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Abstract

The most general models for glacial hydrologic conduits include an energy equation, wherein a heat transfer coefficient controls

the rate at which heat generated by mechanical energy dissipation is transferred to conduit walls, producing melt. Previous

models employ heat transfer coefficients derived for engineering heat transfer problems, where heat is transferred between the

walls of a conduit and a flowing fluid that enters the duct at a temperature different from the wall temperature. These heat

transfer coefficients may not be appropriate for glacial hydrologic conduits in temperate ice, where the flowing fluid (water) and

conduit walls (ice) are at almost the same temperature, and the heat generated by mechanical energy dissipation within the flow

is transferred to the walls to produce melt. We revisit the energy transport equations that provide a basis for the derivation of

heat transfer coefficients and highlight the distinctions between the heated walls and dissipated energy heat transfer cases. We

present computational results for both cases across a range of Reynolds numbers in circular conduit and sheet geometries. For

the heated walls case, our results are consistent with the widely used Dittus-Boelter heat transfer correlation, which has been

used in previous glacial conduit models. We show that the heat transfer coefficient for transfer of heat generated by mechanical

energy dissipation to conduit walls is smaller than that calculated using the Dittus-Boelter correlation by approximately a

factor of 2.
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Key Points:9

• New correlations are derived for heat transfer coefficients for transfer of dissipated10

mechanical energy as heat to walls of glacial conduits.11

• Newly derived heat transfer coefficients are found to be lower than previously used12

coefficients based on heat transfer from heated walls, by a factor of two.13

• Theoretical framework reproduces the classical Dittus-Boelter correlation for the14

heated wall case and clarifies why energy dissipation heat transfer is different.15
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Abstract16

The most general models for glacial hydrologic conduits include an energy equation, wherein17

a heat transfer coefficient controls the rate at which heat generated by mechanical en-18

ergy dissipation is transferred to conduit walls, producing melt. Previous models employ19

heat transfer coefficients derived for engineering heat transfer problems, where heat is20

transferred between the walls of a conduit and a flowing fluid that enters the duct at a21

temperature different from the wall temperature. These heat transfer coefficients may22

not be appropriate for glacial hydrologic conduits in temperate ice, where the flowing23

fluid (water) and conduit walls (ice) are at almost the same temperature, and the heat24

generated by mechanical energy dissipation within the flow is transferred to the walls25

to produce melt. We revisit the energy transport equations that provide a basis for the26

derivation of heat transfer coefficients and highlight the distinctions between the heated27

walls and dissipated energy heat transfer cases. We present computational results for both28

cases across a range of Reynolds numbers in circular conduit and sheet geometries. For29

the heated walls case, our results are consistent with the widely used Dittus-Boelter heat30

transfer correlation, which has been used in previous glacial conduit models. We show31

that the heat transfer coefficient for transfer of heat generated by mechanical energy dis-32

sipation to conduit walls is smaller than that calculated using the Dittus-Boelter cor-33

relation by approximately a factor of 2.34

Plain Language Summary35

Most models of glacial hydrology that solve for the temperature of water and ice36

depend on heat transfer coefficients that are based on experiments of flow through pipes37

with heated walls. In and below glaciers, however, the ice walls are not heated but are38

almost the same temperature as the flowing water, and the commonly used correlations39

may not be appropriate. In this case, the flow itself produces heat through dissipation.40

We revisit the equations that heat transfer coefficients are based upon and highlight dis-41

tinctions between these two situations. We present computational results of heat trans-42

fer coefficients for both cases. We find that heat transfer coefficients for the dissipation43

case are smaller than for the heated wall case by approximately a factor of 2.44
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1 Introduction45

