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Abstract

The vertical profiles of temperature and water vapour from the Atmospheric InfraRed Sounder (AIRS) have been validated

across various regions of the globe as an effort to provide a substitute for radiosonde observations. But there is a paucity of

inter-comparisons over West Africa where local convective processes dominate and RAOBs are limited. This study validates

AIRS temperature and relative humidity profiles for selected radiosonde stations in West Africa. Radiosonde data was obtained

from the AMMA and DACCIWA campaigns which spanned 2006 - 2008 and June-July 2016 respectively and offered a period

of prolonged radiosonde observations in West Africa. AIRS performance was evaluated with the bias and root mean square

difference (RMSD) at seven RAOB stations which were grouped into coastal and inland. Evaluation was performed on diurnal

and seasonal timescales, cloud screening conditions and derived thunderstorm instability indices. At all timescales, the tem-

perature RMSD was higher than the AIRS accuracy mission goal of ±1 K. Relative humidity RMSD was satisfactory for the

entire troposphere with deviations < 20% and < 50% respectively. AIRS retrieval of water vapour under cloudy and cloud-free

conditions had no significant difference whereas cloud-free temperature was found to be more accurate. The seasonal evolution

of some thunderstorm convective indices were also found to be comparable for AIRS and RAOB. The ability of AIRS to capture

the evolution of these indices imply its applicability for determining the thunderstorm probability over West Africa under the

Global Challenges Research Fund African Science for Weather Information and Forecasting Techniques project.
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Abstract17

The vertical profiles of temperature and water vapour from the Atmospheric InfraRed18

Sounder (AIRS) have been validated across various regions of the globe as an effort to pro-19

vide a substitute for radiosonde observations. But there is a paucity of inter-comparisons20

over West Africa where local convective processes dominate and RAOBs are limited. This21

study validates AIRS temperature and relative humidity profiles for selected radiosonde22

stations in West Africa. Radiosonde data was obtained from the AMMA and DACCIWA23

campaigns which spanned 2006 - 2008 and June-July 2016 respectively and offered a pe-24

riod of prolonged radiosonde observations in West Africa. AIRS performance was evaluated25

with the bias and root mean square difference (RMSD) at seven RAOB stations which26

were grouped into coastal and inland. Evaluation was performed on diurnal and seasonal27

timescales, cloud screening conditions and derived thunderstorm instability indices. At all28

timescales, the temperature RMSD was higher than the AIRS accuracy mission goal of ±129

◦K. Relative humidity RMSD was satisfactory for the entire troposphere with deviations <30

20% and < 50% respectively. AIRS retrieval of water vapour under cloudy and cloud-free31

conditions had no significant difference whereas cloud-free temperature was found to be32

more accurate. The seasonal evolution of some thunderstorm convective indices were also33

found to be comparable for AIRS and RAOB. The ability of AIRS to capture the evolu-34

tion of these indices imply its applicability for determining the thunderstorm probability35

over West Africa under the Global Challenges Research Fund African Science for Weather36

Information and Forecasting Techniques project.37

1 Introduction38

Quantification of atmospheric temperature and water vapour are critical for assessing and39

improvement of numerical weather and climate prediction models (Diao et al. (2013); Di-40

vakarla et al. (2006) and references therein). The initialization process for these models41

demand the use of denser and homogeneous satellite radiance which must be corrected for42

cloud contamination. This radiance correction allows for the effective and efficient retrieval43

of atmospheric profiles such as water vapour, temperature, ozone and other trace gases.44

Retrieval skill is dependent on sensor accuracy, the atmospheric transmittance functions,45

cloud clearing and inversion algorithms (Divakarla et al., 2006). The availability and accu-46

racy of observational calibration/validation data, especially observations from radiosondes47

is critical to the development of robust atmospheric profile retrieval algorithms and prod-48

ucts. Water vapour is a particularly important because its presence in the form of clouds49

can induce either a positive or negative temperature feedback in the climate system based50

on height of occurrence (e.g.,(Mears et al., 2015)). Therefore understanding and modeling51

the spatiotemporal variability of atmospheric moisture is essential to weather and climate52

prediction.53

Radiosonde observations (RAOB) offer an adequate platform for the monitoring of the54

vertical profile of water vapour, temperature, wind, and geopotential height. When as-55

similated into weather forecast models, RAOBs can enhance the prediction of convective56

storm evolution in terms of initiation, propagation and decay (Madhulatha et al., 2013;57

Chen et al., 2014). However the spatial distribution of radiosondes are limited with few58

launches in the equatorial tropical region that is characterized by strong convective activi-59

ties (He et al., 2015; Taylor et al., 2017; Parker, 2017). The radiosonde has the advantage60

of being highly accurate with high vertical resolution (Flores et al., 2013), but the fre-61

quency of sonde launches in time and space is low due to the large operational cost (Flores62

et al., 2013; Bayat & Maleki, 2018). The African Monsoon Multidisciplinary Analysis63

(AMMA) (Redelsperger et al., 2006) and Dynamics-aerosol-chemistry-cloud interactions in64

West Africa (DACCIWA)(Knippertz et al., 2017) campaigns in 2006 and 2016 respectively65

mark years in which RAOBs are available for West Africa.66

With advances in remote sensing, sounders aboard satellites offer alternate sources for the67

acquisition of RAOB-like vertical profiles.. The majority of these validation studies have68
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focused on inter-comparing the retrievals from satellite-based platforms with correspond-69

ing collocated radiosonde measurements. A well-known sensor is the Atmospheric Infrared70

Sounder (AIRS) aboard NASA’s Earth Observing System (EOS) Aqua satellite (Aumann71

et al., 2003). AIRS was constructed to provide atmospheric temperature profiles to a root72

mean square difference (RMSD) of 1 ◦K for every 1 km tropospheric layer and 1 ◦K for every73

4 km stratospheric layer up to an altitude of 40 km (Olsen et al., 2017). The correspond-74

ing humidity RMSD of the sensor is of order 20% in 2 km layers in the lower troposphere75

and approximately 50% in the upper troposphere (Susskind et al., 2003; Susskind, 2006).76

These error estimates are considered to be applicable for scenes of up to 80% effective cloud77

cover (Susskind, 2007). According to McMillin et al. (2007) (and see references therein),78

the AIRS instrument has provided a set of unique datasets by which to validate climate and79

weather models and analyse the global distribution of water vapour and ice supersaturation.80

AIRS temperature and water vapour datasets have also been evaluated to improve param-81

eterisation of sub-grid scale models (Quaas, 2012) and to understand regional climatology,82

including land-atmosphere coupling (Ferguson & Wood, 2010, 2011).83

Currently, there is a rigorous ongoing AIRS validation efforts using various ground truths84

across the world, Iran (Bayat & Maleki, 2018), India (Prasad & Singh, 2009; Singh et al.,85

