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Abstract

We present an approach to uncoupling the pair of transient governing equations used in electrokinetics (i.e., streaming poten-
tial and electroosmosis). This approach allows for the solution of two uncoupled “intermediate” equations, then the physical
solution is found by recombination of these intermediate potentials through a matrix multiplication. We present numerically
stable expressions for the coefficients, and an example showing electrokinetics arising from pumping a fully penetrating well in
a confined aquifer, surrounded by insulating aquicludes. Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell Inter-
national Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
(SAND2019-8712 A)
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