapes et al., 2003; Sakurai et 81 

al., 2005). Numerical models cannot correctly represent these factors and thus produce common 82 

systematic errors in the timing and amplitude of the diurnal cycle (Takayabu & Kimoto, 2008; 83 

Sato et al., 2009; Love et al., 2011; Folkins et al., 2014). The diurnal cycle is connected to 84 

synoptic-scale perturbations (Houze et al. 1981), the monsoons (Johnson & Priegnitz 1981), and 85 

the MJO (Chen et al., 1996; Tian et al., 2006; Ichikawa & Yasunari, 2007; Rauniyar & Walsh, 86 

2011; Peatman et al., 2014). Relative contributions to the diurnal cycle in rainfall from land 87 

surface conditions, island geometry, air-sea interaction, and background flows, and feedbacks 88 

from the diurnal cycle to the large-scale variability need to be quantified.  89 

 90 

2.2 Synoptic Systems 91 

Cold surges and Borneo vortices are common in boreal winter. Triggered by southward 92 

and eastward movements of the Siberian High, cold surges pass through the South China Sea and 93 

reach/cross the equator (Chang et al., 2016). Their associated enhancement of the upper-94 

tropospheric outflow over the MC and the East Asian meridional overturning circulation may 95 

strengthen the East Asian jet and lead to further interactions with midlatitude systems (Chang & 96 

Lau, 1982; Lau & Chang, 1987). The intensity of Borneo vortices is often modulated by cold 97 

surges. They both affect convection, MCS and even tropical depression (Chang et al., 2005, 98 

2016). The exact nature of the interaction among these synoptic perturbations and with the 99 

diurnal cycle, MJO, monsoons have yet to be fully understood.  100 

 101 

 102 

 103 
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2.3 Intraseasonal Oscillations 104 

The MC exerts a barrier effect on the MJO by weakening it or completely stopping it 105 

from propagating through (Rui & Wang, 1990; Zhang & Ling, 2017). This barrier effect is often 106 

exaggerated in numerical models (Kim et al., 2009; Seo et al., 2009), creating a “Maritime 107 

Continent prediction barrier” for the MJO (Weaver et al., 2011; Fu et al., 2013). Global impact 108 

of the MJO (Fig. 1) depends on longitudinal locations of its convection center. Possible reasons 109 

for the barrier effect include: a reduced surface moisture source because of the land coverage 110 

(Sobel et al., 2010), topographic interference with the low-level flow (Hsu & Lee, 2005; Inness 111 

& Slingo, 2006; Wu & Hsu, 2009), and an energy drain by the perpetual diurnal cycle in 112 

precipitation over land (Neale & Slingo, 2003). Studies on the barrier effect must cover 113 

mechanisms for both its causes and overcoming.  114 

Air-sea interaction has been proposed as a mechanism for the northward propagation of 115 

the boreal summer intraseasonal oscillations (BSISOs) (Hsu & Weng, 2001; Fu et al., 2003; 116 

Bellon et al., 2008). It has yet to be confirmed that this mechanism is at work over the MC, given 117 

the presence of the islands as well as other processes such as the MJO and synoptic perturbations 118 

(Chen & Murakami, 1988; Lawrence & Webster, 2002; Wang et al., 2009).  119 

 120 
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 121 
 122 

Figure 1. Schematic illustration of global impact of the MJO. The locations of the symbols are 123 

not meant to be precise. Included MJO-affected phenomena are incomplete.   124 

 125 

2.4 Monsoons 126 

The MC is a crossroad of the East Asian monsoons. There, the seasonal cross-equatorial 127 

flows switch between northerlies in boreal winter to southerlies in boreal summer. They 128 

determine the locations of coastal upwelling (Susanto et al., 2001). During boreal winter, the 129 

northeasterly monsoon flow in the northern hemisphere provides a favorable mean condition for 130 

the equatorial penetration of cold surges, and the Indo-Australian monsoon onset often coincides 131 

with the arrival of the first MJO event (Hendon & Liebmann, 1990). During boreal summer, the 132 

mean monsoon flow is a major moisture supply to the rainfall over the South China Sea and the 133 

Philippine Sea (Murakami & Matsumoto, 1994; Wang, 2006; Kubota et al., 2011) and may 134 

provide mechanisms for the northward propagation of BSISO when interacting with small-scale 135 

convective systems (Jiang et al., 2004; Bellon & Sobel, 2008; Kang et al., 2010).  136 