2017), Antarctica (Boylan et al., 2015) and continental United States (Ferguson & Wood,86

2010; McMillin et al., 2007). The studies also provide information on performance improve-87

ments of recent AIRS version releases over earlier releases (Milstein & Blackwell, 2016).88

Most of these studies observed a good agreement between AIRS and RAOB profiles with89

an overall accuracy within mission-specified accuracy bounds (Xuebao et al., 2005; Milstein90

& Blackwell, 2016; Prasad & Singh, 2009). Bayat and Maleki (2018) validated AIRS de-91

rived precipitable water vapour profiles with a ground-based sun photometer measurements92

and obtained an acceptable agreement with a 93% coefficient of determination. Seasonal93

analysis over Iran showed higher dry biases of the precipitable water vapour during spring94

with lower values in the winter. Over India, Singh et al. (2017) found that AIRS and the95

Indian National Satellite (INSAT-3D) agree comparatively well with RAOB observations at96

the lower and upper troposphere but quickly degrades in the middle troposphere probably97

due to improper bias correction coefficients used for brightness temperature. Their findings98

observed the influence of surface emissivity on the AIRS profile retrievals which resulted99

in larger errors over land and in dry atmosphere. Divakarla et al. (2006) also observed a100

decreased performance of AIRS temperature and water vapour profiles relative to the Ad-101

vanced TIROS Operational Vertical Sounder (ATOVS) (Reale et al., 2008) retrievals and the102

National Center for Environmental Prediction Global Forecasting System (NCEP GFS) and103

European Center for Medium Range Forecast (ECMWF) forecast profiles over land mea-104

surements which exhibited a seasonal and annual variability that correlates with changes105

in CO2 concentrations. However, the overall agreement was satisfactory for both land and106

sea surface categories. Furthermore, AIRS was merged with the Microwave Limb Sounder107

(MLS) temperature and water vapour records to successfully study the inter-annual vari-108

ability of these parameters over tropical Pacific (Liang et al., 2011). Their findings revealed109

the spatial and seasonal distribution of temperature and humidity to be located over the110

deep convection zone of the tropical western Pacific whereas subsidence dominates at the111

tropical central Pacific. Based on these datasets, the authors (Liang et al., 2011) were112

able to observe and link the inter-annual variability of major tele-connections such as the113

El Nino Southern Oscillation (ENSO), Quasi-Biennial Oscillation (QBO). To date, there114

have been no dedicated analysis of AIRS retrieval performance over West Africa. For ex-115

ample, Ferguson and Wood (2011) could only utilise four radiosonde observations stations116

from the AMMA project into the validation section (AIRS versus radiosonde) of their land-117

atmosphere coupling study.118

Our study inter-compares AIRS vertical profiles of temperature and relative humidity with119

AMMA and DACCIWA radiosonde observations at some selected West African stations for120

which there are sufficient data matchups. For context, AIRS retrieval skill is compared121

against that of NCEP R2 at the same sites. Notably, NCEP-R2 does not assimilate AIRS,122

as do more modern atmospheric reanalyses, but does assimilate RAOBs. Results from this123
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study will give a first hand confidence in the use of the AIRS datasets for the profiling124

of temperature and relative humidity that exist in a pre-convective environment for thun-125

derstorm initiation. It is also in accordance with the Global Challenges Research Fund126

(GCRF) African Science for Weather Information and Forecasting Techniques (SWIFT)127

project which seeks to develop a sustainable research capability in tropical weather fore-128

casting. The remaining part of the paper is structured into three sections which includes129

the methodology in Section 2, results and discussions in Section 3 and finally the conclusion130

in Section 4.131

2 Methodology132

2.1 Radiosonde Observations over West Africa133
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Figure 1. Spatial locations of radiosonde soundings in blue filled circles. Kumasi and Accra are

DACCIWA sites while the remaining are AMMA sounding sites. Country of which station sounding

was launched is in red italised.

RAOB of temperature and relative humidity profiles were obtained from AMMA (http://134

database.amma-international.org/) and DACCIWA (http://baobab.sedoo.fr/DACCIWA/135

for the period of January 1 2006 to December 31 2008 and June 1 to July 31st 2016, with136

locations of RAOB locations are distributed between longitudes 4◦ W to 2◦ E and latitudes137

5◦ N to 13◦ N (see Figure 1). The stations Ougadougou (Burkina Faso), Abidjan (Ivory138

Coast), Parakou, Cotonou (Benin) and Tamale (Ghana) fall within the AMMA project139

sites whiles Kumasi and Accra (Ghana) fall under the DACCIWA jurisdiction. Under the140

SWIFT project, Ghana is a country of prime focus and convective activities from neigh-141

bouring countries affect the country’s weather and hence, this formed the basis for station142

selections. The Vaisala sondes RS92 were deployed at Abidjan, Tamale, Kumasi, Accra143

and Parakou, whiles Cotonou and Ougadougou utilised the MODEM SR2K2 radiosondes.144

Aside from the measured parameters, the radiosonde also provides other parameters such as145
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dew-point temperature, wind speed, wind direction, upward balloon velocity and altitude at146

standard pressure levels. A limiting element of the Vaisala RS92 instruments is its negative147

humidity bias obtained during daytime sounding (see Singh et al. (2017) and references148

therein) resulting from the absorption of gases by the capacitor in sites which otherwise149

should have been made available for the absorption of water vapour molecules (McMillin150

et al., 2007). Nonetheless data originating from these instruments have been bias corrected151

and quality-controlled with appropriate algorithms by the source bodies before release for152

research activities.153

2.2 AIRS temperature and humidity profiles154

The AIRS sensor has been operational aboard the AQUA satellite since September155

