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Abstract

The presence of solute concentration fluctuations at spatial scales much below the scale of resolution is a major challenge for

modeling reactive transport in porous media. Overlooking small-scale fluctuations, which is the usual procedure, often results

in strong disagreements between field observations and model predictions, including, but not limited to, the overestimation

of e.ective reaction rates. Existing innovative approaches that account for local reactant segregation do not provide a general

mathematical formulation for the generation, transport and decay of these fluctuations and their impact on chemical reactions.

We propose a Lagrangian formulation based on the random motion of fluid particles carrying solute concentrations whose

departure from the local mean is relaxed through multi-rate interaction by exchange with the mean (MRIEM). We derive and

analyze the macroscopic description of the local concentration covariance that emerges from the model, showing its potential

to simulate the dynamics of mixing-limited processes. The action of hydrodynamic dispersion on coarse-scale concentration

gradients is responsible for the production of local concentration covariance, whereas covariance destruction stems from the

local mixing process represented by the MRIEM formulation. The temporal evolution of integrated mixing metrics in two

simple scenarios shows the trends that characterize fully-resolved physical systems, such as a late-time power-law decay of the

relative importance of incomplete mixing with respect to the total mixing. Experimental observations of mixing-limited reactive

transport are successfully reproduced by the model.
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Abstract
The presence of solute concentration fluctuations at spatial scales much below the scale of resolution
is a major challenge for modeling reactive transport in porous media. Overlooking small-scale fluctu-
ations, which is the usual procedure, often results in strong disagreements between field observations
and model predictions, including, but not limited to, the overestimation of effective reaction rates.
Existing innovative approaches that account for local reactant segregation do not provide a general
mathematical formulation for the generation, transport and decay of these fluctuations and their
impact on chemical reactions. We propose a Lagrangian formulation based on the random motion
of fluid particles carrying solute concentrations whose departure from the local mean is relaxed
through multi-rate interaction by exchange with the mean (MRIEM). We derive and analyze the
macroscopic description of the local concentration covariance that emerges from the model, showing
its potential to simulate the dynamics of mixing-limited processes. The action of hydrodynamic
dispersion on coarse-scale concentration gradients is responsible for the production of local concen-
tration covariance, whereas covariance destruction stems from the local mixing process represented
by the MRIEM formulation. The temporal evolution of integrated mixing metrics in two simple
scenarios shows the trends that characterize fully-resolved physical systems, such as a late-time
power-law decay of the relative importance of incomplete mixing with respect to the total mixing.
Experimental observations of mixing-limited reactive transport are successfully reproduced by the
model.

1 Introduction

The inherent difficulty of properly representing the interaction of reactive chemicals occurring
over multiple spatio-temporal scales in complex hydrodynamic settings renders reactive transport
modeling in porous media a major challenge in subsurface hydrology [Dentz et al., 2011; Sanchez-
Vila and Fernàndez-Garcia, 2016; Benson et al., 2017; Valocchi et al., 2019]. With the exception
of highly idealized settings or incredibly small samples, generally in porous media it is unfeasible to
obtain a completely resolved flow field within real porous media geometries based on the complete
microscopic equations (e.g., Navier-Stokes andAdvection-Diffusion). Instead one typically describes
the systemwithmacroscopic equations in an equivalent continuum [Icardi et al., 2019, and references
therein]. By doing so, one essentially ignores detailed resolution of local velocity and concentration
fluctuations occurring at the pore-scale, below the scale of the equivalent continuum. The system is
represented by macroscopic variables and properties, which aim to represent subscale fluctuations
in an effective manner, obtained for instance by volume averaging [Quintard and Whitaker, 1994;
Whitaker, 1999; Wood et al., 2003]. However, these effective parameters really only aim to capture
mean behaviors, and processes that depend nonlinearly on subscale fluctuations may often not be
well described. Similarly, since macroscopic properties such as the hydraulic conductivity can
vary substantially in space within real aquifers, one may further upscale flow and transport in
heterogeneous media with a new set of effective parameters [Dagan, 1989; Gelhar, 1993; Rubin,
2003]. This step further reduces the apparent complexity of the system, but again does not contain
potentially important information below the scale of the effective model.

Among available macroscopic models, the upscaled advection-dispersion-reaction equation
(ADRE) is the most widely used for modeling reactive transport at all practical spatial scales. It
is embedded as the standard in most popular reactive transport codes [e.g., Cederberg et al., 1985;
Mangold and Tsang, 1991; Yeh and Tripathi, 1991; Steefel and Lasaga, 1994; Walter et al., 1994;
Saaltink et al., 2004; De Simoni et al., 2005; Bea et al., 2009; Steefel et al., 2015, and references
therein]. However, field and laboratory observations, numerical simulations and theoretical develop-
ments have demonstrated time and time again that the upscaled ADRE fails to adequately represent
mixing and chemical reactions at all scales [Rashidi et al., 1996; Cao and Kitanidis, 1998; Gramling
et al., 2002; Palanichamy et al., 2009; Tartakovsky et al., 2008; Fernàndez-Garcia et al., 2008; Edery
et al., 2009; Sanchez-Vila et al., 2010; de Anna et al., 2014a,b; Porta et al., 2016], because of its
disregard for the local concentration fluctuations and the use of scale-averaged concentrations to
compute reactions. In fact, there is the general consensus that reaction rates observed in the field
tend to be much lower than those measured in laboratory experiments because of the presence of
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anti-correlated local fluctuations of reactant concentrations [e.g., Chiogna and Bellin, 2013; Ding
et al., 2017]. This issue is often encapsulated as the inability of the classical advection-dispersion
model to distinguish mixing from spreading.

In order to obtain better predictions, effective transport models should somehow incorporate
the sub-scale mixing limitation effects. Several such approaches have been proposed in recent years,
both from the Eulerian and from the Lagrangian perspective (see Porta et al. [2016] and references
therein). The Eulerian approaches typically focus on very specific initial and boundary conditions,
corresponding to the mixing of two reactants moving across a column-shaped porous medium,
forming a sharp interface at C = 0, as in the famous laboratory experiments ofGramling et al. [2002].
As such, existing effective solutions typically contain a time-decaying term controlling either an
apparent kinetic reaction rate [Sanchez-Vila et al., 2010], a pre-defined concentration covariance
function [Chiogna and Bellin, 2013], or a mobile-mobile mass exchange rate coefficient [Ginn,
2018]. Hochstetler and Kitanidis [2013] consider a constant, Damköhler-dependent efficiency term
multiplying the reaction rate, which accounts for the effect of reactant segregation. While all the
above-mentioned approaches provide interesting simplified interpretations of the physical process,
they do not provide general differential equations governing the transport of local concentration
fluctuations, and hence they might not be readily applicable to broader sets of initial and boundary
conditions.

An exception to this is the pioneering work by Kapoor and Gelhar [1994], who proposed
a concentration variance conservation equation. However, the authors did not attempt to export
their theories to multi-component reactive transport. While seminal, the work’s main weakness is
arguably its reliance on the assumption of a stationary concentration micro-scale, which should in
reality be subjected to aging as acknowledged later by Kapoor and Kitanidis [1998]. Oates [2007]
applied some of these concepts to model reactive transport in porous media, by imposing a global
time-dependent concentration micro-scale that stabilizes at late times.

On the other hand, Lagrangian approaches have been proposed to reproduce mixing-limited
reactive transport, motivated by hydrologic settings [Benson and Meerschaert, 2008; Edery et al.,
2009; Ding et al., 2013; Paster et al., 2013, 2014; Schmidt et al., 2017, 2018, 2019; Benson et al.,
2019]. These emulate reactant segregation by specifying the covariance structure of the initial
condition, which usually involves employing a determined finite number of particles (initial positions)
in the simulation. However, it is unclear whether these approaches are capable of reproducing the
transient evolution of concentration fluctuations in realistic settings, where such fluctuations may be
actively promoted by local-scale heterogeneous advection, even if the initial or boundary conditions
are perfectly smooth [e.g., de Dreuzy et al., 2012].

Here we present a novel Lagrangian approach to simultaneously account for (8) coarse-scale
advective-dispersive behavior as well as (88) the generation, transport and decay of local concentration
fluctuations. The model aims to offer not just a solution specific to one setting, but rather a
mathematical framework to potentially represent a broad array of settings and transport problems.
Unlike the aforementioned Lagrangian approaches, the proposed model does not rely on a noisy
initial condition to represent reactant segregation, but in fact converges to the desired solution
with sufficient particles (i.e., the particle number is not a model parameter, but rather a numerical
discretization). Eulerian (two-moment) implementations of the proposed model are possible, but
Lagrangian implementation is more natural and straightforward.

The paper is structured as follows. In §2 we develop the conceptual and mathematical model
leading to the differential equation describing the local concentration fluctuations perceived by a
random-walking Lagrangian particle. In §3 we derive the resulting Eulerian differential equation
describing the transport, generation and decay of concentration point-covariance; we also provide the
temporal evolution of the spatial integral of the former (or mixing state) in two simple cases of initial
and boundary conditions with pseudo-analytical solution. In §4 we implement the proposed model
to reproduce the reaction product concentration data corresponding to two benchmark laboratory
experiments. Finally, in §5 we summarize our main conclusions.
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Figure 1. Local concentration variability within a true physical system and its conceptual representation in
the proposed Lagrangian model, in which the coarse-scale concentrations are defined on the Eulerian space
whereas the local concentrations are defined on the Lagrangian particles. Particles are represented by dark dots,
and the colored circles around them show the corresponding local concentrations.