 137 
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2.5 Oceans  138 

The ITF is the most prominent signature in the ocean circulation of the region (Godfrey, 139 

1996; Gordon, 2005). It plays an essential role in the regional climate (Lee et al., 2002) as well as 140 

the MC Sea heat and salt budgets (Kida & Wijffels, 2012). The South China Sea throughflow 141 

(Qu et al., 2006) also affects the heat distribution in the MC, the water properties of the ITF, and 142 

the tropical Indian and western Pacific Oceans (Wang et al., 2006; Gordon et al., 2012). The 143 

complex array of shallow and deep marginal seas in the MC forms an integral component of the 144 

larger-scale ocean and climate, responding to and in turn influencing those systems. The MC 145 

Seas share a common trait of warm, relatively low salinity surface layers of <50 m thick. In the 146 

deeper seas the surface layer is underlain by a strong thermocline, resulting in a salinity-stratified 147 

barrier layers and a warm mixed layer that trap surface fluxes (Sprintall et al., 2014). The upper 148 

ocean is influenced by many factors on various time scales. These factors include the monsoonal 149 

winds (Gordon & Susanto, 2001; Qu et al., 2005), ocean Kelvin waves (Drushka et al., 2010; 150 

Pujiana et al., 2013), the MJO (Napitu et al., 2015), inertial mixing (Alford & Gregg, 2001), tidal 151 

mixing (Ffield & Gordon, 1996; Koch-Larrouy et al., 2010), and lateral advection (Kida & 152 

Richards, 2009).  153 

 154 

2.6 Air-Sea Interactions 155 

Through TOGA COARE (Webster & Lukas, 1993), CINDY/DYNAMO/AMIE/LASP 156 

(Yoneyama et al., 2013) and many other field campaigns, we have gained tremendous 157 

knowledge and understanding of air-sea interactions over open oceans on diurnal to intraseasonal 158 

timescales (Chen and Houze, 1997; Moum et al., 2014; DeMott et al., 2015; de Szoeke et al., 159 

2015). It is, however, unclear to what extent such knowledge and understanding can be applied 160 

to the MC, given its intricate geographic setting. Many features of the MC are absent from open 161 

oceans but may play essential roles in local air-sea interactions. They include freshwater input 162 

from river runoff, strong diurnal cycles in land convection and wind (land-sea breezes), 163 

topographic interference with low-level wind, blocking of surface fluxes by land, tidal mixing, 164 

strong ocean advection, and coastally trapped oceanic waves and upwelling. Making in situ 165 

surface observations in the region remains a challenge due to heavy marine traffic. A key 166 

unresolved issue is the role of land-related processes in air-sea interactions of the MC.  167 

 168 
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2.7 Troposphere-Stratosphere Interactions 169 

Above the warm pool embedding the MC lies an extremely cold tropical tropopause layer 170 

(TTL). Where high altitude cirrus preferentially forms and sediments (Massie et al., 2007), and 171 

extremely dry air enters the tropical stratosphere before being transported globally through the 172 

global equator-to-pole Brewer-Dobson transport circulation (Butchart, 2014), and thus 173 

influencing global radiative forcing (Solomon et al., 2010) and polar ozone loss (Shindell, 2001). 174 

Gravity waves generated by MC deep convection (Tsuda et al., 2000) propagate upward, interact 175 

with the mean zonal flow in the stratosphere, and help produce the quasi-biennial oscillation and 176 

the semi-annual oscillation. The transport of gas and particles in the TTL and more generally, in 177 

the upper troposphere and lower stratosphere, and dehydration/hydration processes are 178 

influenced and controlled by deep convection (Liu and Zipser, 2005; Iwasaki et al., 2012), 179 

diurnal variability including atmospheric tides (Fujiwara et al., 2009), and equatorial waves 180 

(Suzuki et al., 2013), all of which are common and vigorous in the MC region. Tropospheric-181 

lower stratospheric winds exhibit geographical differences in the MC (Widiyatmi et al., 2001; 182 