Heat transfer in laminar and turbulent shear flows is relevant to many engineer-46

ing applications and in the context of geophysical flows. Heat transfer coefficients for var-47

ious scenarios are well documented from theoretical and experimental studies (Kakaç et48

al., 1987; Incropera and DeWitt, 1996), and provide a basis for engineering design. Al-49

most all previous heat transfer studies focus on heat transfer between the bulk fluid flow50

and conduit walls, either with constant wall temperature or a constant wall heat flux,51

and neglect the heat generated by dissipation of mechanical energy (commonly referred52

to as frictional or head loss). In most engineering and geophysical heat transfer scenar-53

ios involving air or water flows, this is a reasonable approximation. Notable exceptions54

arise in glaciology, however: Heat generated by mechanical energy dissipation (dominated55

by turbulent dissipation) in englacial and subglacial hydrologic flows is an important pro-56

cess in the dynamics of these systems (Röthlisberger, 1972; Nye, 1976; Spring and Hut-57

ter, 1981, Clarke, 2003). In englacial and subglacial hydrologic systems in temperate ice,58

both water and ice are typically near the melting point temperature, and the heat gen-59

erated by mechanical energy dissipation is transferred to the walls, contributing to melt-60

ing and enlargement of drainage conduit and sheet cross-sections. The important role61

of “strain heating” or the heat generated by viscous dissipation in the energy equation62

for ice sheets and glaciers is well established (Cuffey and Paterson, 2010).63

The Nye (1976) model for outburst floods suggests a simplification of the general64

energy transport equation, assuming that all the heat generated by mechanical energy65

dissipation is locally and instantaneously transferred to the walls to produce melt en-66

largement. This approximation is employed in most subglacial hydrology models (e.g.,67

Hewitt, 2011; Hewitt et al., 2012; Hewitt, 2013; Werder et al., 2013; Hoffman and Price,68

2014; Sommers et al., 2018) and obviates the need for solving an energy transport equa-69

tion, greatly facilitating computational tractability. However, in the case of outburst floods70

involving high advection velocities, some of the heat generated by mechanical energy dis-71

sipation can be advected downstream and the transfer of this heat to the walls is reg-72

ulated by cross-sectional thermal diffusion. The Spring and Hutter (1981) and Clarke73

(2003) models employ a full energy equation, including a heat transfer coefficient that74

controls the rate at which heat generated by mechanical energy dissipation is transferred75

to the walls. Most previous models of outburst floods that include an energy equation76

typically parameterize this heat transfer coefficient by invoking the Dittus-Boelter cor-77
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relation for the Nusselt number, which is a non-dimensional representation of the heat78

transfer coefficient (e.g., Nye, 1976; Spring and Hutter, 1981; Clarke, 2003; Creyts and79

Clarke, 2010). The Dittus-Boelter and comparable correlations for the Nusselt number80

(see Kakaç et al., 1987 for a comprehensive summary) are founded on the large body of81

research on engineering heat transfer, which considers the transfer of heat to/from a flow-82

ing fluid from/to the conduit walls, which are maintained at a different temperature. Clarke83

(2003) acknowledged that these correlations are not necessarily appropriate for repre-84

senting the transfer of heat generated by mechanical energy dissipation to the walls of85

subglacial and englacial conduits, and suggested that this problem warranted further study.86

We are not aware of any previous studies that have explored this issue in detail.87

The main goal of this paper is to evaluate the appropriateness of the Dittus-Boelter88

and related correlations for the transfer of heat generated by mechanical energy dissi-89

pation to the walls of englacial and subglacial conduits and sheets. We begin from the90

fundamental heat transport equations that provide a basis for the development of Nus-91

selt number correlations for ducts/conduits (e.g. Incropera et al., 2007) and develop a92

computational framework for deriving these correlations in both laminar and turbulent93

flows. We consider both the classical heated wall heat transfer problem (we will refer to94

this problem as “heated wall case” for simplicity) and the transfer of heat generated by95

mechanical energy dissipation (which we will refer to as “dissipation case”), and high-96

light differences between these situations. See Figure 1 for a conceptual illustration of97

the two heat transfer cases. For turbulent flows, we employ previously verified represen-98

tations for cross-sectional profiles of mean (time-averaged) velocity, eddy thermal dif-99

fusivity, and the turbulent dissipation rate. For the classical heated wall case, our com-100

putational results for the Nusselt number reproduce the Dittus-Boelter correlation. We101

show that the Nusselt numbers appropriate for the dissipation case are different from102

those for the heated wall case, and propose new correlations for the fully developed re-103

gion.104

2 Theoretical framework105

2.1 Heat transport equations106

Heat transfer coefficients for duct flows are derived from experimental studies and107

theoretical analyses based on the boundary layer approximations to the full energy trans-108
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a b