2 Conceptual and mathematical model

2.1 Conservative transport and mixing

By definition, all continuum-scale models of transport in porous media assume or solve a
flow field with some degree of coarse-graining; that is, the velocity variability below a threshold
resolution (corresponding to some representative elementary volume) is removed and replaced by an
upscaled dispersion tensor. We distinguish two spatial scales, above and below the aforementioned
threshold, which hereafter we refer to as coarse scale and local scale, respectively. Coarse-scale
concentrations of species A at position x and time C, 2A (x, C), are often assumed to obey the upscaled
advection-dispersion equation,

m2A
mC

= L(2A; v,D), L(D; v,D) B ∇ · (−vD + D∇D) (1)

where v is the coarse-scale velocity, and D is the dispersion tensor, which represents the combined
effect of velocity fluctuations at the local scale (around v) and molecular diffusion. (1) assumes that
the porosity (volume of fluid per unit volume of medium) is constant. Hereafter, we also assume
that v and D are spatially and temporally constant. These assumptions simplify the presentation and
analysis of the model, but generalization should be readily possible.
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Figure 2. Spreading and mixing within a true physical system and their conceptual representation in the
proposed Lagrangian model, in which the coarse-scale transport is simulated by the random motion of particles
(2), and the local concentration is updated throughmulti-rate interaction by exchangewith themean (9). Particles
are represented by dark dots, and the colored circles around them show the corresponding local concentrations
or fluctuations.

One manner for solving equation (1) is via Random Walk Particle Tracking (RWPT) [e.g.,
Salamon et al., 2006], a Lagrangian approach in which particles ? = 1, . . . , # carry solute mass of
one or several chemical species, and their trajectory over small time intervals [C, C + ΔC] is defined
as a combination of deterministic advective displacements and a Wiener random process emulating
dispersion,

X? (C + ΔC) = X? (C) + vΔC + B�
√

2ΔC, (2)

where X? is the position of particle ?, B is a matrix such that BBT = D, and � is a vector of random
numbers drawn independently from a standard normal distribution. Here, similar to Benson and
Bolster [2016] and Engdahl et al. [2017], each particle ? is assigned a static mass of solvent, <? ,
and a variable concentration of solute A, �A, ?; therefore the mass of A carried by ? is <?�A, ? .

Given any particle attributeR? , one may define its interpolation onto the Eulerian space 〈R 〉(x)
[Monaghan, 2005] at any point x in the model domainΩ3 , 3 being the number of spatial dimensions,
as

〈R 〉(x) B
∑
?

<?

d(X?)
R?, (x − X?), (3)
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where summation is implied over all particles ? = 1, . . . , #;, (x) is a smoothing function (kernel)
whose size is scaled by a bandwidth ℎ [see, e.g.,Wand and Jones, 1994]; and

d(x) B
∑
?

<?, (x − X?) (4)

is the particle density. Note that operation (3) computes a weighted average of R? over particles ? 
located at X? ≈ x. We refer to 〈R 〉(x) as local average in the ideal limiting case where # → ∞ and 
ℎ → 0. In this case, the kernel , (x) approaches the 3-dimensional Dirac delta function X(x).

In numerical applications (i.e., for finite # ), one must use an averaging b andwidth ℎ  large 
enough to avoid issues related to subsampling [e.g., Sole-Mari and Fernàndez-Garcia, 2018; Sole-
Mari et al., 2019a]. Hence, in this case we refer to 〈R 〉(x) resulting from any numerical approximation 
of operation (3) as small-volume average, which is assumed to stabilize and approach the ideal local 
average given a sufficiently large # and correspondingly small ℎ. More details are given in 
Appendix B.

For
2A (x, C) B 〈�A (C)〉(x), (5)

given particle motion equation (2) and in the limit where # → ∞, ΔC → 0, the averaged concen-
trations 2A (x, C) converge to being governed by the Fokker-Planck equation [Risken, 1989], which is 
equivalent to the ADE (1) when D is spatially constant; otherwise a correction can be applied to the 
drift term, see LaBolle et al. [1996].

To summarize, in the proposed Lagrangian model, each numerical particle represents a dis-
crete amount of a chemical solution traveling through a porous medium, moving by displacements 
representing the scale-averaged advection (deterministic) and upscaled dispersion (normal random). 
Consequently, at the coarse scale, the concentration field obeys the advection-dispersion equation 
(ADE). This type of Lagrangian model is widely used by researchers and practitioners in hydrology 
to simulate nonreactive transport of solutes.

While coarse-scale concentrations of non-reactive chemicals may agree reasonably well with 
the ADE under certain conditions [Dagan, 1984], concentration fluctuations m ay s till o ccur at 
the local scale. These local-scale fluctuations, which are not explicitly accounted for in classical 
formulations, may drive the outcome of nonlinear processes, such as chemical reactions, far from 
what would be predicted by the ADE [Kang et al., 2019]. Note that by using equation (2) (or similar 
stochastic formulations), where each particle follows its own unique random path, it is implied 
that at any given time each particle is sampling the local-scale fluid velocity field independently. 
Analogously, in the proposed model, particle concentrations �A, ? (C) are assumed to represent 
the local-scale concentrations, and may therefore be at disequilibrium with the averaged 2A (x, C). 
Hence, hereafter we refer to �A, ? (C) as local concentrations. Figure 1 is a schematic representation 
that illustrates our proposed conceptual model. The local-scale structured spatial variability of 
concentrations in the physical system is emulated by the stochastic variability of local concentrations 
experienced by overlapping Lagrangian particles in the model. Because it is defined by interpolation 
(see Appendix B), the coarse-scale concentration is a smooth function in the Eulerian space, 
whereas local departures from the well-mixed equilibrium or local fluctuations are only defined on 
the Lagrangian particles. In order to represent the evolution of these local fluctuations we need to 
define a mixing model.

A simple representation of the local mixing as seen by a particle ? could be to assume a 
diffusion process driven by a coefficient �` within a fluctuation s tructure o f d imension 3 ` and 
characteristic mixing length ℓ`, with the subscript ` designating local (micro) scale variables,

d�A, ?

dC
= − j

2
[�A, ? (C) − 2A (X? (C), C)], (6)

where
j B 23`�`/ℓ2

` (7)
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is the mixing rate coefficient, which is equal to the inverse time scale for which a typical diffusive 
displacement matches the characteristic mixing length ℓ`. The notation d/dC in (6) indicates a La-
grangian time-derivative, defined as the temporal variation experienced by a moving fluid particle. 
This definition i s s imilar t o t he c lassical c oncept o f material d erivative, with t he d ifference that 
here particles follow stochastic paths instead of pure deterministic advection. The simple model 
embedded in (6) was originally suggested for mixing in turbulent flows, and i t i s known as Inter-
action by Exchange with the Mean (IEM) [Villermaux, 1972; Pope, 2000]. Its practical numerical 
implementation requires some careful consideration, related to features such as mass conservation. 
Implementation aspects, including small-volume approximations of the averaging operator, are dis-
cussed in Appendix B. An appealing advantage of this kind of mixing model is that a local value’s 
variation in time depends only on its current degree of departure from the mean, potentially avoiding 
direct particle-particle interaction. Importantly in our context, the process is Markovian, i.e., the 
time-derivative (6) depends only on the current state. We note, however, that equation (6) is overly 
simplistic. Previous attempts to apply the IEM model (from an Eulerian perspective) to laminar flow 
and transport in heterogeneous porous media have concluded that, at the beginning of new contact 
between solutions with different chemical composition, one should account for a growing stage of 
ℓ` before it reaches a stable asymptotic value [Kapoor and Kitanidis, 1998; de Dreuzy et al., 2012]. 
That is, a single constant value of j cannot reproduce the distinct stages of the mixing process, and 
one should consider not only a slow linear mixing, but also a fast stretching-enhanced mixing stage. 
Moreover, fluctuations may occur across multiple overlapping length s cales. As acknowledged by 
Villermaux [1983] in the context of IEM applied to turbulent mixing, “several stages for mixing, each 
with their own time constants should be considered, possibly in series or in parallel”. Here, in order 
to account for the impact of age on the mixing process, we propose a parallel multi-rate interaction by 
exchange with the mean (MRIEM), based on representing local mixing as occurr∑ing within different 
virtual zones 8 = 1, . . . , #Z, each being sampled by a fraction [8 of the particle ( 8 [8 = 1). Within 
each zone 8, each particle ? sees a virtual local concentration �A, ?,8 (C) of each species A, possibly 
at disequilibrium with 2A (X? (C), C), such that

�A, ? (C) =
∑
8

[8�A, ?,8 (C), (8)

and
d�A, ?,8

C
= − j8

2
[�A, ?,8 (C) − 2A (X? (C), C)] . (9)

d
The values of [8 and j8 are assumed to depend on local-scale flow and transport conditions. An 
idealized local mixing process representation that would resemble such a multi-rate behavior is 
given in Appendix A. The zone-concentration values �A, ?,8 (C) do not necessarily have a physical 
meaning individually, but are instead intended to emulate the complex transient nature of the mixing 
process. In principle, parameter sets [8 and j8 can be different for each species to account, for 
instance, for different values of the local-scale diffusion coefficient.