Okamoto et al., 2003). In situ observations of these processes are needed for validation of 183 

satellite observations and numerical simulations.  184 

 185 

2.8 Aerosol 186 

The MC is a major source of different types of aerosol from biomass burning of 187 

agriculture practice and deforestation (Reid et al., 2012), industrial pollution due to economic 188 

development (Salinas et al., 2013), and sea spray from surrounding oceans with frequent high-189 

wind events (Shpund et al., 2019). The monsoon circulation and cold surges may bring aerosol 190 

from remote sources to the MC. The response of local convective clouds to fluctuations in 191 

aerosol is unclear for several reasons. It is challenging to separate dynamical effects under 192 

various meteorological conditions (ENSO, monsoons, MJO, synoptic perturbations, diurnal cycle) 193 

from those of the embedded aerosol themselves (Campbell et al., 2016). Very little is known 194 

about the abundance and characteristics of “background” aerosol in the MC to contrast with 195 

polluted scenarios. We also know little about the characteristics of the local aerosol in terms of 196 

their roles as cloud condensation or ice nuclei. These difficulties make the region an almost ideal 197 

natural laboratory for experimental studies on interactions between tropical clouds and aerosol.  198 

 199 
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2.8 Prediction Improvement 200 

As for many other parts of the world, the major forecast concerns for the MC are extreme 201 

or high impact events, particularly very heavy rainfall events that can result in flash floods, 202 

landslides and large-scale inundation.  Experience tells that they are usually associated with 203 

large-scale phenomena such as ENSO, Indian Ocean dipole, monsoon surges, the MJO, and 204 

synoptic perturbations such as Sumatra squall lines, Borneo vortices, and equatorial waves. 205 

Model errors in the MC spread quickly around the globe (Ferranti et al., 1990; Hendon et al., 206 

2000). Improving prediction for the MC depends on better representations of sub-grid scale 207 

processes that are critical to scale interactions, particularly related to the diurnal cycle (Love et 208 

al., 2011) and systematic biases in mean precipitation (Martin et al., 2006).  209 

 210 

3. YMC Goal, Objectives, Themes, and Activities 211 

The overarching goal of YMC is observing the weather-climate system of the Earth’s 212 

largest archipelago to improve understanding and prediction of its local variability and global 213 

impact. To help reach this goal, YMC strives to achieve the objectives of (i) Building a 214 

comprehensive database of the MC weather-climate system, (ii) Advancing modeling and 215 

prediction capability, and (iii) Educating the next generation of scientists in the region. YMC 216 

targets five science themes: Atmospheric Convection, Upper-Ocean Processes and Air-Sea 217 

Interactions, Stratosphere-Troposphere Interactions, Aerosol, and Prediction Improvement. 218 

These themes are motivated by scientific needs described in the previous section. YMC engages 219 

five main activities: Data Sharing, Field Campaigns, Modeling, Prediction and Applications, and 220 

Outreach and Capacity Building.  By considering complexity of multi-scale interactions among 221 

dominant various temporal-spatial modes, YMC encourages field campaigns at different 222 

locations and time using all possible platforms of observations. YMC sets the field campaign 223 

period from July 2017 through February 2021 as Phase-1 with intensive observations on specific 224 

topics shorter than 1-2 months in addition to long-term observations by the MC local operational 225 

agencies and by special land-based or mooring systems. During Phase-2, the participants will 226 

evaluate the improvements of our knowledge on processes, modeling simulation and prediction 227 

skills, and capacity building under the YMC framework with tighter relations between science, 228 

operations, and applications. 229 

 230 
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Table 1.  IOPs conducted and planned by multi-national participation. 231 

 232 
 

Project Main Targets Locations Time 
Main 
Participation 

1 YMC Pilot Study Diurnal cycle, MJO Sumatra Is. Nov. - Dec. 2015 Japan, 
Indonesia 

2 Sea-Air-Land Interaction in 
the Context of Archipelago 
(SALICA) 

Air-sea 
interaction 

Western 
Pacific 

Aug. 2017, 
Aug. - Oct. 2018 

Philippines, 
US 

3 YMC-Sumatra  Diurnal cycle, MJO Sumatra Is. Nov 2017 - 
Jan. 2018 

Japan, 
Indonesia, US 

4 South China Sea Two-
Island Monsoon Experiment 
(SCSTIMX) 

Monsoon South China 
Sea (SCS) 

Dec. 2017, 
May - Jun. 2018, 
Aug. - Oct. 2018 

Taiwan, US 

5 YMC- Boreal Summer 
Monsoon (BSM)  

BSISO, 
Troposphere-
Stratosphere 
interaction 

Western 
Pacific, 
Vietnam, 
Sumatra Is. 