2002 with a nadir polar orbiting mode. It is a cross-track scanning sounder, hyper-spectral156

resolved, sun-synchronous and a twice daily global scan with an equator overpass at 1:30 am157

and 1:30 pm for descending and ascending orbits respectively. The sounder provides compre-158

hensive information on the vertical thermodynamic structure of the atmosphere by viewing159

in 2378 channels along with four visible and near-infrared channels (Olsen et al., 2017; Singh160

et al., 2017). It as well retrieves infrared and microwave surface emissivity as a function of161

frequency, total ozone and cloud parameters (Divakarla et al., 2006). The AIRS IR-Only162

level 3 standard retrieval (AIRS3STD) version 6 algorithm 0.31.0 profiles of temperature163

and relative humidity has been used for the present study. These products were obtained164

at a 1◦×1◦ grid at twice daily temporal resolution. The air temperature were extracted165

from 11 standard pressure levels (925 hPa - 100 hPa) whiles relative humidity was retrieved166

at 9 water pressure levels of 925 hPa to 200 hPa. The dataset has been quality controlled167

with appropriate and improved cloud screening algorithms and uncertainty measures as de-168

scribed in Susskind et al. (2003); Susskind (2006, 2007); Susskind et al. (2011). AIRS3STD169

is derived from Level-2 data products in which the quality control of every parameter field170

has been flagged as best (0) or good (1) (Olsen, 2016). This ensures that all grids have171

the highest quality level datasets for each field and pressure level. Since the analysis of172

the study depended on the correlation between two parameters at different pressure levels,173

the combined parameter field (TqJoint grids) for both ascending and descending passes as174

recommended by Olsen (2016) was used. The TqJoint field applies a single, unified quality175

control criterion for all parameter fields and has flags of either 0 or 1. The AIRS dataset176

can be accessed at http://disc.sci.gsfc.nasa.gov/AIRS/data access.shtml.177

2.3 NCEP R2 datasets178

The NCEP-DOE Reanalysis 2 (herein NCEP R2) is an improved version of the NCEP179

Reanalysis 1 project with an updated parameterisation scheme for physical processes such180

as new shortwave radiation and changes in boundary layer and minor tuning of convective181

parameterisation (Kanamitsu et al., 2002). The model uses analysis/forecast system to182

produce data assimilation from past datasets (1979) to present. The Reanalysis data has183

been subset into four main categories of Pressure, Gaussian Grid, Spectral Coefficient and184

Surface Data. Temperature and humidity profiles which are of interest to this study was185

taken at a 4-times daily and 2.5◦×2.5◦ spatial resolutions. Observational data which are186

obtained from NCEP R2 global upper air Global Telecommunication System (GTS) by the187

National Center for Atmospheric Research (NCAR) are combined with other datasets such as188

satellite, marine and surface winds to obtain a desired output parameter (Wang et al., 2016).189

These datasets can be obtained at the NOAA website https://www.esrl.noaa.gov/psd/.190

2.4 Data Collocation and Statistical Analysis191

2.4.1 Data Sampling192

To inter-compare the temperature and relative humidity profile datasets from RAOB,193

AIRS and NCEP R2, the datasets were first collocated in both space and time. A temporal194
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sampling window of ±3 hours within a spatial radius of 100 km as used by other AIRS195

validation studies (Divakarla et al., 2006; Milstein & Blackwell, 2016) was applied to extract196

the RAOB and NCEP R2 daily profiles. Table 1 shows the number of retrieved samples197

from the RAOB to AIRS that satisfied the collocation criteria. The NCEP R2 profiles which198

passed this criterion were obtained from synoptic times 00 hours (to match with descending199

pass) and 12 hours (to match with the ascending pass). A total collocated days of profiles200

for RAOB and NCEP R2 each for the AMMA and DACCIWA field campaign sites were201

totaled at 278 (Abidjan), 176 (Cotonou), 43 (Ougadougou), 104 (Parakou), 27 (Tamale), 8202

(Kumasi) and 30 (Accra) (see Table 1). It must be noted that, no temporal interpolation203

was performed on the AIRS or NCEP R2 data. Since the accurate retrieval of temperature204

and water vapour profiles by satellites strongly dependent on the land surface emissivity205

and skin temperature (Ferguson & Wood, 2010; Singh et al., 2017), these stations have206

been grouped into “coast”(Abidjan, Accra and Cotonou) and “inland” (Kumasi, Tamale,207

Ougadougou and Parakou) for analyses. All stations are situated below 925 hPa, therefore208

profile analyses was initialised at this level to 100 hPa for temperature and 200 hPa for209

relative humidity.210

Table 1. Number of samples retrieved from AIRS-RAOB collocations

Station Ascending Descending Dry Season Wet Season
overpass overpass (December-February) (March-November)

Abidjan 30 248 91 187
Accra 18 12 - 30

Cotonou 58 118 56 120
Kumasi 5 3 - 8
Parakou 18 86 7 97
Tamale 14 13 3 24

Ougadougou 12 31 5 38

2.4.2 Temperature and humidity profile statistics211

Equation 1 and 2 with units of ◦K was used to evaluate the temperature profiles at212

each pressure level of AIRS and NCEP R2:213

Bias =
1

N

N∑
i=1

(TDATA − TRAOB) (1)

RMSD =

√√√√ 1

N

N∑
i=1

(TDATA − TRAOB)2 (2)

The bias and RMSD for calculating water vapour errors were normalised to account for214

the vertical and temporal variability of water vapour in the atmosphere (Equations 3 and 4)215

as implemented in Singh et al. (2017). Units of the normalised bias and RMSD for relative216

humidity is given in percentage (%).217

Biasnorm =
1
N

∑N
i=1(RHDATA −RHRAOB)

1
N

∑N
i=1 RHRAOB

× 100 (3)
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RMSDnorm =

√
1
N

∑N
i=1(RHDATA −RHRAOB)2

1
N

∑N
i=1 RHRAOB

× 100 (4)

where N is the number of collocated temperature or relative humidity profiles for each218

pressure level, TDATA is the AIRS or NCEP R2 temperature profile, TRAOB correspond219

to the radiosonde temperature observations, RHDATA is the AIRS or NCEP R2 relative220

humidity profile, RHRAOB imply the radiosonde relative humidity retrievals, RMSD and221

RMSDnorm represent the root mean square difference and normalised root mean square222

difference derived for the pressure levels respectively.223

2.4.3 Thunderstorm convective indices224

The AIRS and NCEP R2 temperature and relative humidity profiles were used to derive225

three stability indices that affect the evolution of severe and non-severe (Peppler, 1988)226

thunderstorm occurrences. The derived indices were then used to compare with derived227

indices of the radiosonde at these observation stations on the seasonal timescale. The228

indices include the George’s K-Index, Total Totals Index and the Humidity Index.229

George’s K-Index (George, 1960), given by Equation 5 gives a measure of the thickness of230

low-level and mid-level tropospheric moisture content (Peppler, 1988). Higher values usually231

>20 ◦C is indicative of higher probabilities for the occurrence of showers and thunderstorms.232

K = (T850 − T500) + Td850 − (T700 − Td700) (5)

The Total Totals (TT) Index (Miller, 1975)(Equation 6) is a severe thunderstorm in-233

dicator which shows the static stability between the 850hPa and 500 hPa levels (Peppler,234

