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Abstract

We present a Bayesian geospatial modeling framework developed for the synthesis of point prevalence and health facility

catchment data of mixed types: Plasmodium parasite prevalence and malaria febrile incidence. Since the clinical case definition

for health facility record keeping is less strict than that used in cohort studies used to construct previous parasite prevalence

to clinical incidence relationships (the latter usually incorporating a parasite density threshold to remove background fevers

accompanied by coincidence asymptomatic parasite infections) our model learns a smooth prevalence-to-incidence conversion

during posterior sampling. Also jointly fitted are a catchment model based on the relative travel times between each pixel location

and its nearby health facilities, as well as a distribution regression-based covariance structure for explaining the residual errors

at health facility level based on the similarity between the ‘bags’ of covariate values in their respective catchments.
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� MODELLING FRAMEWORK: Bayesian hierarchical geospatial model

� DATA: prevalence survey data ��,���and health facility incidence count data ��,���� 	 MAF + NMFIPf+

� INCIDENCE DATA MODEL: ��,�
�� ∼ Poisson � ��→� � inc�,�
�

�
� pop� � ��� composed of:

� population at risk estimated as population #$#�  multiplied by probability of treatment seeking  ���

� catchment model for each health facility %: �&→
 ∝ ()
*)→+, based on a modified gravity model

� incidence rate -./�,� given as a transformation of the prevalence fields [1]:

-./�,� 	 01213�,� exp 2 1213�,� 5 67813�9:,�,�

� PfPR-to-incidence modelled as a function of a Gaussian process: 2~<1=

� 7813�9:,�,� as background fever prevalence (7813) times malaria prevalence (1213):

7813�9:,�,� 	 7813�,� � 1213�,�

� DATA MODEL for Pf PR: ��,��� ~ 7-.$>-?@A1213�,� , B�,�), with B�,�: tested cases

� LINEAR PREDICTOR for 1213 and 7813: Gaussian process <1A@?C, @$., CD�,� + covariates E:

@$F-C 1213�,� 	 <1 @?C, @$., C �,�,GEH 5 /
@$F-C 7813�,� 	 <1 @?C, @$., C �,�,IEHJ 5 /J

� PRIORS set for: prevalence-incidence 0, 6, Gaussian processes K, L, M prevalence surface slopes H, HJ
and intercepts /, /J

0, 6, K, L, M, H, HJ/, /J~N

Model structure

� Modelling framework that distinguishes incidence cases coming from malaria 

(MAF) and non-malaria attributed fever (NMFIPf+)

� Joint model that fits together incidence rate and prevalence in space and time

� Joint fit of several data sources: incidence & PfPR & background fever prevalence

Sources of clinical incidence data on malaria:

(A) malaria attributable fever: MAF

(B) non-malaria febrile illness with asymptomatic P. falciparum (Pf) infection: NMFIPf+

� Incidence data alone cannot distinguish (A) from (B)

� PfPR-to-incidence relationship based on PR survey data alone can only estimate (A)

Introduction

THREE GAUSSIAN PROCESSES jointly fit

(1) MALARIA PREVALENCE PfPR

classical geostatistics approach with logit-transformed 

prevalence fit as a linear function of spatio-temporal 

covariates and a spatio-temporal random effect given by a 

second Gaussian process <1 lat, lon, t G which captures 

the variability unexplained by the covariates;

(2) PfPR-TO-INCIDENCE relationship

Gaussian process (GP=) allows for a smooth but complex, 

non-linear, PfPR-to-incidence relationship to be learned 

statistically;

(3) BACKGROUND FEVER PREVALENCE 7813�9:

modelled very similarly to the PfPR surface (1) with a 

Gaussian process <1 lat, lon, t I. The covariates for 

7813�9:,�,� are chosen from the same pool as for PfPR, 

but are selected independently.

Model overview

Predict pixel-month and pixel-annual malaria incidence along with:

� uncertainty quantification on predicted incidence

� predicted prevalence and background fever surfaces

� estimated proportion of MAF and NMFIPf+ cases

� estimated probability to visit a specific health facility (catchment model) 

Aim

MAPS

� pixel-month and pixel-year

� incidence rate and case counts

� jointly-fit surfaces of PfPR and 7813�9:,�,�

UNCERTAINTY

� quantification of the model uncertainty based on non-

spatial bootstrapping method as an alternative to 

computationally expensive posterior sampling 

methods.

DISENTANGLE MAF AND NMFIPf+

� estimates of the proportion of cases which are malaria-

attributable (MAF) vs non-malarial febrile illnesses co-

incidence with a P. falciparum infection (NMFIPf+) 

complementary to [2].

Future results

Summary
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