Jun. - Aug. 2018 Japan, Palau, 
Philippines, 
Vietnam, 
Indonesia 

6 Propagation of Intra-Seasonal 
Tropical Oscillations (PISTON) 

BSISO, 
Diurnal Cycle 

Western 
Pacific 

Aug. - Oct. 2018, 
Sept. 2019 

US, Taiwan, 
Philippines 

7 MJO and Australian Monsoon 
Onset Study (MAMOS) & 
Coupled Warm Pool Dynamics 
in the Indo-Pacific 

MJO, Monsoon, 
Air-sea 
interaction 

Eastern 
Indian Ocean 
(EIO) 

Nov. 2018 - Oct. 
2019 

China, 
Australia 

8 Ocean Mixing & Coastal 
Acoustic Tomography (CAT)  

Tidal mixing Indonesian 
Seas 

Feb. - Mar. 2019 Japan, 
Indonesia, 
China, US 

9 Cloud, Aerosol and Monsoon 
Processes Philippines 
Experiment (CAMP2Ex) 

Aerosol-cloud 
interaction 

SCS,  
Western 
Pacific 

Aug. - Oct. 2019 US, 
Philippines 

10 Tropical observations of 
atmospheric convection, 
biogenic emissions, ocean 
mixing, and processes 
generating intraseasonal 
SST variability 

Diurnal cycle, 
MJO, 
Ocean mixing 

EIO, 
Timor Sea 

Oct. - Dec. 2019 Australia, 
Indonesia, 
UK, Taiwan 

11 Equatorial Line 
Observations (ELO) 

Equatorial waves EIO, 
Indonesian 
Seas, 
Sumatra Is. 

Jan. - Apr. 2019, 
Jan. - Feb. 2020 
 

US, UK, 
Poland, 
Indonesia 

12 TerraMaris Diurnal cycle, MJO South of Java 
Is. 

Jan. - Feb. 2021 UK, 
Indonesia, 
Australia 

13 YMC-Banda Sea Air-sea 
interaction 

Banda Sea Jan. - Feb. 2021 US, 
Indonesia 

14 Modeling Indonesian 
Throughflow International 
Experiment (MINTIE) 

Indonesian 
Throughflow 

Indonesian 
Seas 

Jan. - Feb. 2021 
Jan. - Feb. 2022 

US, 
Indonesia, 
Australia, 
China 

15 Diurnal Cycle Interactions with 
MJO Propagation (DIMOP) 

Diurnal cycle, MJO Borneo Is. Pending US, 
Indonesia 

 233 

 234 
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 235 
 236 

Figure 2. Areas of IOPs (red circle). Numbers correspond to ones indicated in Table 1. Blue dots 237 

indicate radiosonde sounding stations operated by the participating MC meteorological agencies. 238 

 239 

 240 

 Table 1 and Fig. 2 summarize major Intensive Observation Periods (IOPs) conducted or 241 

planned during YMC as of December 2019. They cover the campaigns with multi-national 242 

participations under the framework of or in coordination with YMC. Various types of 243 

coordination have been accomplished among those projects. For example, while US projects 244 

PISTON and CAMP
2
Ex conducted their observations as their own international efforts, they also 245 

collaborated with SALICA and SCSTIMX projects. Japan-Indonesia joint project Ocean Mixing 246 

was coordinated with another Japan-Indonesia-China-US project CAT to study ITF in the 247 

Lombok strait, which led to a finding of rapid subsurface temperature changes due to internal 248 

solitary waves (Syamsudin et al., 2019). The YMC open data policy allows researchers to 249 

combine observation data obtained from different periods and/or areas for further analyses. 250 

Figure 2 also shows the radiosonde sounding network by the MC local agencies. They have 251 
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agreed to provide the scientific community with their original high-resolution data during YMC 252 

Phase-1. Such high-resolution soundings are usually not available for operational or scientific 253 

use. It is highly expected that they help capture large-scale atmospheric features not available 254 

from satellite and other routine observing systems. In addition, other routine data sets such as 255 

those from surface meteorology stations and scanning weather radars will also be available at 256 

some sites (not shown here). Data available from the YMC IOPs as well as the regional 257 

observing networks form the base for the action of “Data Sharing” as a key YMC activity. Data 258 

archive as well as information on the campaigns are available from YMC website at 259 

http://www.jamstec.go.jp/ymc/. 260 

 261 

4. Preliminary Results 262 

There are many recent studies on subjects relevant to YMC (Yoden et al., 2017; 263 