Figure 1. Two heat transfer scenarios are considered in this study: a) Heated wall case, in

which water enters at a cooler temperature than the walls and is gradually heated downstream,

and b) Dissipation case, in which water enters at the same temperature as the walls, and is

heated by dissipation of mechanical energy within the flow.

port equation, which neglect axial conduction (Incropera et al., 2007). The general steady-109

state boundary layer approximations to the thermal energy equation in a circular con-110

duit and two-dimensional sheet (geometries shown in Fig. 2) are:111

Circular conduit flow:112

u(r)
∂T

∂x
− 1

r

∂

∂r

[
r (κ+ κT )

∂T

∂r

]
=

Φ(r)

ρcp
(1)

Sheet flow:113

u(z)
∂T

∂x
− ∂

∂z

[
(κ+ κT )

∂T

∂z

]
=

Φ(z)

ρcp
(2)

In (1) and (2), u is the (time-averaged) mean streamwise velocity, T is the water114

temperature, x is the streamwise coordinate, κ is the molecular thermal diffusivity, κT115

is the turbulent eddy thermal diffusivity (κT=0 for laminar flow), r is a radial coordi-116

nate for circular conduit flow, z is a coordinate normal to the walls in sheet flow (with117

origin at the center), Φ is the mechanical energy dissipation rate, which represents the118

rate at which mechanical energy is converted to thermal energy, ρ is the fluid density and119

cp is the specific heat of the fluid. In both laminar and turbulent flows, u and Φ vary120

across the cross-section of the flow as described below, while κT varies across the cross-121
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2h z

a b

x
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Figure 2. Schematic of geometries for a) Circular conduit, and b) Sheet flow.

section in turbulent flow and is zero in laminar flow. In the classical heated wall case,122

thermal energy resulting from mechanical energy dissipation is neglected (i.e. Φ=0), be-123

cause it is very small in comparison to thermal fluxes between the wall and fluid driven124

by significant temperature differences. For laminar flows, heat transfer coefficients are125

derived by comparison of the solution to (1) or (2) with cross-section integrated heat trans-126

port equations. In a thermal entry region, the heat transfer coefficients vary along the127

axial direction, approaching a constant (fully developed) value corresponding to the small-128

est eigenvalue in the analytical solutions of (1) and (2) (Incropera et al. 2007, Shah and129

London, 1978). In turbulent flows, the velocity profiles and cross-sectional variation of130

eddy thermal diffusivity preclude analytical solutions, and numerical solutions or exper-131

imental studies have been used to derive heat transfer coefficients.132

Although (1) and (2) are steady-state equations, the heat transfer coefficients de-133

rived from them are applicable to transient heat transfer problems involving time-varying134

entrance or wall temperatures, and to glacial conduits with evolving geometries. For ex-135

ample, the Spring-Hutter and Clarke equations (Spring and Hutter, 1981; Clarke, 2003)136

employ heat transfer coefficients that depend on the evolving conduit geometry and tran-137

sient flow rates. This is justified by recognizing a time scale separation between the rel-138

atively slowly evolving axial temperature distributions along long conduits and the rel-139

atively rapid cross-sectional heat transfer processes that are represented using heat trans-140

fer coefficients.141
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2.2 Velocity profiles142

For laminar flow, the velocity profile is the well-known parabolic profile described143

by:144

Circular conduit flow:145

u = 2ub

(
1− r2

r20

)
(3)