Given any Lagrangian-defined attribute R? and its local average across the particle space 〈R 〉, 
it can be shown (see Appendix C) that, if particles move according to (2), the following relation 
holds between the Eulerian and the Lagrangian time-derivatives of R :

m〈R 〉
mC

= L (〈R 〉; v,D) +
〈dR

dC
〉
. (10)

Then, by combining (10) with (8) and (9) we see that

m2A
mC
≡ m〈�A〉

mC
= L (2A; v,D) . (11)

That is, the local mixing process described by (9) does not modify the coarse-scale description of
non-reactive transport, driven by the particle displacements in (2).

One of the simplest implementations would comprise only two zones, one of them with an
instantaneous mixing rate (i.e., very fast in relation to the time scale of interest),

1 − [1 = [2 ≡ [, j1 ≈ ∞, j2 ≡ j. (12)
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Hereafter, we refer to this particular case as dual-rate, to [ as the slow mixing fraction, and to j as
the slow mixing rate coefficient. In this case the local concentration in zone 1 is always at equilibrium
with the coarse-scale concentration. Combining equations (8), (9) and (12) we may write:

d�A, ?

dC
= (1 − [)

d2A, ?

dC
− j

2
[�A, ? (C) − 2A (X? (C), C)], (13)

where for conciseness from here on, inside the derivative we use the notation 2A, ? (C) ≡ 2A (X? (C), C).
In the dual-rate model (12), equation (13) can be interpreted as such: While following its random
path described by (2), fluid-particle ? may experience variations in the perceived coarse-scale
concentration of A. Conceptually, these changes correspond to the particle seeing itself involved
in new mixing events, that is, in the formation of new fluctuation structures. Only a portion
1 − [ of these variations, corresponding to the early-stage or deformation-related mixing fraction,
equilibrates instantaneously with the new coarse-scale concentration. Hence, a local disequilibrium
of the opposite sign corresponding to the remaining unmixed fraction [ is generated, and it will
decay over time following a first-order mixing process at rate j.

Figure 2 illustrates the conceptual decoupling of transport as a combination of spreading and
mixing, in the true physical system as well as in the proposed Lagrangian model in one coarse-scale
dimension. In the physical system, spreading represents the growth of the width (variance) of a solute
plume due to velocity variability, which, alone, does not generate new contact between otherwise
segregated solute molecules. Mixing, on the other hand, is precisely the generation of new contact
between formerly segregated solutes, and is the result of local dispersion applied to the structure
generated by spreading (see upper-right part of Figure 2). This decoupled picture is a simplification,
because there is a continuous interplay between the two processes. The rate of spreading is influenced
non-linearly by local dispersion [e.g., van Milligen and Bons, 2012]. Similarly, mixing is influenced
by the growth of contact surfaces, which is controlled by local advection [e.g., Villermaux, 2012]. In
the proposed Lagrangian model, spreading is represented by particle motion (2), which controls the
coarse-scale behavior of concentrations; mixing is represented by the relaxation equation (9), which
mitigates local departures from equilibrium experienced by individual particles, arising due to the
aforementioned random motion.

2.2 Reactive transport

The proposed Lagrangianmodel can be extended to reactive transport applications by following
the premise that chemical reactions occur at the local scale and thus are controlled exclusively by local
concentrations defined on Lagrangian particles. We provide a brief summary on the incorporation
of kinetic transformation (§2.2.1) and equilibrium speciation (§2.2.2). Naturally, the two may be
integrated together, such as in Molins et al. [2004].

2.2.1 Kinetic reactions

Consider multiple kinetic reactions labeled : = 1, . . . , #R, with reaction rate laws that model
reactions as a function of solute concentrations, A: (C), whereC ≡ [�A, �B, . . . ]T; and stoichiometric
coefficients aA,: , aB,: , . . . , which indicate the generation/consumption of concentration per unit
extent of reaction. Equation (9) is then extended to:

d�A, ?,8

dC
= − j8

2
[�A, ?,8 (C) − 2A (X? (C), C)] + RA (C? (C)) (14)

where
RA (C) B

∑
:

aA,:A: (�A, �B, . . . ). (15)

By combining (14) with (10) we obtain the coarse-scale Eulerian description
m2A
mC

= L(2A; v,D) + 〈RA (C)〉. (16)

Equation (16) elucidates that, in the occurrence of local concentration fluctuations and for nonlinear
reaction systems, i.e., 〈RA (C)〉 ≠ RA (c), the Eulerian description of reactive transport does not
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obey the classical form of the advection-dispersion-reaction equation (ADRE) where reactions are
computed directly from averaged concentrations. This is in contrast with the conservative transport
case, where as shown by equation (11), coarse-scale concentrations do follow the classical ADE.

2.2.2 Equilibrium reactions

In the case of equilibrium reactions, a common approach is to compute the transport of
chemically conservative components [e.g., Saaltink et al., 1998;Molins et al., 2004;De Simoni et al.,
2005], and then speciation is provided by solving equilibrium system,

�A, ? (C) = EA (U? (C)). (17)

whereEA (U) combines the law ofmass action and the different stoichiometries to find the equilibrium
concentrations, from components U ≡ {*A,*B, . . . }. In (17), U? follow the conservative transport
and mixing model presented in §2.1. By taking the particle average on both sides of (17), we obtain
the coarse-scale description of the equilibrium reaction system

2A = 〈EA (U)〉. (18)

We note from (18) that, similar to the kinetic reaction example, 2A ≠ EA (u), as opposed to classical
well-mixed reactive transport approaches.

3 Concentration fluctuation dynamics

The dynamics of local concentration fluctuations are the key feature of the proposed reactive
transport model. These local fluctuations, which emulate the sub-scale concentration variability of
the porous medium, are what drives reactive transport away from the classical ADRE, as discussed
in §2.2. Therefore, the analysis of their behavior is crucial in order to understand how the proposed
model may be able to reproduce the mixing dynamics of physical systems, including those modeled
in §4.

We study the behavior of concentration fluctuations through the local concentration covariance
of two chemically conservative compounds A and B (where the particular single-compound case is
implicitly included as A ≡ B). First, in §3.1, we present and discuss the partial differential equation
describing covariance generation, transport and destruction. Then, in §3.2, we study integrated
mixing metrics for two specific cases with closed form solutions, facilitating the comprehension of
the model’s behavior. These analytical solutions may also be used in future work for quantitative
comparison to fully-resolved simulations, a task which is out of this work’s scope.

3.1 Local concentration covariance PDE

Let us define the local fluctuation as the departure from well-mixed equilibrium on particles,

� ′A, ? (C) B �A, ? (C) − 2A (X? (C), C) =
∑
8

[8�
′
A, ?,8 (C), (19)

� ′A, ?,8 (C) B �A, ?,8 (C) − 2A (X? (C), C). (20)
By definition, 〈� ′A〉(x, C) = 0. We study the concentration covariance of species A and B, which we
denote as OAB (x, C),

OAB B 〈� ′A�
′
B〉 =

∑
8, 9

[̂8 9 〈� ′A,8�
′
B, 9〉 ≡

∑
8, 9

[̂8 9OAB,8 9 , [̂8 9 B [8[ 9 . (21)

As noted in §2.1, the assumption that the mixing dynamics of A and B can be described by the same
sets of parameters {[1, . . . , [#Z }, {j1, . . . , j#Z }, is made here only for the sake of simplicity, and
this assumption could be relaxed. It can be shown (see Appendix D.1) that, in the proposed model,
if A and B are chemically conservative, each “8 9” entry of the local concentration covariance evolves
according to:

mOAB,8 9

mC
= 2∇2T

AD∇2B − ĵ8 9OAB,8 9 + L(OAB,8 9 ; v,D). (22)
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The total local concentration covariance can be then obtained as the sum of all entries, as indicated
by (21). Let us consider, once again, the specific case represented by (12). Then, one may write:

mOAB
mC

= 2[2∇2T
AD∇2B − jOAB + L(OAB; v,D). (23)

It is worth remarking that, for B = A, expression (23) is mathematically equivalent to the concen-
tration variance conservation equation introduced by Kapoor and Gelhar [1994, equation 56], as
long as one assumes a scalar proportionality in their proposed dual-dispersivity system such that
[ fulfills A = [2 (� + A), where � and A are the microdispersivity and macrodispersivity tensors,
respectively. Hence, the two conceptual models have clear similarities since in our case [ is the
fraction of non-instantaneous mixing, and in Kapoor and Gelhar [1994], by analogy, it is the square
root of the fraction of total dispersivity that is attributed to the macrodispersivity, i.e., to the non-
mixed spreading. Nevertheless, there are important nuances that distinguish the models, as will be
discussed in §4.1.

In any case, determining concentration variance/covariance is not the main, or at least not the
only, purpose of our model. As outlined in §2.2, the distribution of local concentrations represented
by the particles affects local processes such as chemical reactions. The concentration covariance
is a powerful tool to assess contact between solutions, and therefore a good proxy for the potential
magnitude of incomplete mixing effects on chemical reactions.

3.2 Analytical solutions

A metric that is commonly used to characterize spatial fluctuations of solute concentrations is
the so-called mixing state [Bolster et al., 2011; de Dreuzy et al., 2012], which is defined as the spatial
integral of the squared concentrations. Here we extend this definition, for any two solutes, A and B,
as the spatial integral of the product of the two concentrations. In the present two-scale context, this
may be written as

"AB (C) B
∫
Ω3
〈�A�B〉 dx = "c

AB (C) + "
Σ
AB (C), (24)

where Ω3 is the model domain, "AB is the mixing state, "c
AB is the ideal mixing when sub-scale

fluctuations are not considered, and "Σ
AB is the contribution of the local fluctuations to the mixing

state (which may be either positive or negative):

"c
AB (C) B

∫
Ω3
2A (x, C)2B (x, C) dx, "Σ

AB (C) B
∫
Ω3
OAB (x, C) dx. (25)

In the particular case A = B one recovers the classical definition. Additionally, we also quantify the
relative deviation from the ideal well-mixed behavior:

WAB (C) B
"AB − "c

AB

"c
AB

=
"Σ

AB

"c
AB
. (26)

Here, quantity WAB (C) is analogous to the W(C) from de Dreuzy et al. [2012] for a single species.

