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Abstract

We apply deep learning to a synthetic near-surface hydrological response dataset of 4.4 million infiltration scenarios to determine
conditions for the onset of positive pore-water pressures. This provides a rapid assessment of hydrologic conditions of potentially
hazardous hillslopes where mass wasting is prevalent, and sidesteps the computationally expensive process of solving complex,
highly non-linear equations. Each scenario considers antecedent soil moisture and storm depth with varying soil properties
based on those measured at a USGS site in the East Bay Hills, CA, USA. Our model combines antecedent soil wetness
and storm conditions with soil-hydraulic properties and predicts a binary output of whether or not positive pore pressures
were generated. After parameterization, pore-water pressure conditions can be returned for any combination of antecedent
soil moisture content and storm depth values. Similar to previous work, a deep learning model reduces computational cost:
processing time is decreased by more than an order of magnitude for 1D simulated infiltration scenarios while maintaining
high levels of accuracy. While the physical relevance and utility behind process-based numerical modeling cannot be replaced,
the comparatively reduced computational cost of deep learning allows for rapid modeling of pore-water pressure conditions
where solving complex, highly non-linear equations would otherwise be required. Furthermore, comparing the solution of
a deep learning model with a hydrological model exemplifies how similar results can be produced through highly divergent
mathematical relationships. This provides a unique opportunity to understand which variables are most relevant for the
prediction of positive pore-water pressures on hillslopes, and can represent landslide-relevant hydrologic conditions for hillslopes
where rapid analysis is imperative for informing potential hazard mitigation efforts. Ultimately, a calibrated deep learning
model may reduce the need for computationally expensive physics-based modeling, which are often time and resource intensive,

while providing critical statistical insight for the onset of hazardous conditions in landslide-prone areas.
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RESEARCH QUESTIONS

e How well can machine learning (ML) and deep learning (DL) approximate
solutions to the Richards Equation?

e Does ML offer any advantage over traditional physically-based modeling or
time series forecasting?

e Can how can we physically interpret ML model results?

e What role can these models play modeling future landslide hazards?
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INTRODUCTION

R

¢ Precipitation induced shallow landsliding poses a common and continual threat to
communities situated below steep hillslopes, such as the 2015 Kramer Ave debris flow
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in Stika, AK (Figure 1, above)

e Predicting a landslide event relies on an understanding of pore-water pressure
response to rainfall, which is deterministically quantified by the Richards Equation
(Van Genuchten, 1980)

e Deep Learning provides an approach for pore-water pressure modeling—a highly non-
linear process. It can learn the Richards Equation and provides solutions faster than
traditional modeling software, as well as forecast a series of hourly pore-water
pressures from time series.

¢ We show the potential for deep learning for approximating solutions to the Richards
Equation, and how deep learning models for time series can forecast pore-water
pressure response to rainfall across time.
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METHODS

From Thomas et al., 2018
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Figure 1. Conceptual overview: (a) thousands of synthetic storms, combined with (b) dozens of initial saturations for
both wet-up and dry-down conditions, to simulate infiltration scenarios for seven soil hydraulic parameterizations that
comprise the (c) storm depth versus antecedent soil saturation (S) simulation ensemble. Interpolation of millions of

realizations into a two-tiered alert system with (d) hydrologic thresholds based on simulated positive pore water pressures
(uy) and (e) slope failure thresholds based on factor of safety (FS) calculations.
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We utilize the data provided by Thomas et al. (2018) (Figure 2, above), which feature 4.4
million 1D binary infiltration scenarios spanning combinations of antecedent soil moisture
stochastically simulated rainfall, and soil water retention parametrizations. Each input
feature feeds into HYDRUS 1D (Simunek et al., 2005) to solve for a binary classification of
pore-water pressure conditions, where 1 indicates positive pore-water pressures, and 0O
indicates a value below the positive threshold.
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To replicate thresholds in the binary dataset, we employ a feed-forward multi-layer
perceptron (MLP) model architecture (Figure 3. above). Our most successful model utilizes
two hidden layers, each with 64 perceptrons activated by the softmax function, and a
single output perceptron with sigmoid activation.