Yamanaka et al., 2018). Here we briefly discuss results based on either YMC data or events 264 

during YMC.  265 

A YMC pilot study was conducted in November - December 2015 with R/V Mirai 266 

deployed offshore of the west coast of Sumatra Island near Bengkulu where a land-based 267 

observation site is located. This pilot study led to the YMC-Sumatra 2017 field campaign of the 268 

same setting during November 2017 through January 2018. Both field campaigns were designed 269 

to study migration processes of diurnally evolving atmospheric convection and its interactions 270 

with the MJO. A clear offshore migration of rainfall from evening to early morning was 271 

observed during convectively suppressed periods of the MJO. This suggests a possible role of 272 

gravity waves, which might cause ascending motions in the lower troposphere ahead of cumulus 273 

convection (Yokoi et al., 2017). Westward moving diurnal convection over the western coast of 274 

Sumatra may converge with mesoscale convective systems of the eastward propagating MJO and 275 

immediately cause torrential rain along the coast (Wu et al., 2017). These behaviors can be 276 

modulated by large-scale wind patterns during the El Niño in 2015 or La Niña in 2017, 277 

respectively (Nasuno, 2019; Yokoi et al., 2019). Also observed is an effect of MJO convection 278 

on a sudden deepening of an oceanic barrier layer from 5-10 m to 85 m in 5 days (Moteki et al., 279 

2018). This widened the temperature difference in the lower troposphere between the ocean and 280 

land, which may influence the behavior of offshore propagation of the diurnal convection (Wu et 281 

al., 2018). Videosonde observations near a coastal region of Sumatra Island revealed large 282 
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numbers of ice crystals in the upper layer of the thick stratiform clouds and spherical graupel 283 

immediately above the freezing level (Suzuki et al., 2018). All results above mentioned are based 284 

on in-situ measurements. Such unique high-resolution data offer the opportunity to evaluate 285 

previous numerical modeling studies such as the role of gravity waves in rainfall offshore 286 

migration (Hassim et al., 2016), the impact of the MJO on the ocean (Shinoda et al., 2016), etc. It 287 

is also possible to expand previous studies, which were done from large-scale viewpoints. For 288 

example, Kubokawa et al. (2016) showed that temperature perturbations in the TTL over the 289 

mountainous regions of the MC are 1-2 K larger than those measured in regions of lower 290 

elevation, which they attributed as topography effect. YMC data obtained around the coastline 291 

may fill the gap of details in such topography differences. Besides, microphysics obtained by 292 

videosondes may provide a clue to study lightning activity over the MC, where diurnal lightning 293 

variability is strongly modulated by the passage of the MJO (Virts et al., 2013). Preliminary 294 

results obtained so far suggest possible usage of campaign data to verify various hypotheses for 295 

convective processes over the MC. 296 

Data from those field campaigns also have been used to evaluate numerical models. 297 

Dipankar et al. (2019) used in situ observations from R/V Mirai during the 2015 YMC pilot 298 

study to assess numerical model skills. They found that a low-SST bias in initial conditions 299 

caused a delay of simulated diurnal cycle of rain over land. Meanwhile, observed cases during 300 

YMC have been targeted for numerical modeling. In a case study focusing on heavy rainfall 301 

events observed in October 2017, Porson et al. (2019) examined prediction skills of convective 302 

rainfall over Singapore using convection-permitting regional model ensembles nested within two 303 

global ensembles. They found no clear advantage of using one global ensemble over the other, 304 

but their combination gives better results. It is expected that more modeling studies will use 305 

YMC data that are of high resolution in time, even though they may not be available for 306 

operational use. When other parameters observed by specially deployed instruments such as C-307 

band polarized weather radar are assimilated into regional high-resolution data products, more 308 

detailed evaluation of numerical models will be possible. Thus, more cases can be studied by 309 

combining in-situ field campaign data with operational numerical models. 310 

 There are many other studies motivated by YMC and/or addressing YMC issues using 311 

data from satellites, global reanalysis products, and numerical models. These studies cover a 312 

wide range of topics; the diurnal cycle (Baranowski et al., 2019), MJO propagation over the MC 313 
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(Burleyson et al., 2018; Pang et al., 2018) and its barrier effect (DeMott et al., 2018; Ling et al., 314 

2019), atmospheric waves (Ruppert & Zhang, 2019; Takasuka et al., 2019), aerosol (Bagtasa et 315 

al., 2018; Cohen et al., 2018; Koplitz et al., 2018), the monsoon (Diong et al., 2019; Duan et al., 316 