1988). It is the sum of vertical totals (T850 − T500) and cross totals (Td850 − T500) of tem-235

perature and dewpoint temperature. The likelihood of showers and thunderstorms increase236

as TT index becomes ≥30 ◦C.237

TT = T850 + Td850 − 2T500 (6)

The Humidity (H) Index given in Equation 7 assesses the extent of saturation at given238

pressure levels [(Jacovides & Yonetani, 1990; Marinaki et al., 2006) and references therein].239

A significant threshold for thunderstorm occurrence should usually be less or equal to 30240

◦C.241

HI = (T − Td)850 + (T − Td)700 + (T − Td)500 (7)

In all cases, where T and Td are the temperature and dewpoint temperatures in degree242

Celsius at the reference pressure levels.243

2.4.4 Cloud/Cloud-Free Analysis244

To further check the strength of the AIRS temperature and relative humidity profiles245

over the stations, the data was also extracted into days of cloudy conditions and cloud-free246

conditions. A day is said to be cloud-free if the cloud-fraction is ≤ 0.4. The dataset of which247

cloud and cloud-free days were extracted for the corresponding radiosonde observations was248

from the AIRS3STD cloud fraction which is available from http://disc.sci.gsfc.nasa249

.gov/AIRS/data\ products.shtml. Prior to this, lower thresholds less than the stipulated250

was used but it was observed that, either the collocated criteria was not satisfied, or all251

radiosonde launch were on days of cloud fraction > 0.4.252
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3 Results and Discussion253

3.1 Diurnal analysis of AIRS temperature and relative humidity254

Figure 2 shows the diurnal bias and RMSD for the vertical profile of temperature and255

relative humidity according to zonal classification. A total of 474 and 182 collocations were256

found for coast and inland regions respectively. The temperature profile for all passes and257

locations observed a predominant cold and low biases from the lower to upper troposphere.258

The biases (Figure 2a) were also found to be increasing with altitude with a sharp inversion259

observed at the coast (ascending and descending) and inland (ascending). An inversion at260

the inland for the descending pass is however observed at the 300 hPa pressure level. At261

the inland stations, the bias between AIRS and RAOB temperature profiles was found to262

be reduced during daytime passes than the night with an overall pressure level difference263

about 0.33 ◦K. In addition this daytime performance inland is also lower than the coastal264

daytime biases. There were no significant differences between the ascending and descending265

passes at the coast as was observed inland. Although the biases show AIRS temperature to266

be constantly underestimated with the RAOB, the retrievals are better at the coast (mean267

difference) than inland regions. The temperature RMSD profile is shown in Figure 2b with268

the broken vertical line denoting the AIRS mission temperature accuracy goal of ±1 ◦K. It269

can be observed that all over-passes were unable to meet this 1 ◦K goal with the descending270

pass of the inland region obtaining between a 4 - 5 ◦K temperature RMSD. The low bias271

obtained at the inland ascending pass (Figure 2a) is reflected in the corresponding low272

RMSD temperature profile (Figure 2b). However the ascending pass for inland also reveals273

a higher RMSD at the near surface (925 hPa) level denoting the inability of AIRS to retrieve274

the temperature at this level. On the other hand, at the coast, the 1 ◦K RMSD is achieved275

only at the 200 hPa and 300 hPa levels in the ascending pass. The diurnal coastal RMSD276

ranged between 1 - 4 ◦K with better retrievals during the ascending than descending pass.277

Above 200 hPa, there is a degradation in the RMSD for all locations and passes. In general,278

the daytime analyses show that AIRS temperature profiles for the inland stations have a279

lower RMSD than the coastal stations, whereas the opposite holds at night. This can be280

attributed to the diurnal effect of sea and night breezes which is stronger at the coast than281

inland and invariable affect the temperature retrievals by AIRS.282

The statistical analyses for the diurnal retrievals of relative humidity is shown in Figure 2c283

(bias) and d (RMSD). The RH bias is observed to be warm and positive at the coast284

and inland for all passes except the inland nighttime retrievals. Biases are also observed285

to be lower for the coastal region with a near overlap at the surface (925 hPa) to mid-286

troposphere (500 hPa), above which there exists a relatively small deviation in both day287

and night passes. AIRS over-estimates the RH for the inland stations during the day and288

underestimates at night due to the poor retrieval of nighttime temperatures as found in289

Figure 2 a and b. The inland profile for the day increases steadily from 10% - 25% at the290

lower to upper troposphere (925 hPa to 200 hPa) as compared to the decreasing trend (<-291

10%) observed for the nighttime pass. The RH accuracy goal for AIRS is about ±15% - 20%292

(Susskind, 2006; Divakarla et al., 2006) for the lower to mid-troposphere and better than293

50% (Olsen et al., 2017) for the upper troposphere. Unlike the temperature, the relative294

humidity RMSD (see Figure 2d) was found to be within the AIRS accuracy goal with a295

slight exceedance (about 3%) at the 200 hPa level for the inland and coastal ascending296

pass. Although the accuracy goal for the lower to middle troposphere was not satisfied297

for both locations in the ascending pass, nonetheless the RMSD is quite acceptable. The298

RMSD for the descending pass was observed to lower than 15% with the upper troposphere299

ranging between 16 - 20%. Deviations between the coastal and inland regions were highest300

below 400 hPa and 500 hPa for the descending and ascending passes respectively. The301

general underestimation of temperature and over-estimation of relative humidity show the302

effects of temperature retrievals on the RH by AIRS. Pfahl and Niedermann (2011) state303

that a strong anti-correlation exists between temperature and relative humidity, arising304

primarily from convective precipitation that decrease local temperatures due to vertical305

mixing and insolation reduction from clouds. The existence of an indirect relationship306
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Figure 2. Diurnal retrieval statistics of AIRS for temperature (a and b) and relative humidity

(c and d) for coastal and inland stations. Broken vertical lines in RMSD represent AIRS accuracy

goal for temperature (b) and relative humidity (d). The first and second vertical lines at 20%

and 50% in the RH RMSD shows the accuracy goal for lower and upper troposphere respectively.

