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Abstract

We consider the statistical properties of solutions of the stochastic fractional relaxation equation that has been proposed

as a model for the earth’s energy balance. In thisequation, the (scaling) fractional derivative term modelsenergy storage

processes that occur over a wide range of space and time scales. Up until now, stochastic fractionalrelaxation processes

have only been considered withRiemann-Liouville fractional derivatives in the context of random walk processes where it

yields highlynonstationary behaviour. For our purposes we require the stationary processes that are the solutions of the Weyl

fractional relaxation equations whose domain is -[?] to t rather than 0 to t. We develop a framework for handling fractional

equationsdriven by white noise forcings. To avoid divergences, wefollow the approach used in fractional Brownian motion(fBm).

The resulting fractional relaxation motions (fRm) and fractional relaxation noises (fRn) generalize the more familiar fBm and

fGn (fractional Gaussian noise). Weanalytically determine both the small and large scale limitsand show extensive analytic and

numerical results on the autocorrelation functions, Haar fluctuations and spectra. We display sample realizations. Finally, we

discuss the prediction of fRn, fRm which – due to long memories - is a past value problem, not an initial value problem. We

develop an analytic formula for the fRnforecast skill and compare it to fGn. Although the large scale limit is an (unpredictable)

white noise that is attainedin a slow power law manner, when the temporal resolutionof the series is small compared to the

relaxation time, fRncan mimick a long memory process with a wide range of exponents ranging from fGn to fBm and beyond.

Wediscuss the implications for monthly, seasonal, annualforecasts of the earth’s temperature.
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Babenko’s method

Nondimensional form
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Conclusions

The conventional 1-D energy balance equation (EBE) has no vertical coordinate so that radiative imbalances between the
earth and outer space are redirected in the horizontal in an ad hoc manner. We retain the basic EBE but add a vertical
coordinate so that the imbalances drive the system by imposing heat fluxes through the surface. While this is
theoretically correct, it leads to (apparently) difficult mixed boundary conditions. However using Babenko’s method, we
directly obtain simple equations for (2D) surface temperature anomalies Ts(x,t): the Half-order Energy Balance Equation
(HEBE) and the Generalized HEBE, (GHEBE). The HEBE anomaly equation only depends on the local climate
sensitivities and relaxation times. We analytically solve the HEBE and GHEBE for Ts(x,t) and provide evidence that the
HEBE applies at scales >≈10km. We also calculate very long time diffusive transport dominated climate states as well as
space-time statistics including the cross-correlation matrix needed for empirical orthogonal functions.
The HEBE is the special H = 1/2 case of the Fractional EBE (FEBE) and has a long (power law) memory up to its
relaxation time t. Several papers have empirically estimated H ≈ 0.5, as well as t ≈ 4 years, whereas the classical zero-
dimensional EBE has H = 1 and t ≈ 4 years. The former values permit accurate macroweather forecasts and low
uncertainty climate projections; this suggests that the HEBE could apply to time scales as short as a month. Future
generalizations include albedo-temperature feedbacks and more realistic treatments of past and future climate states.

Log fluxes are also extrreme
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We consider the statistical properties of solutions of the stochastic fractional
relaxation equation that has been proposed as a model for the earth’s energy
balance. In this equation, the (scaling) fractional derivative term models energy
storage processes that occur over a wide range of space and time scales. Up
until now, stochastic fractional relaxation processes have only been considered
with Riemann-Liouville fractional derivatives in the context of random walk
processes where it yields highly nonstationary behaviour. For our purposes we
require the stationary processes that are the solutions of the Weyl fractional
relaxation equations whose domain is
to t rather than 0 to t.
We develop a framework for handling fractional equations driven by white noise
forcings. To avoid divergences, we follow the approach used in fractional
Brownian motion (fBm). The resulting fractional relaxation motions (fRm) and
fractional relaxation noises (fRn) generalize the more familiar fBm and fGn
(fractional Gaussian noise). We analytically determine both the small and large
scale limits and show extensive analytic and numerical results on the
autocorrelation functions, Haar fluctuations and spectra. We display sample
realizations.
Finally, we discuss the prediction of fRn, fRm which – due to long memories is a
past value problem, not an initial value problem. We develop an analytic formula
for the fRn forecast skill and compare it to fGn. Although the large scale limit is
an (unpredictable) white noise that is attained in a slow power law manner, when
the temporal resolution of the series is small compared to the relaxation time,
fRn can mimic a long memory process with a wide range of exponents ranging
from fGn to fBm and beyond. We discuss the implications for monthly, seasonal,
annual forecasts of the earth’s temperature as well as for projecting the
temperature to 2050 and 2100.