2019), the ITF and the ocean in general (Cao et al., 2019; Gordon et al., 2019; Hu et al., 2019; 317 

Liang et al., 2019), prediction and predictability (Wang et al., 2019), and others.  318 

 319 

5. A Cross-Organization Special Collection 320 

YMC has motivated a surge of research activities on various topics related to the MC. 321 

Publications on these topics have been and will be published in a wide range of international 322 

journals. Particularly, each YMC field campaign will be followed by a number of publications 323 

dedicated to it. To better serve readers who are interested in YMC and the MC in general, it is 324 

desirable to establish a cross-organization special collection of journal articles on the YMC 325 

topics, so that readers can see a list of the entire collection at a single stop instead of going 326 

through each journal of these organizations. This collection on YMC has been arranged by the 327 

YMC Science Steering Committee and seven professional organizations in the fields of 328 

atmospheric and oceanic sciences. These professional organizations are the American 329 

Geophysical Union, the American Meteorological Society, the Australian Meteorological and 330 

Oceanographic Society, the Chinese Geoscience Union, the European Geosciences Union, the 331 

Meteorological Society of Japan, and the Royal Meteorological Society. Table 2 lists the journals 332 

of these organizations that participate in the special collection.  333 

Authors who are interested in publishing in this cross-organization special collection on 334 

YMC are encouraged to submit their manuscripts to their preferred journals. Articles accepted by 335 

the participating journals after their regular review processes will be included in a master list 336 

hosted at the YMC website (http://www.jamstec.go.jp/ymc/ymc_sp_collection.html). A link to 337 

this master list is provided at the special collection webpage of each participating 338 

journal/organization. This special collection covers 2020 - 2025. Authors of articles on the YMC 339 

topics published in 2017-2019 in the participating journals may request their papers to be 340 

retrospectively included in the special collection. Open access is highly encouraged for articles in 341 

this special collection.  342 

 343 

 344 

http://www.jamstec.go.jp/ymc/ymc_sp_collection.html
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Table 2.  List of journals that participate in the cross-organization special collection on YMC 345 

 346 

Journal Organization 

Atmospheric Chemistry and Physics The European Geosciences Union 

Atmospheric Science Letters The Royal Meteorological Society 

Bulletin of the American Meteorological Society The American Meteorological Society 

Earth and Space Science The American Geophysical Union 

Geophysical Research Letters The American Geophysical Union 

International Journal of Climatology The Royal Meteorological Society 

Journal of Advances in Modeling Earth Systems The American Geophysical Union 

Journal of Climate The American Meteorological Society 

Journal of Geophysical Research – Atmospheres The American Geophysical Union 

Journal of Geophysical Research – Oceans The American Geophysical Union 

Journal of Physical Oceanography The American Meteorological Society 

Journal of Southern Hemisphere Earth Systems Science The Australian Meteorological and 

Oceanographic Society 

Journal of the Atmospheric Sciences The American Meteorological Society 

Journal of the Meteorological Society of Japan The Meteorological Society of Japan 

Monthly Weather Review The American Meteorological Society 

Nonlinear Processes in Geophysics The European Geosciences Union 

Ocean Science The European Geosciences Union 

Quarterly Journal of the Royal Meteorological Society The Royal Meteorological Society 

Scientific Online Letters on the Atmosphere The Meteorological Society of Japan 

Terrestrial, Atmospheric and Oceanic Sciences The Chinese Geoscience Union 

Weather and Forecasting The American Meteorological Society 

 347 

 348 

6. Concluding Remarks 349 

YMC started its field campaign of a pilot study in 2015. Its multiple field campaigns have 350 

been conducted since July 2017 and more are scheduled to take place through 2021 and beyond. 351 

This article briefly summarizes its scientific background, needs, objectives, research themes, 352 

major activities, and preliminary results with suggestions of possible future research approaches 353 

in relevance to previous studies. YMC adopts an open data policy which requires field campaign 354 

participants to release quality-controlled data within one year after the completion of their field 355 

observations. It is anticipated that YMC field campaign observations and data from MC 356 

operational observing networks will, in combination with other global data (satellite, data 357 

assimilation products) and in integration with numerical models, expedite the progress of 358 

understanding and predicting the weather-climate system of the MC and its global impact.  359 

 360 
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