In some cases with simple boundary and initial conditions, closed-form solutions exist for the
integrals in (25). Below, we provide and discuss two such simple but representative cases.

3.2.1 Continuous injection

Consider a mean-uniform stationary flow in an infinitely long domain, which at the coarse
scale can be considered as one-dimensional. At C = 0, the concentrations of two solutes A and B are
represented by Heaviside-step functions, forming a sharp interface at G = 0:

2A (G, 0) = 2oH(−G), 2B (G, 0) = 2oH(G), (27)

whereH(G) is the Heaviside step function. Additionally, OAB (G, 0) = 0.

–10–



Figure 3. Temporal evolution of various mixing metrics for the dual-rate model (12), according to the solution
of equations (1) and (23), for two solutes A and B initially forming a sharp interface perpendicular to the flow
direction, shown in (a) linear and (b) logarithmic scale. The normalizing factor ℓ B

√
2�/j is the typical

distance traveled by the solute via dispersion within one characteristic mixing time.

The solution of the ADE (1) in this case is

2A (G, C) = 2o − 2B (G, C) =
2o
2

erfc
(
G − EC
2
√
�C

)
. (28)

Then, the ideal mixing term is

"c
AB (C) =

∫ ∞

−∞
2A (G, C)2B (G, C) dG = c−

1
2 22

o
√

2�C. (29)

It can be shown (see derivation and generalized expression in Appendix D.2.1) that the departure
of the actual mixing from (29), assuming a dual-rate (fast/slow) local mixing parametrization as in
(12), is given by:

WAB (C) B
"Σ

AB

"c
AB

= [2W∗AB (jC), (30)

W∗AB (C
∗) B − 1

√
C∗
�

(√
C∗
)
, (31)

where C∗ B jC is a dimensionless time and � is the Dawson integral (D.15).

Figure 3 shows the evolution in time of the mixing metrics. Higher values of the slow-mixing
fraction [ in the dual-rate model accentuate the departure of the actual mixing state (gray solid lines)
from the ideal well-mixed case (dotted line). The relative difference between these two quantities,
quantified by WAB = [

2W∗AB (orange solid line), is highest at the beginning, and decays at late times
(jC � 1) as the inverse of time. Hence at late times the actual mixing state "AB converges towards
the ideal well-mixed case "c

AB and scales with C1/2. Looking closely at the log-log scale plot (Figure
3(b)), and taking the modeled mixing state "AB as a proxy for the amount of reaction, we see that
it does reproduce trends observed in mixing-limited systems such as simple Poiseuille flows [e.g.,
Perez et al., 2019, Figure 7].

3.2.2 Pulse injection

Now let us consider the same simple uniform flow in an infinite-length medium, but with a
different initial condition. In this case, there is only one solute A, of which a mass (per cross-
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Figure 4. Temporal evolution of various mixing metrics for the dual-rate model (12), according to the solution
of equations (1) and (23), for one solute A initially placed as a Gaussian pulse of longitudinal standard deviation
0.26ℓ, shown in (a) linear and (b) logarithmic scale. The normalizing factor ℓ B

√
2�/j is the typical distance

traveled by the solute via dispersion within one characteristic mixing time.

section unit area) <o is injected over a small region around the origin with a Gaussian distribution
characterized by a length _o:

2A (G, 0) =
<o√
2c_o

e
− G2

2_2
o . (32)

Here we study the mixing state of A, "AA (C). Note that it has the opposite intuitive meaning than the
"AB (C) analyzed in §3.2.1: A more advanced mixing process will be characterized by lower values
of "AA (C), and viceversa. Once again, we assume that the initial condition for the fluctuations is
OAA (G, 0) = 0.

The resulting time-dependent mean-concentration profile is also a Gaussian:

2A (G, C) =
<o

2
√
c� (C + Co)

e−
(G−EC )2
4� (C+Co ) , (33)

with Co B _2
o/2�. Then, the ideal mixing term is

"c
AA (C) =

∫ ∞

−∞
22

A (G, C) dG =
<2

o√
8c� (C + Co)

. (34)

Once again, we characterize the relative deviation from the well-mixed behavior, which has
the following closed form (see derivation and generalized expression in Appendix D.2.2) for the
dual-rate (fast/slow) local mixing parametrization (12):

WAA (C) B
"Σ

AA

"c
AA

= [2W∗AA (jC; jCo), (35)

W∗AA (C
∗; C∗o) B 5

(√
C∗o

) (√
1 + C∗/C∗o

)
e−C

∗ − 5
(√
C∗ + C∗o

)
, (36)

where C∗o B jCo and 5 is the derivative of the Dawson function (D.22).

Figure 4 depicts the evolution of the mixing metrics in dimensionless time, for a small value of
initial pulse size, with Co = (15j)−1. Similar to the case in §3.2.1, higher values of [ result in reduced

–12–



mixing, as exhibited here by higher values of the actual mixing state (gray solid lines) compared to
the ideal mixing state (dotted line). The ratio between these two quantities, WAA = [2W∗AA (orange
solid line), is zero at C = 0, since there is no incomplete mixing, and it starts to grow as the spreading
process generates local concentration fluctuations. This increasing trend peaks at jC ≈ 0.785 (for
the specific value of jCo = 1/15). After that, fluctuation destruction dominates and WAA decreases
as C−1 for jC � 1. At these long times, the actual mixing "AA tends to approach the ∝ C−1/2 trend
of ideal mixing "c

AA. These features agree with semi-analytical [Bolster et al., 2011] and numerical
[de Dreuzy et al., 2012] calculations of the mixing state evolution in fully-resolved porous media
flows for a pulse injection of solute.

4 Reproducing results of reactive transport benchmark experiments

In this Section we use a numerical implementation of the proposed Lagrangian model to
reproduce results from two well known laboratory experiments, conducted byGramling et al. [2002],
and Raje and Kapoor [2000]. Hereafter, for conciseness, we refer to these two column experiments
as G02 and RK00, respectively.

4.1 G02: Instantaneous equilibrium reaction

In the G02 experiments, performed in a column with a saturated granular material, a solution
of EDTA4−, initially occupying all the pore space with concentration 2o, was displaced longitudinally
by an invading solution of CuSO4 with the same molar concentration 2o. As these two solutes moved
through the porous medium, the combination of hydrodynamic dispersion and molecular diffusion
allowed them to mix and react forming CuEDTA2−, among other reaction products. Hereafter, for
simplicity, we refer to the three cited compounds as A, B, and C, respectively. The reaction can be
expressed as

A + B
 C, (37)

with equilibrium equation,
:eq B

2A2B
2C
� 1, (38)

and a reaction rate that can be assumed instantaneous given the time scales of the experiment. Because
equilibrium constant :eq is very small (practically zero), 2A and 2B will always be instantaneously
consumed when in contact, until one of them is exhausted locally (i.e., they cannot coexist). Hence,
if we define the following conservative components,

DA B 2A + 2C, DB B 2B + 2C, (39)

then the reaction product concentration will be given by

2C = EC (DA, DB) = min (DA, DB) . (40)

The fully-resolved (pore-scale) transport of DA and DB follows the conservative form of the advection-
diffusion equation,

mDA
mC

= L(DA; v`, �`), (41)

with operator L defined as in (1), v` being the heterogeneous velocity field within the saturated
pore geometry, and �` being the molecular diffusion coefficient. The analogous of (41) applies to
DB; however, in this particular case, because of the initial condition, DA (x, C) + DB (x, C) = 2o, hence
we have that DB (x, C) = 2o − DA (x, C) and the transport is fully described by just one of the two
equilibrium components.

However, in practice, a simple and complete solution is rarely obtainable, because of (8) the
lack of detailed information on the pore geometry and (88) high computational demands, which is why
this problem requires an upscaled approach. As an approximation, we ignore the boundary effect
at the inlet, i.e., we assume an infinite medium. Then, the upscaled one-dimensional description of
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the transport of DA and DB, under the assumption of Fickian hydrodynamic dispersion, is identical to
(28),

DA (G, C) = 2o − DB (G, C) =
2o
2

erfc
(
G − EC
2
√
�C

)
, (42)

where the constants E and � are the cross-section averaged vertical velocity and the upscaled
longitudinal hydrodynamic dispersion coefficient, respectively. These constants were quantified by
the authors of the cited experiment as E = 1.21 × 10−2 cm/s and � = 1.75 × 10−3 cm2/s. In the
classical well-mixed upscaled ADRE approach, in which coarse-scale concentrations govern the
chemical reactions, the combination of (42) with (40) would lead to the following equation for the
concentration of C:

2C (G, C) =
2o
2

erfc
(
|G − EC |
2
√
�C

)
. (43)

However, the experimental observations ofGramling et al. [2002] do not agree with (43). Instead, the
latter tends to overestimate the amount of reaction product generation, because of the incorrectness
of the underlying assumption of full local mixing.