Sheet flow:146

u =
3

2
ub

(
1− z2

h2

)
(4)

where ub is the cross-sectional average velocity, r0 is the radius of the circular con-147

duit, and h is the half-depth of the sheet (the sheet extends from z = −h to +h). For148

fully developed turbulent flow, several alternative descriptions of the (time-averaged) mean149

velocity profile are available in the literature. These descriptions typically involve dif-150

ferent expressions in the viscous sublayer, a buffer region and an inner turbulent core151

where the log-law velocity profile is valid.152

We employ the following dimensionless velocity profiles for u+ = u/uτ , where uτ153

is the shear velocity and z+ = (h−|z|))uτ/ν is the wall coordinate for sheet flow, which154

is replaced by z+ = (r0 − r)uτ/ν for circular conduit flow:155

u+ =
1

K
ln z+ +B, z+ > 20 (5)

156

u+ = z+ + β1z
+4 + β2z

+5, z+ ≤ 20 (6)

Equation (5) is the familiar log-law velocity profile, while equation (6) for the wall157

region is adapted from (Wasan et al., 1963) with the constants β1 = −1.2533 × 10−4158

and β2 = 3.9196× 10−6 to allow for a smooth transition with matching derivatives in159

the velocity profile between the log-law region and the viscous sublayer where u+ ≈ z+.160

Equation (6) also ensures that the eddy viscosity is continuous and vanishes near the wall161

with a cubic dependence on distance from the wall (Townsend, 1976; Tien and Wasan,162

1963). Figure 3 shows illustrative non-dimensional velocity profiles for different Reynolds163

numbers (Re=ub(2h)/ν or ub(2r0)/ν for the sheet or circular conduit respectively).164
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Figure 3. Fully developed turbulent velocity profile (used for both circular conduit and

sheet).
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2.3 Eddy viscosity and thermal diffusivity165

The eddy viscosity (νT ) profile is obtained directly from the mean velocity profile166

defined above, based on its fundamental definition in terms of the total shear stress (τ):167

Circular conduit:168

τ = −ρ(ν + νT )
∂u

∂r
(7)

Sheet:169

τ = −ρ(ν + νT )
∂u

∂z
(8)

The shear stress varies linearly from zero at the center of a circular conduit or sheet170

flow to a maximum value at the walls, τw (wall shear stress), i.e.171

Circular conduit:172

τ = τw
r

r0
(9)

Sheet:173

τ = τw
z

h
(10)

The eddy thermal diffusivity is obtained from Reynolds analogy (Bird et al., 1960):174

κT = νT (11)

Figure 4 shows profiles of κT /κ for different Reynolds numbers.175

2.4 Wall shear stress and skin friction176

For fully developed steady flow, the wall shear stress is related to the hydraulic gra-177

dient:178

Circular conduit:179

τw = − ∂

∂x
(p+ ρgze)

r0
2

(12)

Sheet:180

τw = − ∂

∂x
(p+ ρgze)h (13)

–9–
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Figure 4. Turbulent (eddy) thermal diffusivity profile.
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where ze is the vertical elevation of the conduit or sheet, to account for non-horizontal181

alignment. The wall shear stress is also related to the Darcy-Weisbach friction factor (f)182

by:183

τw =
1

8
fρu2b (14)

The Darcy-Weisbach friction factor f is related to the skin friction factor Cf =184

f/4, and can be found by solving the following relation (Zanoun et al., 2009):185

2

√
2

f
=

1

κ
ln

(
Re

4

√
f

2

)
− 1

κ
+B (15)

The shear velocity uτ used to non-dimensionalize the velocity profiles and define186

the wall coordinate is related to the wall shear stress by the well-known relationship uτ =187 √
τw/ρ.188