The Half-order Energy Balance Equation (HEBE)

Total energy 
emitted to outer 
space

The (conventional) Energy Balance Equation (EBE)

S t( )+E t( ) = E↓ t( )
Total energy stored

Total energy from sun, 
volcanoes, outside system

S =CT

Specific heat 
of the box

Forcing

E↓ = Fdt∫

Linearized black 
body radiation 
leaving earth

E = λ−1 T dt∫

Climate 
Sensitivity

Homogeneous Ocean

Incomi
ng
Solar 
radiatio
n

outgoin
g
Infra 
red 
radiatio
n

T
Atmosphere

Deep ocean
…more boxes?

mixed layer

Homogeneous slab(s)

Box energy 
storage

C dT
dt

+λ−1T = FDifferentiate:

Box model: Newton’s law of 
cooling

Time constant of box: t = Cl
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The  Fractional order Energy Balance Equation (FEBE)
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 (5) 
or approximately: 

 (6) 
At low frequencies, for Dt>>1 (corresponding to Dt>>t in the dimensional equation), we obtain: 

 (7) 

Note that this result is independent of the resolution tw and that it holds over a wider range of H 
values.  A technical point is that although the fGn has a huge memory (the slow Dt2H-1 fall-off in 
R(Dt)), the corresponding fRn is effectively truncated with a faster long time behaviour that 
decays as t-1-H. 
 
We could also mention the total energy storage SH(t).  From eq. ? the nondimensional rate of 
storage dSH/dt = Kg-U.  The storage thus involves the integral of the fRn.  The integral of fRn is 
“fractional Relaxation motion (fRm)”, the name, in analogy with the integral of fGn which is called 
“fractional Brownian motion (fBm)” (see [Lovejoy, 2019a]).  For long times, we have: 

 (8) 
which is a fractional Brownian motion (of order ½-H) in comparison the nondimensional 
temperature integral (proportional to the total energy emitted to outer space) increases as Dt 
for large Dt corresponding to  a usual Brownian motion. 

A final interesting property is the predictability of fRn.  fGn has an enormous memory (it is 
called a “long range memory process”) and since for short times, fRn is close to fGn the two can 
both be well predicted (for fGn, the skill –with infinite past data- becomes perfect in the limit H -
>1 (HI->0)), however, due to the cutoff, fRn cannot be well predicted beyond the relaxation time 
t. 

RH ,τw
Δt( ) ≈ 1

2
τw

2H−1 λ+1( )2H+1 + λ −1( )2H+1 −2λ2H+1( ); λ = Δt / τw; τw ≤ Δt <<1; 0 < H ≤
1
2

RH ,τw
0( ) = τw2H−1

RH ,τw
Δt( ) ≈ H 2H +1( )Δt 2H−1; τw << Δt <<1; 0 < H <

1
2

  

RH Δt( ) = − K 2

Γ −H( )
Δt−1−H +O Δt−1−2 H( ) : 0 < H < 2; Δt >>1

		
ΔS

H
Δt( )

2
=

1
1−2H( )Γ 1−H( )

2 Δt
1−2H ; ΔS

H
Δt( ) = SH t( )−SH t −Δt( ); Δt >>1; 0<H <1/2
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Parameters

τH
dHT
dt H

+T = λF

t (yrs)
Relaxation time

H
l

Climate 
sensitivity 

(oC/CO2
doubling)

Upper 5% 6.70 0.40 2.68
Median 5.01 0.37 2.43
Lower 5% 3.31 0.33 2.17
IPCC AR5 8.4, 410 1 3±1.5

RCP 8.5

RCP 6
RCP 4.5

RCP 2.6
1 W/m2

Anthropogenic forcings (CMIP5)

FEBE

TCR/ECS (Derived parameter) 
FEBE : 0.60±0.03
IPCC AR5: 0.58          

+ solar forcing (Wang et al) and then volcanism 
using Sato and extending back using Crowley

With R. Procyk

fRn processes
fRn sutocorrelation functions 
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fRn predictability skill

The stochastic FEBE, fractional Relaxation motion (fRm), fractional Relaxation noise 
(fRn) 

In the previous section we considered the deterministic response to a simple piecewise 
linear model of external forcing.  We noted that since the FEBE is a linear  equation that we could 
separately model this deterministic response and the stochastic, internal variability.  In this 
section therefore we turn to the pure stochastic case driven by white noise “innovations”, we 
briefly summarize some of the results in [Lovejoy, 2019a].   

The physical problem that we wish to solve is the noise driven FEBE with noise amplitude 
s and sensitivity l: 

 (1) 

with initial conditions , 0≤H≤1 and g(t) a unit Gaussian white noise so that 

, s is the amplitude of the noise.  To understand the statistical properties 

of the internal variability (the response), it suffices to study the nondimensional equation: 
 (2) 

where K is the normalization constant in eq. 35 and the nondimensional UH(t)  function is called 
the fractional Relaxation noise (fRn) since it generalizes fGn.  Using UH we can obtain the solution 
to the dimensional eq. 46: 

 (3) 

Since the fRn process is the solution of the fractional relaxation equation with a stationary, 
Gaussian, zero mean, white noise forcing, it is also stationary, Gaussian with zero mean.  Its 
statistics are therefore fully characterized by its autocorrelation function.   
We can now calculate the correlation function relevant for the fRn statistics.  The main 
complication is that in the small t limit, the fractional term dominates so that we obtain the (fGn) 
limit.  The solution of eq. 47 is therefore - like g(t) - a generalized function: to obtain solutions 
with finite variances, we must take averages over finite resolutions tw.  