The proposedLagrangianmodel is implemented as follows. Particles carry local concentrations
of just one of the two conservative components, *A, ? (C), because the other is defined by *B, ? (C) =
1−*A, ? (C). Equal volumes (weights) are assigned to # = 106 particles, which are initially distributed
in space uniformly over an interval [−!/2, !/2], with ! = 15 cm, and

*A, ? (0) = H(−-? (0)). (44)

As detailed in §2.1, transport and mixing of *A, ? (C) are decoupled and reproduced by equations 
(2) and (9), respectively. In the latter, the local averaging operator is implemented through binning 
(see Appendix B), with a bin size !/300. We use a simple dual-rate mixing model like (12), 
parameterized by a slow mixing fraction [ and a slow mixing rate coefficient j. Note that one 
does not need to explicitly simulate the evolution of the local concentration fraction corresponding 
to the fast mixing zone, *A, ?,1 (C), which is always in equilibrium with the average at -? (C). The 
coarse-scale reaction product concentration is given by the combination of (40) and (18),

2C (G, C) = 〈min(*A (C),*B (C))〉(G) =
2o
2
+

〈 ���2o
2
−*A (C)

��� 〉(G). (45)

The code implementing this is written in Matlab (version 2016b) and the simulation with one million
(106) particles runs in less than 5 minutes on a conventional laptop computer (Intel® Core™ i7-
6700HQ, 2.60GHz). Equivalent, noisier results are generated in 2 seconds using ten thousand (104)
particles.

An alternative approach to implement the proposedmodel is also tested, which does not require
to explicitly simulate the Lagrangian particles. In this specific case, we have an analytical solution
for DA (G, C) = 1 − DB (G, C), given by (42), as well as a semi-analytical solution for OAB (G, C) =
−OAA (G, C) = −OBB (G, C), given by (D.13). These quantities are, in fact, entries of the mean and the
covariancematrix of a bivariate distribution (i.e., probability density function) of local concentrations
of components A and B at any (coarse-scale) position and time, F (*A,*B, G, C). By assuming that
F is multiGaussian, it is then fully defined by its mean and covariance matrix, and the local average
(45) becomes

2C (G, C) =
∫ 2o

0

∫ 2o

0
min(*A,*B)F (*A,*B, G, C)d*Ad*B

=
2o
2
−

√
2OAA
c

exp
(
− (2o/2 − DA)2

2OAA

)
− (2o/2 − DA) erf

(
2o/2 − DA√

2OAA

)
,

(46)

where we use equation (42) for DA and the numerical time-integration of (D.13) for OAA = −OAB.
Note that the multiGaussianity assumption may introduce inaccuracies, including the fact that a
portion of F may fall outside the physically meaningful interval [0, 2o]. We refer to this solution
strategy as the two-moment approach.
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Figure 5. (a) Comparison of various models’ predictions of reaction product coarse-scale concentration, 2C, 
to the experimental observations of G02, at four different times, and (b) corresponding point-covariance of *A

and *B, OAB. The local mixing model is given by (9) and (12), with [ = 0.5 and j = 10−3 s−1. The curves 
labeled as Lagrangian correspond to small-volume average performed on particles in a Lagrangian simulation, 
whereas the curves labeled as Two-moment are drawn using equations (46), (42), and (D.13). The shaded 
colored regions cover the range of product concentration results in the Lagrangian implementation for a ±15%
variation of the [ and j parameter values. The curves labeled as Well-mixed correspond to equation (43).

The dispersion coefficient is set to � = 1.3 × 10−3 cm2/s, somewhat lower than the value 
of � = 1.75 × 10−3 cm2/s estimated by Gramling et al. [2002] from the results of non-reactive 
experiments. This slightly lower than expected longitudinal dispersion for the reactive runs of 
G02 is common to several prior modeling interpretations [Rubio et al., 2008; Sanchez-Vila et al., 
2010; Chiogna and Bellin, 2013]. It may be related to several factors, including: (8) the possible 
non-Fickianity of the curves from which the dispersivity value is adjusted [Gramling et al., 2002, 
Figure 4] combined with the intrinsic differences between the conservative and the reactive transport 
experiments, (88) the fact that this value is calibrated for the reaction product only, or (888) the 
unknown confidence intervals of the dispersivity value, presumably broad considering the reported 
variability between runs [Gramling et al., 2002, Table 1].

The results of the Lagrangian approach display close agreement with the experimental obser-
vations, as shown in Figure 5(a), for manually-adjusted values [ = 0.5 and j = 10−3 s−1. A possible 
interpretation of the former is that in the pore-scale flow and transport conditions of the experiment, 
early-stage fast mixing controlled about half of the mixing process, whereas diffusive mixing across 
stable fluctuation structures was responsible for the other half. This is rationalized in Appendix A by 
idealizing local concentration fluctuations as periodic waves.

Assuming that the slow mixing is essentially two-dimensional (dominated by transverse diffu-
sion between concentration filaments), and approximating both reactants’ bulk diffusion coefficients 
as the value for C reported by the authors of the experiment, �` = 7.02 × 10−7 cm/s, then according
to (7),

ℓ` =

√
4�`/j = 0.53 cm ≈ 0.41, (47)

where 1 = 0.13 cm is the mean grain size of the granular medium. That is, ℓ` is probably close
to the typical size of a pore, considering the reported porosity of 0.36. This suggests that the slow
mixing process captured by the model corresponds indeed to the diffusive relaxation of pore-scale
concentration fluctuations. The inferred value of [ = 0.5 shows that a single-rate local mixing
model (i.e, [ = 1) would not be able to reproduce the experimental results. Neither would the high
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value of [ =
√

1 − �`/� ≈ 1 that would render our model’s local covariance behavior equivalent to
Kapoor and Gelhar [1994] (see discussion below equation (23)). This is consistent with previous
studies on mixing in porous media, both at pore and Darcy scales [e.g., Kapoor and Kitanidis, 1998;
de Anna et al., 2014b; Le Borgne et al., 2013, 2015], which show that, after first encounter between
two solutions with different composition, the mixing rate coefficient is higher at the beginning and
decreases with time. In other words, the dynamics of mixing are subjected to aging, a feature which is
effectively reproduced in our model by a parallel multi-rate process (9), without introducing any time-
dependent parameters. Although the dual-rate simplification appears to capture the general behavior
for this case-study, allowing us to reproduce the experimental results, more complicated formsmay be
needed depending on the characteristics of the flow field, especially for highly heterogeneous porous
media. This should be the subject of future research, as new experimental and/or numerical datasets
in such settings become available. Looking closely at Figure 5, the main discrepancy between
the data and the well-mixed solution (43) is the notable decrease in the peak of reaction product
concentrations at the coarse-scale mixing interface. In the Lagrangian simulation, this reduction is
caused by the anti-correlated fluctuations of *A, ? and *B, ? on particles with respect to the local
average, which is also reflected by the negative values of OAB, depicted in Figure 5(b). As expected,
the spatiotemporal description of the covariance in the two-moment and in the Lagrangian approach
are identical, which ratifies the validity of the expressions given in §3.1. However, the reaction
product concentration prediction is slightly different, because of the multiGaussian approximation
used in the two-moment approach.

4.2 RK00: Bilinear kinetic reaction

The laboratory experiments of RK00 consist of a similar setup to the one introduced in (4.1.
In this case, the column is cylindrical, filled with spherical glass beads all of the same radius,
and the reaction (aniline and NQS forming NQAB, among other reaction products) does not attain
thermodynamic equilibrium instantaneously. Denoting once again the reactants as A and B, and the
product as C, the reaction rate is bilinear with respect to the reactants’ concentrations,

A = :�A�B, (48)

with stoichiometric coefficients aA = aB = −1, aAB = 1 in equation (15). The experimental obser-
vations are reaction product concentrations measured periodically at the outlet, which is located a
distance G = 18 cm from the inlet.

The authors conducted two experimental runswith differentmean velocity E and initial/invading
reactant concentration 2o: Run 1, with E = 0.096 cm/s and 2o = 0.5 mM; and Run 2, with
E = 0.07 cm/s and 2o = 0.25 mM. An additional difference between the two runs of RK00 is the
switching of the roles of theA andB solutions (resident/invading), but this does not have any effect in
the model if transport and mixing parameters are assumed to be species-independent. Longitudinal
spreading is described by � = UE, with dispersivity U = 0.33 cm fitted from nonreactive transport
experiments.

We attempt to predict the observed breakthrough curves using the proposed model, extrapolat-
ing the dual-rate mixing parameter values fitted from the G02 experiment: [ = 0.5, and ℓ` = 0.41,
which for 1 = 0.3 cm and �` = 10−5 cm2/s [Raje and Kapoor, 2000, Table 5 footnote] yields
j = 4�`/ℓ2

` = 2.78 × 10−3 s−1. The kinetic reaction is implemented as described by (14) on par-
ticles carrying �A, ? (C), �B, ? (C) and (initially zero) �C, ? (C). The rest of the Lagrangian numerical
implementation details are analogous to §4.1.