2.5 Energy dissipation rate profile189

The general thermal energy equation for incompressible fluid flow includes a source190

term that represents heat generated from the dissipation of mechanical energy by work191

done against shear forces. As noted above, this term is typically negligible in engineer-192

ing heat transfer problems. In incompressible turbulent conduit or sheet flow, the (time-193

averaged) mean mechanical energy dissipation rate per unit volume (Φ) includes both194

viscous dissipation associated with the mean flow and dissipation of turbulent kinetic195

energy (turbulent dissipation). The latter is produced from the work done by the mean196

flow against turbulent (Reynolds) stresses, and eventually dissipated by viscosity into197

thermal energy (Hinze, 1975). In fully developed turbulent flows in conduits, the cross-198

sectional integrals of turbulent kinetic energy production and dissipation are equal, even199

though their profiles are different (Hinze, 1975; Laadhari, 2007). The total dissipation200

rate Φ is given by:201

Φ = Φmean + ΦT = ρ

(
ν

(
∂u

∂z

)2

+ ε

)
(16)

where the turbulent dissipation rate ε is defined from the turbulent part of the ve-202

locity deformation tensor as (Laadhari, 2007):203
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ε = ν

(
∂u′i
∂xj

∂u′i
∂xj

+
∂2u′iu

′
j

∂xi∂xj

)
(17)

In (17), the primed quantities denote turbulent velocity fluctuations and the over-204

bar denotes a time average. The variation of the viscous dissipation term (first term in205

Eq. 16) across the flow cross-section is readily calculated from the mean velocity pro-206

file defined in Eqs. (5) and (6) above. The cross-sectional profiles of the turbulent dis-207

sipation rate, ε, need to be parameterized based on data from experiments or direct nu-208

merical simulations (DNS). Some of the first experimental and theoretical efforts to char-209

acterize the cross-sectional profile of the turbulent dissipation term were conducted by210

Taylor (1935). Subsequently, the cross-sectional profile of ε has been discussed in sev-211

eral works (e.g., Rotta, 1962; Lawn, 1971; Kock and Herwig, 2003; Laadhari, 2007). We212

prescribe the dissipation profile following the recent work of Abe and Antonia (2016),213

which is based on a synthesis of several contemporary DNS studies. For sheet flow, we214

adopt the correlations presented by Abe and Antonia (2016) for the dimensionless tur-215

bulent dissipation rate:216

εh

u3τ
=

2.45(
1− |z|h

) − 1.7,

(
1− |z|

h

)
> 0.2 (18)

εh

u3τ
=

2.54(
1− |z|h

) − 2.6,

(
1− |z|

h

)
≤ 0.2, z+ > 30 (19)

εh

u3τ
=

2.54

( 30
h+ )
− 2.6, z+ ≤ 30 (20)

The corresponding expressions for circular conduit flow are readily obtained read-217

ily by replacing |z|/h with r/r0 (Abe and Antonia, 2016). Note that very near the wall218

(z+ ≤ 30), the dissipation rate is a constant, equal to the value obtained from Eq. (19)219

at z+ = 30. This behavior is consistent with the profiles of εh/u3τ presented by Abe and220

Antonia (2016). Figure 5 shows the turbulent and viscous dissipation profiles in fully de-221

veloped turbulent flow. Although viscous dissipation is predominant near the wall, tur-222

bulent dissipation dominates through the bulk of the fluid profile.223

For fully developed flows, the integral of the total mechanical energy dissipation224

rate over the flow cross-section should be equal to the power input to the system by the225

–12–
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Figure 5. Turbulent dissipation (left) and viscous dissipation profiles (right) for various

Reynolds numbers in fully developed turbulent flow (normalized by the total dissipation). Tur-

bulent dissipation is most important through the bulk of the fluid, but viscous dissipation domi-

nates close to the wall.
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mean pressure (or more generally pressure and gravitational) gradient. For sheet flow,226

this implies that E = u2τub = 〈Φ〉 /2ρ (Abe and Antonia, 2016), where 〈Φ〉 denotes227

the integral of Φ across the sheet depth (i.e. –h to +h). In Figure 6, we compare 〈Φ〉 /2ρ228

obtained by numerically integrating the total dissipation profile of Φ from (16) and (18)-229