We also apply a Long Short Term Memory (LSTM) model architectures to a time series of
rainfall, soil moisture, and pore-water pressures from Elliot State Forest in the Southern
Oregon Coast Range (Smith et al., 2013). We hypothesize that an LSTM-based neural
network is capable of learning the Richards Equation implicitly from time series information,
and can predict rises in pore-water pressures accordingly (Figure 4, below).
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We utilize a model with two LSTM layers each with 32 units formatted in an encoder-
decoder-style (Figure 5, below), with the cell state of the encoder carried across all
batches of input data. This method is traditionally referred to as “sequence-to-sequence”
(seq2seq) modeling.
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Inputs: Soil Moisture, Rainfall, Pore Water Pressures
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RESULTS
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Figure 6 (above) demonstrates the ability for ANNs to recreate binary pore water pressure
thresholds. The solid black line represents the threshold from Thomas et al. (2018), while
lighter lines represent isolines of probability that a positive pore-water pressure occurred.
Isoline values range between 0 and 1, where 1 indicates absolute certainty of the
occurrence of a positive pore-water pressure. For the Base-Case threshold in Figure 1, the
physically determined threshold overlaps probability values of between ~0% and 20%
certainty.

Figure 7 (below) shows a histogram of output probabilities and how the relationship
between true and false positive rates varies as a function of setting a probability for
threshold determination. For instance, setting a probability threshold of 0.8 (or 80%
certainty) achieves close to a 95% true positive rate, while retaining a false positive rate
near 0. The stratification of output probability values demonstrates the model output as
either very confident (0.8 <) or not at all confident (<0.05) in pore-water pressures occuring.
Thus, setting a threshold at 0.8 captures nearly all true positives without risk of false
positives. This is not readily seen in a set of probability isolines as those shown in Figure 6.
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We present predictions from an LSTM-based neural network in Figure 8 (below). Our model
outputs predictions in 12 hour intervals, and demonstrates ‘learned’ relationships between
antecedent soil moisture, rainfall, and pore-water pressure response, and demonstrates a
strong relationship between observed pore-water pressure data and predicted values.
Model error is below 1kPa for all values for which positive pore-water pressures occur
(Figure 9, right)
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CONCLUSIONS

e Replicating binary pore-water pressure thresholds across all soil parameterizations
takes less than 5 minutes on a personal laptop CPU, and provides mean AUC values of
0.99 for all soil parameterizations used by Thomas et al. (2018).

¢ Neural network predictions for time series information at 12 hour intervals show
strong agreement with test data. our LSTM-based network predicts the next 12 hours
of soil moisture with RMSE values below 1kPa for times when positive pore-water
pressures occur in our test dataset.

RMSE for Positive Pore-Water Pressure Prediction

0.8 1

0.6 1

RMSE (kPa)

0.4

0.2 1

0.0 -

63cm 113cm 244cm
Sensor Depth

e We encourage these methods over other statistical techniques such as
autoregressive models, given the highly-non linear nature of the Richards Equation.
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ABSTRACT

We apply deep learning to a synthetic near-surface hydrological response dataset of 4.4 million infiltration
scenarios to determine conditions for the onset of positive pore-water pressures. This provides a rapid
assessment of hydrologic conditions of potentially hazardous hillslopes where mass wasting is prevalent, and
sidesteps the computationally expensive process of solving complex, highly non-linear equations. Each scenario
considers antecedent soil moisture and storm depth with varying soil properties based on those measured at a
USGS site in the East Bay Hills, CA, USA. Our model combines antecedent soil wetness and storm conditions with
soil-hydraulic properties and predicts a binary output of whether or not positive pore pressures were generated.
After parameterization, pore-water pressure conditions can be returned for any combination of antecedent soil
moisture content and storm depth values. Similar to previous work, a deep learning model reduces computational
cost: processing time is decreased by more than an order of magnitude for 1D simulated infiltration scenarios while
maintaining high levels of accuracy. While the physical relevance and utility behind process-based numerical
modeling cannot be replaced, the comparatively reduced computational cost of deep learning allows for rapid
modeling of pore-water pressure conditions where solving complex, highly non-linear equations would otherwise
be required. Furthermore, comparing the solution of a deep learning model with a hydrological model exemplifies
how similar results can be produced through highly divergent mathematical relationships. This provides a unique
opportunity to understand which variables are most relevant for the prediction of positive pore-water pressures
on hillslopes, and can represent landslide-relevant hydrologic conditions for hillslopes where rapid analysis is
imperative for informing potential hazard mitigation efforts. Ultimately, a calibrated deep learning model may
reduce the need for computationally expensive physics-based modeling, which are often time and resource
intensive, while providing critical statistical insight for the onset of hazardous conditions in landslide-prone areas.
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