Recommended bias at broken vertical line 0 ◦K.

between temperature and relative humidity mean that the relatively lower temperatures307

(dry bias profile) retrieved by the sensor is translated into a warm bias in the corresponding308

RH profiles.309

3.2 Seasonal analysis of AIRS temperature and relative humidity profiles310

Figure 3 shows the seasonal vertical temperature and relative humidity profiles for the311

coast and inland regions. The seasonal analysis consists of a dry and wet with stations such312

as Abidjan, Accra, Cotonou and Kumasi experience a bi-modal pattern of rainfall with the313
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major rains occurring between March to July and a minor wet season between September314

to early November (Amekudzi et al., 2015; Baidu et al., 2017; Parker, 2017). The dry315

season at these stations also occurs from late November to February. Tamale, Parakou and316

Ougadougou have a uni-modal rainfall pattern occurring between April to October and a317

dry season from November to March (Amekudzi et al., 2015; Parker, 2017). The locations318

which have bi-modal rain pattern observes annually a temporal break in the month of August319

which is termed as the “little dry spell” (Parker, 2017).320

From Figure 3a, the temperature bias was found within a -2.5 to 0 ◦K with a consistent cold
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Figure 3. Seasonal statistics of AIRS for temperature (a and b) and relative humidity (c and

d) for coastal and inland stations. Broken vertical lines in RMSD represent AIRS accuracy goal for

temperature (b) and relative humidity (d). The first and second vertical lines at 20% and 50% in the

RH RMSD shows the accuracy goal for lower and upper troposphere respectively. Recommended

bias at broken vertical line 0 ◦K.

321
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bias at all vertical levels. Inland dry season temperatures obtained the highest deviation322

occurring at the surface to middle troposphere (925 hPa to 500 hPa). The dry season323

coastal bias was larger above 200 hPa. Between 600 hPa to about 200 hPa, both RAOB324

temperatures and AIRS retrievals were observed to be similar and accurate for AIRS as325

the bias was found to be close to zero. Furthermore, AIRS temperature bias and RMSD326

(see Figure 3a and b) for the dry season are observed to be more accurate than the wet327

season possibly due to the effect of increasing cloud cover in the wet season that lowers328

the accuracy of temperature retrievals. According to Ferguson and Wood (2011) increasing329

cloud cover attenuates the infrared waves for accurate retrievals of temperature by the AIRS330

sensor. The deviation found at the 925 hPa to 500 hPa for the inland dry season bias is331

due to higher retrievals from the radiosonde for the season. The coast also obtained smaller332

biases as compared to the inland stations. The bias at the coast was found to sharply333

deviate at the 150 hPa level (≈ -1.2 ◦K) whereas the inland region was quite consistent.334

The RMSD of the seasonal temperature (Figure 3b), similar to the diurnal temperature335

RMSD (Figure 2b), failed to meet the AIRS accuracy goal with a spread of 1.5 - 5 ◦K. The336

retrieval pass with skill is close to the targeted accuracy was observed in the coastal dry337

seasonal sample. This can be observed at the 600 hPa to 200 hPa pressure levels where338

the was a close agreement with the lowest bias between the AIRS and RAOB datasets.339

In addition, the lower tropospheric (925 hPa to 700 hPa) temperature for the coastal dry340

season was found to be higher between 2 - 3 ◦K. For both coastal wet and dry seasons,341

higher RMSD existed at the upper atmospheric levels with the coastal wet season obtaining342

a larger deviation. The inland seasons also observed to be accurate than the wet season.343

In general, the dry season RMSD temperature profiles was found to be lower than the wet344

season profiles with the coast out-performing the inland stations at all temporal scales.345

The bias and RMSD for the relative humidity is shown in Figure 3 c and d. A warm346

bias (Figure 3c) exists at the coast for both seasons and inland for the dry season only,347

suggesting an over-estimation of water vapour profiles by the AIRS sensor. On the other348

hand, the inland wet season is observed to be negatively (cold) biased which can be linked349

to the occurrence of convection during this season (Prasad & Singh, 2009) and the relatively350

longer distance traversed by the satellite to retrieve relative humidity inland (McMillin et al.,351

2007). This cold bias (about 6%) further declined at the upper troposphere. The positive352

bias was observed between 0 - 5%, which is low and acceptable for a difference between AIRS353

and RAOB water vapour profiles. At the coast, the wet season although positively biased354

has the best accuracy (about 1 - 1.5%) as compared to the dry season and inland regions.355

The RMSD profile (Figure 3d) reveals a satisfactory performance of the AIRS dataset.356

Tropospheric water vapour profiles at all pressure levels were mostly within 20% and 50%357

at the coast and inland. Inland dry season AIRS retrievals were observed to be superior with358

total vertical RMSD less than 10%. The RMSD performance for the inland dry season imply359

the presence of clear sky conditions which is a major characteristic of the inland stations360

during this season. Although the bias observed for inland wet season (see Figure 3c), the361

RMSD is comparable to the coast wet season profile and both were found to be within362

an acceptable range. The warm bias obtained for the coastal wet season was also found363

translate into higher RMSD in Figure 3d. In conclusion, the diurnal and seasonal inter-364

comparisons enhance understanding on the usefulness of AIRS temperature and relative365

humidity profiles for thunderstorm prediction based on the derivation of instability indices.366

3.3 Cloud dependence of AIRS temperature and relative humidity retrieval367

accuracy368

To assess the impact of clouds on the retrieval of temperature and relative humidity by369

AIRS, the data was separated into days of cloudy retrieval and days of cloud-free retrievals370

over all overpasses. Only stations Accra, Abidjan, Cotonou and Ougadougou satisfied the371

cloud and cloud-free (cloud fraction less than 0.4) criteria. The remaining stations, Parakou,372

Kumasi and Tamale either had no cloud-free days or the collocation window was beyond373

that stipulated for in this study (± 3 hours and a 100 km radius).374
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Figure 4. Cloud conditional analyses for all AIRS matchups (ascending and descending overpass)

at all stations (see Table 1) for temperature and relative humidity.

The total bias and RMSD profile for the temperature and RH at these stations is shown in375

Figure 4. The temperature bias (Figure 4a) shows lower bias on cloud days as compared to376

cloud free days. The bias for both profiles was found to be mostly cold with a warm bias377

found at the 250 hPa level on cloud free days. On cloudy days, a warm bias was observed378

at the middle (600 and 500 hPa) and upper (300 to 200 hPa) troposphere. Temperature379

retrievals at the near surface (Figure 4a) by AIRS was found to be drier on cloud-free days380

than cloudy days. The RMSD profile shows that the overall performance of AIRS on cloud381

free days is closer to the mission goal than on cloudy days. There is a higher deviation382

in both cases at the upper troposphere (150 to 100 hPa) with the largest RMSD found383

during cloudy days. Upper tropospheric temperature errors on the cloudy days could reach384

a maximum of 3 ◦K with a 2 - 2.5 ◦K on cloud-free occasions. Interestingly, although AIRS385

cloud-free profile could not meet the accuracy goal at any level, cloudy profile observed a386
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between 0.5 - 1.0 ◦K RMSD at the 300 hPa to 200 hPa. This corresponded to the upper387

tropospheric levels with warm temperature bias (Figure 4a). The alternating RMSD profile388

also suggests that the accuracy of cloud-free retrievals is better at 700 hPa to 500 hPa and389