(20) over half the channel width, with the corresponding theoretical value of u2τub, con-230

firming the consistency of our representation of the dissipation function across a range231

of Reynolds number values. For the sheet, note that ρE and 〈Φ〉 have units of W/m2
232

(rate of mechanical energy loss per unit width in the third dimension, per unit length233

along the flow direction). In the case of the circular conduit, 2πr0ρE and 〈Φ〉 have units234

of W m−1 (representing the rate of mechanical energy loss per unit length along the flow235

direction).236

2.6 Estimation of Nusselt numbers from numerical solutions of the heat237

equation238

The heat transfer coefficient H is defined based on the cross-section integrated heat239

transport equation over the conduit area or across the sheet width. For the circular con-240

duit, the cross-section integrated equation is of the form:241

ρcpQ
dTb
dx

= 〈Φ〉+ 2πr0H(Tw − Tb) (21)

where Q is the flow rate through the pipe (Q = πr20ub for the circular conduit),242

〈Φ〉 is the dissipation rate integrated over the cross-sectional area of the pipe, Tw is the243

wall temperature, and Tb is the flux-averaged bulk fluid temperature (i.e. mixing cup244

temperature, Incropera et al., 2007). Angular brackets indicate integration over the flow245

cross-section. In sheet flow, the depth-integrated heat transport equation accounts for246

the heat flux to both walls:247

ρcpq
dTb
dx

= 〈Φ〉+ 2H(Tw − Tb) (22)

where q = ub(2h) is the flow rate per unit width (in the third dimension) in the248

sheet. As noted earlier, 〈Φ〉 has different units in the circular conduit (W m−1) and sheet249

(W m−2) geometries.250

–14–
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Figure 6. A comparison of the integral of the scaled dissipation rate 〈Φ〉 /2ρ obtained by

numerical integration of (16) with (18)-(20) for the turbulent dissipation rate ε over half the

sheet depth, with the corresponding theoretical value of E = u2
τub, across a range of Reynolds

numbers.
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As noted previously, heat transfer coefficients implied by (1, 2) and (21, 22) are ap-251

plicable to transient heat transfer problems involving time-varying entrance or wall tem-252

peratures, based on a time scale separation between the slowly evolving axial temper-253

ature distributions along and the relatively rapid cross-sectional heat transfer processes.254

In general, the heat transfer coefficients in (21) and (22) also depend on x in a thermal255

entry region before a fully developed temperature profile is attained and H approaches256

a constant value. The heat transfer coefficient is generally larger than its asymptotic con-257

stant value in the thermal entry region, whose length is a complex function of Reynolds258

and Prandtl numbers, and is generally around 20-30 times the conduit diameter in cir-259

cular conduits (Kays and Crawford, 1993). In typical applications to long conduits (in-260

cluding previous applications to glacial conduits), fully developed values of the heat trans-261

fer coefficient are used to represent heat transfer, because the entry length is considered262

to be a relatively small fraction of the overall conduit length. We will therefore focus on263

estimating the fully developed values of the heat transfer coefficient (or equivalently Nus-264

selt number).265

Heat transfer coefficients are typically represented in dimensionless form based on266

the Nusselt number:267

Nu =
HL

k
(23)

where H is the heat transfer coefficient, L is a characteristic length, and k is the268

thermal conductivity of the fluid (k = ρcpκ). The characteristic length commonly used269

in the definition of Nu is L = 4P/A, where P is the perimeter and A is the cross-sectional270

area (Shah and London, 1978; Incropera et al., 2007). For a circular conduit, L = 2r0271

(i.e. the pipe diameter). For a wide, flat sheet, L = 4h (i.e. twice the sheet width).272