The evolution of 2C predicted by the model at G = 18 cm is in reasonably good agreement with
the experimental observations, as displayed in Figure 6(a), the main discrepancy being a delayed
breakthrough of reaction product with respect to the experiments. Said discrepancy is observed even
in the limiting well-mixed case, and therefore it may be due to non-Fickian spreading at early times.
The errors in predicting the peak concentrations fall within a region of ±15% change in the mixing
parameter values. Overall, we deem the model results as satisfactory considering that the parameter
values have not been readjusted. The fact that G02 and RK00 exhibit consistent mixing behaviors
when interpreted by the proposed model is promising in terms of future predictive use of the model.
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Figure 6. (a) Comparison of various models’ predictions of reaction product coarse-scale concentration,
2C at the outlet (G = 18 cm), to the experimental observations of RK00 in “Run 1” and “Run 2”, and (b)
corresponding point-covariance of �A and �B, OAB. The local mixing model is given by (9) and (12), with
[ = 0.5 and j = 2.78 × 10−3 s−1. The curves labeled as Lagrangian correspond to small-volume average
performed on particles in a Lagrangian simulation, whereas the curves labeled as Two-moment depict the results
of a simultaneous first-order explicit finite difference solution of differential equations (D.26), (D.27), (D.28),
(D.31), (D.32) and (D.33). The shaded colored regions cover the range of product concentration results in
the Lagrangian implementation for a ±15% variation of the [ and j parameter values. The curves labeled as
Well-mixed correspond to the case [ = 0, solved either by the proposed particle method or by finite difference.

Like in the previous case, we compare the default Lagrangianmodel to aEulerian (two-moment)
implementation based on propagating both the mean and the covariance of the concentrations. The
equation for the latter, however, is not (23), since in this case one should consider the effect of
the kinetic reaction on the covariance. Approximate differential equations are derived in Appendix
D.3 (by assuming that the local concentrations follow a multiGaussian distribution), and solved
numerically with a first-order explicit finite difference scheme. Once again, the two-moment solution
is different than its Lagrangian counterpart because of the multiGaussianity assumption, which
exaggerates covariance removal due to chemical reaction (Figure 6(b)). This in turn results in
a larger amount of reaction product generation in comparison to the Lagrangian implementation
(Figure 6(a)). Nevertheless, both results share most key features and the use of this two-moment
implementation approach may be advantageous in some situations, the main drawback being that the
derived expressions (D.26), (D.27), (D.28), (D.31), (D.32) and (D.33) are only valid for the specific
simple case of a bilinear kinetic reaction described by (48).

5 Summary and conclusions

We have proposed a Lagrangian mathematical model to represent the transport and mixing of
solutes in a dual-scale (coarse/local) framework. Local concentrations carried by individual particles
evolve by relaxation towards the coarse-scale concentration values that they perceive along their
random path (described by (2)). This relaxation or mixing process is characterized by (9) as a parallel
multi-rate interaction by exchange with the mean (MRIEM). We derived the differential equation
describing the corresponding evolution of the (Eulerian) concentration point-covariance (22), and
found solutions corresponding to the mixing state evolution for two simple generic cases. Finally, the
proposed model (in its dual-rate form) was successfully implemented to reproduce reaction product
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concentration data from two well-known laboratory experiments that display incomplete mixing
effects. Below, we enumerate additional findings and conclusions:

1. The partial differential equation describing the behavior of the local concentration covariance
becomes nearly equivalent to the concentration variance conservation equation suggested
by Kapoor and Gelhar [1994], given a dual-rate (fast/slow) parametrization of the mixing
process.

2. The temporal evolution of the mixing state for a pulse injection shows similar trends to those
observed in previous studies of mixing in porous media within fully-resolved systems [Bolster
et al., 2011; de Dreuzy et al., 2012], suggesting that the model may be able to accurately
upscale local mixing limitations. Both for a pulse and for a continuous injection, the ratio
between the mixing state components corresponding to the fluctuating and the averaged
concentration terms decays at late times as the inverse of time.

3. The analyzed experimental results would not be explicable, from our model’s perspective,
through a single-rate local mixing process. This agrees with previous knowledge on the
complexity of mixing dynamics in porous media [Oates, 2007; Le Borgne et al., 2013;
de Anna et al., 2014b], which establish the need to somehow include a temporal decrease of
the mixing rate coefficient from the time of first coarse-scale contact between reactants.

4. Along the same vein, the [ = 0.5 value for the dual-rate model that fits the experimen-
tal results does not agree with Kapoor and Gelhar’s model, that is, with the restriction
[2 = 1 − �`/� ≈ 0.9995, if �` is assumed to be the molecular diffusion. This discrepancy
can be attributed to the deformation-dominated stage where mixing occurs at a much faster
rate than the stationary j, as noted by Kapoor and Kitanidis [1998].

5. Considering the characteristic local mixing distance ℓ` =
√

4�`/j, the fitted value of
j = 10−3 s−1 for G02 yields ℓ` ≈ 0.05 cm, which is close to the typical pore size. This
consistency of scale suggests that the model is properly capturing the physics underlying the
mixing process.

Several future avenues for research arise due to this work, including (8) identifying methods
to readily estimate parameter values in (8) and (9) to upscale mixing within different local-scale
heterogeneity patterns of velocity and dispersion, thus making the model scalable and translatable
to the diverse range of hydrogeologic settings out there (88) exploring the use of motion equations
other than (2) [e.g. Berkowitz et al., 2006; Le Borgne et al., 2008], which are well-known to better
describe coarse-scale transport in complex heterogeneous settings (888) extending the model to incor-
porate heterogeneous reactions, and (8E) using the model to study the effects of local concentration
fluctuations on realistic complex geochemical reaction systems.

A: Local-scale mixing event model

The model proposed in this work is based on fluid particles that carry local concentrations
which may fluctuate with respect to the coarse-scale averaged concentration. These fluctuations are
promoted by random walks of the particles, representing hydrodynamic dispersion. In that sense,
each change in coarse-scale concentration experienced by an individual particle represents the start
of a new mixing event, which consists in the relaxation of the marginal fluctuation through local
mixing. The rate at which this relaxation occurs is well known to be subjected to aging, stabilizing
after some initially faster, deformation-enhanced mixing [e.g., Kapoor and Kitanidis, 1998]. Below
we describe a simple mathematical model that would emulate such a marginal mixing event.

Spreading, simulated by the randommotion of a particle, promotesmarginal local departures 2′
from the local mean concentration. Before any mixing occurs, newly generated local fluctuations are
perfectly sharp, hence they could be modeled as a square wave in the local space x` = [G1, . . . , G3` ]T
with dimension 3`. During the initial stage in which these fluctuation structures are being generated
through fluid deformation, diffusion is enhanced by stretching [Le Borgne et al., 2013, 2015], and
therefore the coefficient �` may appear larger than the actual diffusion. Since the rate of relative
interface elongation decreases approximately as the inverse of time after the start of the mixing
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event [e.g., de Anna et al., 2014b], �` at later times is just local diffusion. The square wave can
be expressed as a Fourier series, and then the spatial and temporal description of 2′, given an initial
fluctuation amplitude 2′0, is [e.g., Carslaw and Jaeger, 1959]:

2′(x`, C) = 2′0
3∏̀
:=1

( ∞∑
8=1

q8 (G: , C)
)
, (A.1)

with

q8 (G: , C) B
4(−1)8
c(28 − 1) cos

(
G:

ℓ8

)
exp

(
−� (C)
ℓ2
8

)
, (A.2)

where

ℓ8 B
ℓ`

28 − 1
(A.3)

is the 8th mixing length, and

� (C) B
∫ C

0
�` (g)dg (A.4)

is the extent of mixing for the marginal fluctuation, C here being the time after start of the mixing
event. Note from (A.2) and (A.3) that, for � (C) � ℓ2

`/9, all the 8 > 1 terms of the Fourier series
become negligible and the initially square wave is then a (co)sine wave.

The time derivative of 2′ is

m2′

mC
= −�`2

′
0

3∑̀
:=1

[( ∞∑
8=1

q8 (G: , C)
ℓ2
8

) ∏
;≠:

( ∞∑
8=1

q8 (G; , C)
)]
. (A.5)

At early stages of the mixing event (low � (C)) the fluctuations are relaxed non-linearly, with each of
the virtual waves that make up the infinite sum in (A.5) decaying at a different rate, which is what
the general MRIEM formulation (9) intends to emulate, in this case through the relaxation of a local
concentration value �? =

∑
8 [8�?,8 at each particle instead of the full periodic wave (A.1). For

� (C) � ℓ2/9, when 8 = 1 is the only significant term, we have

m2′

mC
= −

3`�`

ℓ2
`

2′ ≡ − j
2
2′. (A.6)

From the perspective of the simple model proposed in this Appendix, the dual rate formulation
(12) would result from assuming that the wave deformation from square to cosine is virtually
instantaneous and involves a fraction 1 − [ of the mixing event. Then, the stage of slow (linear)
mixing (A.6) at rate j concerns the remaining fraction [. This dual-rate idealization is illustrated
by Figure A.1. In fact, once the wave (A.1) becomes practically a cosine wave with the original
maximum amplitude 2′0 (Figure A.1(b)), the standard deviation 〈2′2〉 1

2 has decreased to 2−3`/22′0,
which matches the value [ = 0.5 observed in §4 from experimental results given a local mixing
dimension 3` = 2 (transverse mixing in a three-dimensional column).

B: Aspects of numerical implementation

B.1 Smooth approximation for the local average

As outlined in §2.1, the numerical implementation of (9), as well as the reactive extensions
described in §2.2, entails the definition of a smooth small-volume approximation for the local average
operator 〈 〉(x) (equation (3)), which is used to compute the averaged concentrations 2A (x, C) from
overlapping local concentrations defined on particles. Here we discuss two possible approaches, and
their respective advantages and disadvantages.
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Figure A.1. Illustrative depiction of the idealized local mixing event (A.1) for 3` = 2 at different stages, with
transitions controlled by each of the dual-rate mixing parameters [ and j. Transition from (a) to (b) is nonlinear
and fast, whereas transition from (b) to (c) is first-order and described by (A.6). Isolines split the images into
eleven 2′ intervals of identical span.