The resulting tw resolution autocorrelation function at lag Dt is: 

 (4) 

[Lovejoy, 2019a], where we used the normalization K given above.  From this, we can obtain the 
high frequency fGn approximation (valid for Dt<<1 corresponding to t<<t in the dimensional 
equation): 
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We have proposed a new 2D energy balance equation for macroweather scales: ten days and longer.  By 

introducing a vertical coordinate,  we were able to rigorously treat the forcing of the entire system via the basic 

surface boundary condition: local vertical radiative flux imbalances that force heat into the earth.   A consequence 

is that the (apparently) difficult “mixed” surface boundary conditions are avoided and the latitudinal and longitudinal 

(2D) variation of the time independent climatological temperatures can be determined.  More importantly, we were 

able to obtain an equation for the time varying anomalies.  In comparison, the usual (e.g. Budyko-Sellers) type energy 

balance models have no vertical coordinate and instead redirect the local imbalances in an ad hoc fashion, away 

from the equator, meridionally.   

Since the forcing is via the vertical boundary condition, the equation remains homogeneous and Babenko’s 

method can be applied.  Babenko’s method elegantly transforms the mixed boundary conditions directly into a 

simple equation for the surface temperature; the Generalized Half-Order Energy Balance Equation (GHEBE).  The 

detailed vertical structure turns out to only be important over a thin surface layer.  A key novelty of the GHEBE is 

that instead of using classical first order time derivatives (the Energy Balance Equation, EBE) it is of half order in both 

temporal and horizontal operators.   However, for spatial scales larger than ten kilometers or so, and time scales less 

than centennial, the temporal (relaxation) processes dominate over the advective and/or diffusive horizontal 

transport processes, this yields the Half-order EBE or HEBE.  Under fairly mild assumptions we obtained a full analytic 

solution to the HEBE surface temperature anomalies Ts(x,t).    
The EBE and HEBE are the H = 1, H = 1/2 special cases of the Fractional EBE (FEBE) that was recently introduced 

as a phenomenological macroweather model [Lovejoy, 2019a], with empirical estimates H ≈ 0.4 - 0.5, i.e. very close 

to the HEBE.   A feature of the HEBE is that its Green’s function is a power law rather than an exponential and this 

implies a long memory: indeed the Gaussian white noise driven HEBE has a high frequency 1/f spectrum that is cut-

off at the relaxation time (empirically of the order ≈ 4 years).  By extending energy balance models to 2-D, it allows 

us to treat regional temporal anomalies, and this at significantly shorter time scales than were previously possible, 

perhaps down to the ≈ 10 day weather-macroweather transition scale.  Depending on the space-time statistics of 

the anomaly forcing, the HEBE justifies the current Fractional EBE (FEBE) based macroweather (monthly, seasonal) 

temperature forecasts [Lovejoy et al., 2015], [Del Rio Amador and Lovejoy, 2019]. 

At this transition scale, GCMs are beyond the predictability limits of their atmospheric components, they 

become stochastic.  Analyses of 32 CMIP5 GCMs showed that although each GCM had a distinct climate, that each 

responded nearly linearly to the climate forcing scenarios considered in the IPCC AR5 [Hébert and Lovejoy, 2018].   

This implies that macroweather dynamics are plausibly linear, consistent with the HEBE.  The regional HEBE – when 

stochastically forced -  is thus a promising macroweather temperature model.   Indeed, the high frequency part of 

its FEBE generalization can already be used for monthly, seasonal forecasts and the overall FEBE with H ≈ 1/2 can 

produce climate projections with significantly lower uncertainties than current GCM based alternatives (work in 

progress with R. Procyk).  

In addition to the anomalies, our approach opens the door to the determination of the full 2-D climate state 

- generalizations of the 1-D Budyko-Sellers type climates – to determine past and future climates.  This could done 

first by applying the method to the existing climate by fixing the forcing at current values and solving the time 

independent transport equations.  Then, the long term effect of changes -  such as step function increases in forcing 

– could be determined from the GHEBE anomaly equation (section 3.5) which regionally corrects the local climate 

sensitivities for (slow) horizontal energy transport effects.  Milankovitch (orbital) forcings are linear and can easily 

be introduced, and generalizations to account for albedo feedbacks and other nonlinear effects could easily be made 

in order to study glacial cycles.  The power law relaxation processes implied by the GHEBE suggests straightforward 

explanations for the observed power law climate regime spanning the range from centennial to Milankovitch scales.    
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