100 hPa levels whereas cloud retrieval accuracy is better at all other levels.390

Figure 4c and d shows the AIRS bias and RMSD for relative humidity on cloud and cloud391

free days. In general, cold to warm biases are observed to exist on both cloud and cloud392

free days. Bias in cloud free days is minimal as compared to cloudy conditions. The lower393

to mid-tropospheric dry bias under cloudy conditions was also observed by Ferguson and394

Wood (2010) who found a maximum -29% bias in increasing cloud coverage and -15 to -40%395

by Wong et al. (2015). The cold bias present for both cloud and cloud-free days occurred at396

the surface to about 500 hPa (Figure 4c). Beyond this level, a warmer bias is observed to397

reflect an over-estimation of the AIRS profiles especially at the 150 hPa and 100 hPa levels.398

The effect of clouds on retrievals at the 850 hPa and 500 hPa were found to be negligible399

as there was an overlap for both scenarios. Overall bias range was within a ± 10%. On the400

other hand, RMSD profile (Figure 4d) shows accurate retrievals under cloudy conditions401

than non-cloudy condition. AIRS accuracy mission goal is satisfied under all occasions for402

the lower and upper troposphere. Upper tropospheric relative humidity RMSD was observed403

to be less than 30% for the cloud and cloud-free days with the cloud-free days slightly out-404

performing the cloudy days. For the lower to middle troposphere, the RMSD for cloudy405

conditions was observed to be lower than cloud-free days. At the 850 hPa, a higher RMSD406

exceeding the goal limit of ≤ 20%.407

3.4 AIRS and NCEP R2 retrieval skill comparisons408

Figure 5 shows the performance of AIRS and NCEP R2 with RAOB temperature and409

relative humidity profiles for the coastal and inland regions. To find the overall performance410

of both AIRS and NCEP R2, all overpasses of AIRS were merged and compared with411

the corresponding profiles of NCEP R2. Cold biases are observed to dominate the coastal412

AIRS temperature retrievals whereas the inland AIRS temperature profile decreases from413

warm (below 600 hPa) to cold (above 600 hPa) (see Figure 5a). NCEP R2 for the coast414

alternates between cold bias at the surface to mid-troposphere, beyond which a warm bias415

exists. The inland NCEP R2 temperature bias profile is also pre-dominantly cold except416

at the 925 hPa and 250 - 200 hPa pressure levels. Comparing the location biases of AIRS417

and NCEP R2 temperature, inland AIRS over-estimates NCEP R2 profiles at the surface418

to middle troposphere and under-estimates at the upper troposphere. Alternatively, the419

coastal performance observes NCEP R2 to over-estimate the AIRS temperature bias profile420

at the upper troposphere. The temperature RMSD profile is shown in Figure 5b for AIRS421

and NCEP R2. Both AIRS and NCEP R2 were unable to reach the AIRS accuracy goal422

except at the 600 hPa and 250 hPa for NCEP R2 inland statistics. The performance for423

both datasets was observed to be better for the inland region than the coast. The inland424

AIRS and NCEP R2 showed temperature profiles with decreasing RMSD from 3 ◦K to425

about 1 ◦K from the surface to 600 hPa and a significant increasing RMSD from 250 hPa426

to 150 hPa. The RMSD at the coast was relatively higher with greater deviation within the427

NCEP R2 datasets. The highest difference between the coast and inland regions for AIRS428

and NCEP R2 occurred from the 850 hPa to 250 hPa levels. Regardless of station, there429

was a tendency for higher RMSD at the upper troposphere with the maxima occurring in430

the the NCEP R2 coastal temperature and the least in the AIRS inland temperature.431

The bias and RMSD profile for AIRS/NCEP R2 relative humidity is observed in Figure 5c432

and d. Bias (Figure 5c) was found to be in range of -6% to 10% for both datasets. AIRS and433

NCEP R2 coastal water vapour is observed to be constantly under-estimated as compared434

to an over-estimation for the inland. The coastal under-estimation is however observed to435

be smaller (≈-2% to -3%) than the inland RH over-estimations (≈4% to 6%). Bias was436

also observed to be increasingly higher (inland) and lower (coast) at the upper levels. In437

addition, the bias reveals lower values of AIRS at the coast than inland with the reverse438

being observed in the NCEP R2 relative humidity profile. The RMSD (Figure 5d) reveal439
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Figure 5. Diurnal uncertainty statistics of AIRS and NCEP R2 for temperature (a and b) and

relative humidity (c and d) profiles for coastal and inland stations. Coastal and inland statistics

are a merge between the daytime and nighttime datasets. Broken vertical lines in RMSD represent

AIRS accuracy goal for temperature (b) and relative humidity (d). The first and second vertical

lines at 20% and 50% in the RH RMSD shows the accuracy goal for lower and upper troposphere

respectively. Recommended bias at broken vertical line 0 ◦K.

the datasets to achieve both lower and upper tropospheric water vapour accuracy goal.440

As lower biases were obtained over the coast, this is reflected in the higher satisfactory441

performance in the RMSD (< 20%) for the upper and lower troposphere. Furthermore, the442

NCEP R2 is found to give relatively accurate estimates of the tropospheric water vapour443

content than AIRS along the coast, probably due to the better representation of coastal444

RAOB information into NCEP R2 model run. Although the upper tropospheric RMSD445

was acceptable for both datasets inland, the profile was observed to be sharper from the 500446

hPa level as compared to the coast. AIRS is also observed to outperform NCEP R2 inland447
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than at the coast. In general, the performance of AIRS and NCEP R2 for RH is acceptable448

and satisfactory. The satisfactory performance of NCEP R2 is expected as global RAOB449

information is incorporated in the estimation of temperature and relative humidity profiles450

Divakarla et al. (2006). Table 2 is a summary of the AIRS performance at the various451

atmospheric pressure levels for temperature and relative humidity.452

Table 2. Summary of RMSD AIRS-RAOB accuracy for temperature and relative humidity. Val-

ues in bold represent atmospheric levels at which RMSD for temperature was atleast closer to the

AIRS accuracy goal (1 ±0.5 ◦K).