B.1.1 Binning

A straightforward approach to compute the averaged concentrations is to discretize the spatial
domain into a set of bins. The kernel , (x − X?) in (3) and (4) is then replaced by an indicator
function � (x,X?) that has a value of 1 when x and X? belong to the same bin, and a value of 0
otherwise. Compared to other smoothing techniques, this approach has very low computational
demands. Another advantage is that it does not present any mass conservation issues. This is
because the sum of all differences with respect to the mean within each individual bin is zero by
definition, and therefore so is the sum of all exchanges with the mean given by (9). The main potential
disadvantage of binning is that, compared to other smoothing techniques, it tends to require higher
particle numbers (here, a finer Lagrangian discretization of the fluid mass) in order to converge
to a smooth solution [Fernàndez-Garcia and Sanchez-Vila, 2011]. This approach is used in the
Lagrangian implementation described in §4.

B.1.2 Kernel smoothing

An alternative to binning is to use kernel smoothing on particles, that is, a radially symmetric
kernel, (x−X?; ℎ) with non-zero smoothing bandwidth ℎ in (3) and (4) to compensate for the finite
particle density. This interpolation method is commonly used in smoothed particle hydrodynamics
[Monaghan, 2005]. This approach may offer better convergence rates with particle number than
binning. On the other hand, in this case, exact mass conservation for (9) is not guaranteed by default,
and a correction strategy is required. One mass-conserving approach can be obtained by considering
symmetric pair-wise particle interactions. Let us first define a smooth interpolator to approximate
(3) that is pair-wise symmetric

〈R 〉(x) B
∑
?

<?

d̃(x,X?)
R?, (x − X?). (B.1)

Here, d̃(x,X?) is some average of d(x) and d(X?). We redefine (9) by inserting �A, ?,8 inside the
local average operator

d�A, ?,8

dC
= − j8

2
〈�A, ?,8 − �A,8〉(X?) = −

j8

2

∑
@

<@

d̃(X@ ,X?)
[�A, ?,8 − �A,@,8], (X@ − X?). (B.2)

The right-hand side of (B.2) clearly shows that a symmetric and therefore consistent mass exchange
between each pair of particles ?, @, is imposed [Herrera et al., 2009; Sole-Mari et al., 2019b]. This
expression may also be rewritten as

d�A, ?,8

dC
= − j8

2
[�A, ?,8 〈1〉(X?) − 2A (X?)], (B.3)
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which elucidates that mass conservation can be achieved in the kernel-based MRIEM through
multiplication of �A, ?,8 by a correcting factor 〈1〉(X?), which converges to 1 as # →∞ and ℎ→ 0.
However, this approach does come at higher computational cost than binning.

B.2 Numerical dispersion and relation with other formulations

Smoothing tends to artificially spread out particle masses, which may generate some numerical
dispersion in the Lagrangian numerical implementation. This can be straightforwardly quantified
by comparing the right-hand side of (B.2) to the SPH formulation for simulating dispersion given a
multiGaussian, [Sole-Mari et al., 2019b, eq. 8]. If we denote as �SPH the dispersion coefficient in
the cited SPH formulation, one can make both expressions equivalent by setting

�SPH =
1
4
j8ℎ

2. (B.4)

Since, ideally, the interaction given by (B.2) should not produce any dispersion (as explained in
§2.1), the identity (B.4) quantifies the numerical dispersion involved in the numerical simulation of
a MRIEM mixing with rate j8 using a Gaussian smoothing kernel with bandwidth ℎ for computing
the averaged concentrations. The same quadratic scaling should be expected for the bin size when
binning is the chosen smoothing approach. Fortunately, as explained in §4.1, the high or virtually
instantaneous fraction of mixing rates in the MRIEM formulation does not need to be explicitly
simulated, and therefore only the small values of j8 may produce numerical dispersion, which can
be controlled by choosing a small-enough smoothing bandwidth ℎ, or by slightly reducing the value
of � used in the particle motion such that the added total dispersion has the correct value. The latter
strategy, in fact, is tightly related to previous works [Benson and Bolster, 2016; Herrera et al., 2017;
Sole-Mari et al., 2019b; Engdahl et al., 2019; Benson et al., 2019, 2020] in which the total dispersion
results from the sum of (8) random walks and (88) some form of exchange between particles. In
particular, if we look at the approach suggested by Benson and Bolster [2016, eq. 7], with mass
transfers based on probabilities of collision between particles, we see that it is equivalent to the
kernel form of the MRIEM as given by (B.2) for the specific case of a single mixing zone 8 = 1 with
mixing rate coefficient j1 = 1/dC, and a multiGaussian, with bandwidth

ℎ2 = 4�MTdC, (B.5)

where �MT is the simulated dispersion. That is, the mass transfer approach by Benson and Bolster
[2016] is equivalent to a Gaussian kernel-based single-rate IEM with instantaneous full mixing and
“numerical” dispersion (insert (B.5) in (B.4)) �SPH = �MT.

C: Relation between local averages of Eulerian and Lagrangian derivatives

In this Appendix we provide the derivation for expression (10) given in §2.1. We start from
the definition of local average (3). Note that, for incompressible flow, the fluid density d(X?) is
proportional to the porosity – amount of fluid per unit volume of medium. Hence, maintaining the
assumption of constant porosity, the particle estimate of fluid density given by (4) must converge to
a constant value d as # → ∞, # being the number of particles. The time-derivative of expression
(3) is then

m〈R 〉
mC

=
∑
?

<?

d
R?

dX(x − X?)
dC

+
∑
?

<?

d

dR?

dC
X(x−X?) =

∑
?

<?

d
R?

ΔX(x − X?)
ΔC

+
〈dR

dC
〉
. (C.1)

where the time-derivative of the Dirac delta function has been written as the variation ΔX(x − X?)
over ΔC, where ΔC → 0. A second-order Taylor expansion over the corresponding small particle
displacement ΔX? writes:

ΔX(x − X?) ≈ ΔXT
?X
′(x − X?) +

1
2
ΔXT

?X
′′(x − X?)ΔX? , (C.2)

where X′ and X′′ are, respectively, the gradient and the Hessian matrix of X. Then, using expression
(C.2), knowing that the weighted summation is equivalent (in the limit # → ∞) to an integral over
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the particle space, and given the evaluation properties of the Dirac delta distributional derivatives,
we may rewrite the summation in (C.1) as∑

?

<?

d
R?

ΔX(x − X?)
ΔC

≈
∑
?

<?

d

[
−∇ ·

(
R?

ΔX?

ΔC

)
+ 1

2
∇∇ :

(
R?

ΔXT
?ΔX?

ΔC

)]
X(x − X?)

= −∇ · 〈R?

ΔX?

ΔC
〉 + 1

2
∇∇ : 〈R?

ΔXT
?ΔX?

ΔC
〉

= −v∇ · 〈R?〉 + D∇∇ : 〈R?〉 = L (〈R 〉; v,D) ,

(C.3)

where we applied well-known identities associated to (2) [Risken, 1989; Salamon et al., 2006],
〈ΔX?〉 = vΔC and 〈ΔXT

?ΔX?〉 = 2DΔC (for ΔC → 0), and assumed that v and D are spatially constant.
Finally, introducing the result from (C.3) in (C.1), we obtain the expression given by (10),

m〈R 〉
mC

= L (〈R 〉; v,D) +
〈dR

dC
〉
, (C.4)

which states that the Eulerian temporal variation of 〈R 〉 comprises a contribution from the flux of
particles (Fokker-Planck) plus a local contribution from variations on particles.

D: Concentration covariance and mixing state derivations

D.1 Governing equation for the local concentration covariance

With the local fluctuations defined by (19) and (20), one may rewrite equation (9) as

d� ′A, ?,8

dC
= −

d2A, ?

dC
− j8

2
� ′A, ?,8 (C). (D.1)

For a particle ?, following a first-order integration of equation (D.1) over a small time step [C, C +ΔC],
we have

� ′A, ?,8 (C + ΔC) �
′
B, ?, 9 (C + ΔC) =

(
� ′A, ?,8 (C) −

[
2A, ? (C + ΔC) − 2A, ? (C)

]
− j8

2
ΔC � ′A, ?,8 (C)

)
×

(
� ′B, ?, 9 (C) −

[
2B, ? (C + ΔC) − 2B, ? (C)

]
−
j 9

2
ΔC � ′B, ?, 9 (C)

)
.

(D.2)

For ĵ8 9ΔC � 1, this can be rewritten as

Δ(� ′A, ?,8�
′
B, ?, 9 ) = Δ2A, ?Δ2B, ? − ĵ8 9ΔC� ′A, ?,8�

′
B, ?, 9 −

(
� ′A, ?,8Δ2B, ? + � ′B, ?, 9Δ2A, ?

)
, (D.3)

with Δ denoting the Lagrangian variaton of a quantity over a time step ΔC, and

ĵ8 9 B
j8 + j 9

2
. (D.4)

The first-order Taylor expansion of Δ2A, ? is

Δ2A, ? ≈ ΔXT
?∇2A + ΔC

m2A
mC

=
√

2ΔC �TBT∇2A + ΔC [vT∇2A + L(2A; v,D)]

=
√

2ΔC �TBT∇2A + ΔC ∇ · (D∇2A) ≈
√

2ΔC �TBT∇2A.