Pressure level (hPa) Temperature RMSD (%) RH RMSD (%)
Coast Inland Coast Inland

925 2.32 2.76 8.68 7.73
850 2.35 2.34 8.96 7.97
700 3.17 1.56 10.45 9.30
600 2.98 1.18 10.36 9.22
500 3.10 1.67 11.55 10.28
400 3.00 1.42 16.16 14.38
300 1.32 1.32 14.75 13.13
250 1.33 1.67 16.25 14.46
200 1.29 1.09 20.10 17.89
150 2.05 1.16
100 3.28 2.62

3.5 Variation of thunderstorm convective indices at the stations453

According to Ferguson and Wood (2011), the AIRS sensor has the potential to be used454

for local convective rainfall prediction based on thunderstorm convective indices. They de-455

rived the convective triggering potential and humidity index (from 50 hPa to 150 hPa above456

ground level) from AIRS temperature and relative humidity profiles and found these indices457

useful at geographical locations where the predictive power was high. Therefore, our study458

also evaluated the AIRS and NCEP R2 derived convective instability indices: K-index, TT459

index and HI for West Africa against RAOB derived indices. We have evaluated the seasonal460

biases in AIRS and NCEP derived convective indices here, which in the future, will need461

to be translated into terms of actual thunderstorm probability and strength for the region.462

Figure 6 shows the three year (2006-2008) seasonal climatology of the indices for both AIRS463

and NCEP R2. The climatology of the indices for both datasets was observed to be similar464

with NCEP R2 overestimating slightly at all seasons. The dry season climatology reveals465

a high probability of convective activities and rain over the southern part of West Africa466

especially along the coast as compared to inland areas. The Sahelian region which is further467

northward of West Africa observes low likelihood of rains. Low K-Index are found over the468

Sudano-Savanna belt with a decreasingly lower negative probability. Furthermore the HI for469

the dry period elaborates on the effects of sea breeze on the along the coastal areas which470

results in relatively high humidity and a corresponding low humidity index. Inland low HI471

is a consequence of the deciduous and semi-deciduous forest which characterises this zone.472

On the other hand, the dry harmattan winds which engulf the region with the most affected473

being the Sudano-Savanna zone observes higher than usual humidity index; exceeding two474

to three times the recommended threshold of ≤ 30◦ C. This observation is captured in both475

AIRS and NCEP R2.476

The migration of the ITB, evident in the increased convective activities in over West Africa477

can also be monitored with these thunderstorm convective indices in the wet season. As478
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Figure 6. 3 year (2006 - 2008) dry and wet season index climatology from AIRS and NCEP R2

for the entire West Africa. Dry season include months December, January and February whereas

the wet season includes all other months.

can be observed, AIRS shows an under-estimation of K-Index and Total Totals (TT) index479

probably due to the retrieved relative humidity being lower than the estimates of NCEP R2480

(Figure 6). The HI on the other hand has good correlation for both datasets except at the481

north-western portion of West Africa which is closer to the Saharan desert. The TT index482

for NCEP R2 shows the wet season to have a higher probability of thunderstorm occurrence483

around latitudes 6◦ N to 10◦ N while AIRS shows an isolated maximum concentration of484

these activities converging over Northern Ivory Coast, North-eastern Guinea, Southern Mali485

and Burkina Faso (Figure 6). In general, AIRS and NCEP R2 are able to show the seasonal486

likelihood of thunderstorm activities over West Africa.487

Figure 7 presents the AIRS and NCEP R2 differences (AIRS-NCEP R2) for the thunder-488

storm indices based on the seasonal climatology. Generally, NCEP R2 is found to over-489

estimate the occurrence of precipitation in the dry season based on the indices. However,490

this over-estimation is also found to be lower and reduced in during the wet season. Devia-491

tions were highest for the HI in both dry and wet season as compared to the other indices.492

The dry season K-Index reveals an over-estimation of NCEP R2 over the entire West African493

sub-region with AIRS over-estimating off the coast of Liberia and Senegal. This is likely494
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Figure 7. Difference in the index seasonal index climatology between AIRS and NCEP R2

(AIRS-NCEP R2). Dry season include months December, January and February whereas the wet

season includes all other months.

due to the accuracy of AIRS in retrieving relative humidity profiles over the sea than coast495

and inland (Divakarla et al., 2006), resulting in a direct effect on the calculation of K-Index496

from AIRS datasets. The corresponding wet season climatology shows a high thunderstorm497

probability from NCEP R2 analysis situated over inland Liberia (< -7 ◦C). Few areas are498

found to have no difference in thunderstorm prediction over West Africa in the wet sea-499

son from the K-Index (0 ◦C). A higher thunderstorm probability in AIRS is observed in500

the inland regions the vicinity of the Sahelian with over-estimated values reaching about501

7 ◦C. In the dry season (Figure 7), the AIRS TT index over-estimates the rainfall activi-502

ties by locating a hotspot (> 1.2 ◦C difference) at the Nigeria-Cameroonian border. This503

was also captured by the K-Index however at a difference of ≈ 3 ◦C. It can be observed504

that the seasonal differences in AIRS and NCEP R2 for the derivation of the TT index is505

relatively lower than the other indices. The wet season TT index likewise the K-index is506

also observed to have a higher rainfall likelihood (from AIRS) at the Sahelian region and507

no difference at the sudano-savanna region. In addition, the observation for the K and TT508

wet season indices show that the AIRS over-estimations have a latitudinal increase from509

the coast to further inland regions of West Africa (Figure 7). The intensity of over- and510

under-estimation of AIRS in the dry season HI is observed to be in complete opposite to511

the K-index dry season climatology. On the other hand, inland areas where AIRS obtained512

larger under-estimations in K-index corresponded to higher over-estimations in the HI for513

the dry season. Nonetheless, the western regions of West Africa was obtained relatively no514

difference in thunderstorm prediction for AIRS and NCEP R2 in the dry season. For the515

wet season, HI differences although lower than the dry season, has AIRS over-predicting516

rainfall in most areas of the West African sub-region (Figure 7).517

The seasonal comparison of the indices derived from AIRS and NCEP R2 collocations518

with radiosonde calculated indices is given in Tables 3 and 4. A general observation was a519

better correlation between AIRS and RAOB calculated indices at the stations. The slight520

overestimation found in NCEP R2 from Figure 5 is also observed in the extracted indices at521
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Table 3. Comparison of AIRS and NCEP R2 derived stability indices in the dry season

(December-February). Units of all indices in degree Celsius (◦C)

Station K-Index TT index HI
RAOB AIRS NCEP RAOB AIRS NCEP RAOB AIRS NCEP

Abidjan 23.86 25.13 25.80 38.43 40.64 40.65 29.73 29.55 28.80

Cotonou 23.18 25.47 20.58 37.30 40.47 38.78 29.58 22.33 40.34

Ougadougou -1.85 -9.37 9.44 21.81 13.50 27.78 77.31 95.89 63.57

Parakou 21.05 23.50 28.82 37.52 38.02 43.80 42.53 42.75 38.00

Tamale -2.26 -0.66 21.88 27.97 30.53 46.05 76.75 72.46 45.61

the stations was also found to be higher than RAOB calculated indices. In the dry season,522

the coastal stations Abidjan and Cotonou had lower bias as compared to the RAOB, in523

the K-Index, TT index and the HI for both AIRS and NCEP R2. The HI however has524

a larger difference for NCEP R2 with the RAOB over Cotonou to suggest the low chance525

of thunderstorm formation at the coastal station. Over Ougadougou, the difference in K-526

Index between AIRS and RAOB was found to be low (-7.59 ◦C) as compared to RAOB and527

NCEP R2 (11.29 ◦C). The TT index and HI revealed on the other hand obtained a higher528

bias between AIRS and RAOB (Table 3). The capability of AIRS in measuring the very529

low dry season humidity conditions over Ougadougou is observed to translate into the low530

TT and corresponding HI. The AIRS derived indices suggest virtually no probability for531

thunderstorm occurrence which is to be expected over the station during this period. Over532

Parakou there was a good agreement between RAOB and AIRS derived indices although533

NCEP R2 was also not highly biased. The K-Index at Tamale agreed only in the AIRS534

(-0.66◦ C) and RAOB (-2.26◦ C) datasets with the NCEP R2 over-estimating in both K-535

index and TT and underestimating in the HI (Table 3). But in general, the low probability536

of thunderstorm occurrence at these stations were well observed by the indices for the dry537

season.538

The RAOB indices for the wet season at the stations is shown in Table 4. The derived539

indices for RAOB, AIRS and NCEP R2 were in agreement with low biases. The humidity540

index also observed values which were below 30◦ C and supports the the increased chances541

of thunderstorm events as moisture is advected by the south-western winds towards these542

stations. Close agreement was found at the Accra station between ROAB and NCEP R2 for543

George’s K and TT indices. In most instances, AIRS and NCEP R2 had a relatively per-544

fect agreement for thunderstorm prediction. Furthermore, AIRS and NCEP R2 marginally545

over-estimate the indices (K and TT indices) compared to RAOB and under-estimates the546

HI. But there exists a good correspondence between AIRS and RAOB HI over Accra and547

Kumasi.548

4 Conclusions549

Determination of a pre-convective environment for thunderstorm formation requires a550

long time-series of sounding data. Radiosonde observation offer the most accurate vertical551

profiles of temperature and relative humidity. However these observations are scarce in West552

Africa and hence the need to rely on suitable satellite products for convection assessment.553
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Table 4. Comparison of AIRS and NCEP R2 derived stability indices in the wet season (March-

November). Units of all indices in degree Celsius (◦C)

Station K-Index TT index HI
RAOB AIRS NCEP RAOB AIRS NCEP RAOB AIRS NCEP

Abidjan 27.77 28.20 30.01 40.18 41.26 41.45 21.57 21.56 17.95

Accra 28.50 30.99 28.61 39.95 40.83 39.73 19.44 15.18 14.29

Cotonou 23.35 32.21 31.26 35.51 42.04 42.05 21.78 14.24 15.90

Kumasi 28.19 31.32 32.74 40.51 42.37 42.80 18.82 15.55 12.51

Ougadougou 22.72 31.80 33.57 37.45 45.27 46.36 28.90 22.78 23.74

Parakou 29.15 33.52 33.79 41.82 43.39 44.37 21.44 14.24 15.64

Tamale 29.78 32.48 32.36 42.76 45.40 46.99 23.97 23.21 17.24

The Atmospheric InfraRed Sounder on-board the AQUA satellite provides atmospheric554

sounding information twice daily, which may be used as a reliable substitute for RAOB555

observation globally. The study assessed the performance of the AIRS IR-Only level 3556

standard retrieval version 6 and for context, NCEP R2 vertical temperature and relative557

humidity profiles for some select AMMA and DACCIWA radiosonde observation stations in558

West Africa within spatio-temporal collocation radius of 100 km and ±3 hours for AIRS and559

NCEP R2. The performance of AIRS vertical profiles for diurnal, seasonal, cloud and cloud-560

free analyses as well as with collocated NCEP R2 profiles were assessed. Finally seasonal561

variation of three thunderstorm convective indices (K-Index, TT index and HI) for each562

station was computed and compared for RAOB, AIRS and NCEP R2.563

The diurnal temperature profile reveals lower biases however with corresponding higher564

RMSD above the AIRS mission goal of ±1 ◦K. AIRS temperature RMSD show higher565

values at the coast as compared to inland regions, possibly due to complications in surface566

emissivity, skin temperature and the diurnal sea and land breeze effect which is strongest567

along the coast. The reverse of the temperature RMSD however is observed to occur at night.568

The relative humidity on the other hand, was found to be more accurate for the descending569

pass than ascending for all zones with the coastal stations dominating in all passes. On570

the seasonal timescale, the temperature bias for the dry season is pre-dominantly cold. The571

corresponding RMSD were also higher and deviated towards the inland wet season profile.572

The coastal dry season was the least deviated, albeit, all zonal deviations were higher (≈1.0 -573

5 ◦K). Inland wet season RH profile was the most biased (cold) whereas the RMSD showed574

satisfactory performance at all level tropospheric levels for all zones and seasons. Cloudy575

conditions were found to have no significant effect on the RH retrievals by AIRS as the bias576

and RMSD between cloudy and non-cloudy days were found to have marginal differences and577

both achieving the AIRS accuracy goal of < 20% and 50% for lower and upper troposphere578

respectively. The temperature retrievals however are better on cloud-free than cloudy days.579

Comparison of the temperature and RH retrievals of AIRS with NCEP R2 reveal AIRS to be580

a better substitute for RAOB vertical profiles at the coast and inland. Finally, the seasonal581

derived thunderstorm indices for AIRS and NCEP R2 showed that both datasets can be582

utilised for the occurrence and non-occurrence of thunderstorms in the wet and dry seasons583

though NCEP R2 generally over-estimates the thunderstorm probability. Comparing the584

derived indices of AIRS and NCEP R2 with RAOB indices at the seven stations also show585

a higher agreement for all seasons.586

In general, the performance of AIRS at these West African stations has been satisfactory587

for the temperature (although with slight over-estimations) and the RH. Based on the588
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performance of AIRS for the derivation of thunderstorm convective instability indices, it is589

proposed to be used further for the determining the probability of convection initiation over590

West Africa under the GCRF African SWIFT project by focusing on the statistical analysis591

of thunderstorm convective indices over the region.592
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