(D.5)

Note that in the last step of (D.5) we keep the lower-order term only. Considering the analogous
expression for Δ2B, ? , we may rewrite (D.3) as

Δ(� ′A, ?,8�
′
B, ?, 9 ) = 2ΔC∇2T

A, ?B��TBT∇2B, ? − ĵ8 9ΔC� ′A, ?,8�
′
B, ?, 9 −

(
� ′A, ?,8Δ2B, ? + � ′B, ?, 9Δ2A, ?

)
.

(D.6)
Dividing both sides of (D.6) by ΔC, taking the limit of ΔC → 0, and taking the expected value, we
obtain: 〈d(� ′A,8

� ′B, 9 )
dC

〉
= 2∇2T

AD∇2B − ĵ8 9 〈� ′A,8�
′
B, 9〉. (D.7)
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Finally, substituting into equation (10),

mOAB,8 9

mC
= 2∇2T

AD∇2B − ĵ8 9OAB,8 9 + L(OAB,8 9 ; v,D). (D.8)

We have obtained the partial differential equation describing the spatio-temporal evolution of the
“8 9” entry of the local concentration covariance of A and B in the absence of reactions.

D.2 Analytical expressions for the mixing state

Here, we derive the closed-form mixing state temporal evolution curves depicted in §3.2. For
the derivations, we focus on the dual-rate case (12), which is more illustrative, and the results are
then generalized to arbitrary MRIEM parametrizations. The differential equation (23) is linked with
the solution of (1) through the source term

((x, C) B 2[2∇2T
AD∇2B. (D.9)

The other terms are exponential decay, advection, and dispersion. Therefore, if ((x, C) is known,
OAB (x, 0) = 0, and the domain is unbounded, the solution for the point-covariance evolution can be
obtained through the space-time convolution of the Greens function with the source term, i.e.:

OAB (x, C) =
∫ C

0

∫
R3
� (x − �, C − g) ( (�, g) 3�dg, (D.10)

with

� (x, C) B
(
[2c]32|D|C

)− 1
2 exp

(
− [x − vC]TD−1 [x − vC]

4C
− jC

)
, (D.11)

where the operator | | applied to a tensor is its determinant.

D.2.1 Continuous injection

In the case introduced in §3.2.1, the source term of the covariance (eq. (D.9)) is:

((G, C) = −
[222

o e−
(G−EC )2

2�C

2cC
, (D.12)

and then the covariance, obtained through equation (D.10), is

OAB (G, C) = −
[222

o
2c

∫ C

0
[g(2C − g)]− 1

2 exp
(
− (G − EC)

2

2� (2C − g) − j(C − g)
)

dg. (D.13)

To our knowledge, the resulting time-integral in (D.13) does not have an exact analytical solution.
Nevertheless, a (pseudo-)closed form does exist for its integral in space (i.e., the local mixing term):

"Σ
AB (C) =

∫ ∞

−∞
OAB (G, C) dG = −c−

1
2 [222

o

√
2�
j
�

(√
jC

)
, (D.14)

where � (D) is the Dawson integral:

� (D) B e−D
2
∫ D

0
eA

2
dA ≈

{
D, for D � 1,
1
2D
−1, for D � 1.

(D.15)

From (D.14) and (D.15), we see that there is an early-time regime where concentration covariance
generation (promoted by spreading) dominates and"Σ

AB ∝ C
1/2, followed by a late-time regimewhere

concentration covariance destruction (promoted by mixing) dominates and "Σ
AB ∝ C

−1/2. "Σ
AB is

negative meaning that the local covariance reduces the contact between A and B with respect to the
ideal value "c

AB. The maximum negative magnitude of "Σ
AB (C) is achieved for C = 0.854j−1.
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Dividing (D.14) by (29), we finally obtain the temporal description of the relative integrated
departure from the well-mixed behavior in the continuous injection case,

WAB (C) B
"Σ

AB

"c
AB

= − [2
√
jC
�

(√
jC

)
. (D.16)

As outlined at the beginning of D.2, the summation in (21) allows us to generalize the solution
for any choice of mixing parameters as a summation of elementary building blocks:

WAB (C) =
∑
8, 9

[̂8 9W
∗
AB ( ĵ8 9 C), (D.17)

W∗AB (C
∗) B − 1

√
C∗
�

(√
C∗
)
, (D.18)

with [̂8 9 B [8[ 9 .

D.2.2 Pulse injection

In the case introduced in §3.2.2, the source term of the variance (eq. (D.9) with B = A) is:

((G, C) = 2[2�

(
m2A
mG

)2
=
[2<2

o (G − EC)2

8c�2 (C + Co)3
e−

(G−EC )2
2� (C+Co ) , (D.19)

and expression (D.10) gives the evolution of the variance:

OAA (G, C) =
[2<2

o
8c�2

∫ C

0

2� (C − g) (2C − g + Co) + (G − EC)2 (g + Co)
(2C − g + Co)2.5 (g + Co)1.5

× exp
(
− (G − EC)2

2� (2C − g + Co)
− j(C − g)

)
dg.

(D.20)

Like in the continuous injection case (D.13), we could not find a closed-form solution to the time-
integral in (D.20). But again, its spatial integral (the local mixing term) can be expressed in terms
of the Dawson function (or more precisely, its derivative):

"Σ
AA (C) =

∫ ∞

−∞
OAA (G, C) dG =

[2<2
o√

8c� (C + Co)

[
5
(√
jCo

) (√
1 + C/Co

)
e−jC − 5

(√
j(C + Co)

)]
,

(D.21)
with 5 (D) defined as the derivative of � (D),

5 (D) B d�
dD

= 1 − 2D � (D) ≈
{

1, for D � 1,
− 1

2D
−2, for D � 1.

(D.22)

Dividing (D.21) by (34), we obtain the temporal description of the relative integrated departure
from the well-mixed behavior in the pulse injection case,

WAA (C) B
"Σ

AA

"c
AA

= [2
[
5
(√
jCo

) (√
1 + C/Co

)
e−jC − 5

(√
jC + jCo

) ]
. (D.23)

As in D.2.1, we may define an elementary building block W∗AA to generalize (D.23) into more
complex mixing parametrizations than the dual-rate form:

WAA (C) =
∑
8, 9

[̂8 9W
∗
AA ( ĵ8 9 C; ĵ8 9 Co), (D.24)

W∗AA (C
∗; C∗o) B 5

(√
C∗o

) (√
1 + C∗/C∗o

)
e−C

∗ − 5
(√
C∗ + C∗o

)
, (D.25)

with [̂8 9 B [8[ 9 .
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D.3 Approximation of governing equation for local concentration mean and covariance
under a bilinear kinetic reaction

Here we focus on the specific case of dual rate mixing and a bilinear kinetic reaction, for which
we derive differential equations for the local concentration means and an approximation for the
different components of the local concentration covariance under the assumption that the distribution
of local concentrations is multiGaussian. The numerical solution of the resulting system of equations
is used in §4.2.

The differential equations for the local mean concentrations can be obtained by simply inserting
(15) in (16) with A given by (48):

m2C
mC

= L(2C; v,D) + 〈:�A�B〉 = L(2C; v,D) + : (2A2B + OAB), (D.26)

m2A
mC

= L(2A; v,D) − : (2A2B + OAB), (D.27)

m2B
mC

= L(2B; v,D) − : (2A2B + OAB). (D.28)

To solve the system of equations above we need an equation for OAB. Expression (22) describes the
exact behavior of local concentration covariance only in the case where A and B are two nonreactive
species or conservative components. In the case of kinetic reactions, these may have their own
contribution to the covariance variation.

The additional term to include in (D.3) given the reaction rate (48) is

−:ΔC
(
� ′A, ?,8 + �

′
B, ?, 9

) (
2A, ?�

′
B, ? + 2B, ?�

′
A, ? + �

′
A, ?�

′
B, ? − OAB, ?

)
. (D.29)

Hence, after dividing the full expression by ΔC and taking the expected value as in (D.7), now we get〈d(� ′A,8
� ′B, 9 )

dC
〉
= 2∇2T

AD∇2B − ĵ8 9 〈� ′A,8�
′
B, 9〉 − :

(
2A〈� ′A,8�

′
B〉 + 2A〈� ′B, 9�

′
B〉

+ 2B〈� ′A,8�
′
A〉 + 2B〈� ′B, 9�

′
A〉 + 〈�

′
A,8�

′
A�
′
B〉 + 〈�

′
B, 9�

′
A�
′
B〉

)
.

(D.30)

By assuming that the local concentration distribution is multiGaussian (i.e., neglecting third-order
moments) and considering the dual-rate mixing parametrization (12), we obtain the following differ-
ential equation instead of (23):

mOAB
mC

= 2[2∇2T
AD∇2B − jOAB + L(OAB; v,D) − :[[2AOBB + 2BOAA + (2A + 2B)OAB] . (D.31)

Analogous derivations can be written for OAA and OBB, which yield:

mOAA
mC

= 2[2∇2T
AD∇2A − jOAA + L(OAA; v,D) − 2:[(2AOAB + 2BOAA), (D.32)

mOBB
mC

= 2[2∇2T
BD∇2B − jOBB + L(OBB; v,D) − 2:[(2BOAB + 2AOBB). (D.33)

The validity of the reactive term in these expressions, subjected to the multiGaussianity
assumption, has been verified numerically.
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