As noted in Section (2.1) above, the fully developed heat transfer coefficient or Nus-273

selt number for various heat transfer problems can be estimated by comparing the cross-274

sectional averages of the numerical (or analytical in some cases) solutions of (1) or (2)275

with the analytical solutions of (21) or (22), beyond the thermal entry length, where H(Nu)276

has attained a constant value. We solved (1) and (2) numerically for the circular con-277

duit and sheet cases respectively, to estimate Nusselt numbers. For turbulent flow regimes,278

we estimated Nusselt numbers over a range of Reynolds numbers.279

–16–
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The thermal energy equations (1) and (2) are parabolic, with the coordinate x along280

the flow direction playing the role of a time-like variable. We solved these equations nu-281

merically using a finite-difference discretization in the cross-flow direction (z or r), and282

an implicit Crank-Nicholson scheme along x. Due to the sharp variations of the mean283

velocity, eddy thermal diffusivity and dissipation function in the vicinity of the walls, es-284

pecially at higher Reynolds numbers, we used very fine discretization along z (or r). We285

carried out grid sensitivity studies to verify that all the computational results reported286

below had converged and were insensitive to additional grid refinement.287

We estimated Nusselt numbers for two distinct cases – the heated wall case and288

the dissipation case (Fig. 1). We considered the heated wall case (neglecting dissipation,289

Φ = 0) to verify that our computational framework and assumed profiles for various290

quantities (Sections 2.2-2.4) consistently reproduce previously well-established theoret-291

ical and empirical correlations for Nusselt numbers. In the heated wall case, the bound-292

ary condition for fluid temperature on the walls was assigned as T = Tw (at r = r0293

in the circular conduit geometry and z = ±h in the sheet geometry). For the circular294

conduit geometry, a symmetry boundary condition (∂T/∂r = 0) was assigned at the295

center (r = 0). At the entrance (x = 0), the fluid temperature across the entire cross-296

section was set to T = T0. We used values of Tw = 1 and T0 = 0 for convenience.297

With 〈Φ〉 = 0, the solutions of (21) and (22) suggest that (Tw − Tb) will decrease ex-298

ponentially along the conduit axis (equivalently, ln(Tw − Tb) will decrease linearly) in299

the thermally fully developed region where H (Nu) has attained a constant value (Shah300

and London, 1978). The numerical solution of Tw obtained from (1) or (2) can be used301

to calculate the variation of Tb along x. The corresponding ln(Tw − Tb) estimate will302

exhibit a faster decrease near the entrance, and transition to a linear decrease in the ther-303

mally fully developed region. The heat transfer coefficient H (and thus Nu) can be es-304

timated from the slope (m) of a linear fit to the variation of ln(Tw−Tb) with x. More305

details are given in Appendix 1.306

In the dissipation case, the complete dissipation rate profile (Section 2.5) is included307

in the numerical solution of (1) and (2). The boundary condition for fluid temperature308

on the walls (Tw) was assigned equal to the fluid temperature (T0) at the entrance (in309

the case of glacial conduits in temperate ice, both these temperatures are equal to the310

melting point temperature). In this case, the fluid is warmed by the heat generated from311

dissipated mechanical energy and transfers heat to the walls. In glacial conduits in tem-312
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perate ice, the heat transferred to the walls produces melt. At some downstream distance313

from the entrance, a fully developed temperature profile will be attained that remains314

invariant along x thereafter, corresponding to which dTb/dx = 0. In this fully thermally315

developed region, there is a balance between heat generated by mechanical energy dis-316

sipation and heat transfer to the walls. The heat transfer coefficient H (and thus Nu)317

can be estimated by calculating the fully developed bulk temperature from the numer-318

ical solutions of (1) and (2). More details are given in Appendix 1.319

3 Results320

3.1 Laminar flow321

Figure 7 shows temperature profiles at different distances from the conduit entrance322

in laminar flow for the wall heat transfer and dissipation cases, and illustrates the phe-323

nomenology noted in Section 2.6 above. For the heated wall case in laminar flow with324

Φ = 0, the Nusselt numbers for the circular pipe and sheet cases are well known (In-325

cropera et al. 1996) and equal to 3.66 and 7.54, respectively. Nusselt numbers calculated326

based on our numerical solutions to (1) and (2) and the approach described in Section327

2.6 and Appendix 1, matched these theoretical values.328

Using the approach described in Section 2.6 for the dissipation case, the Nusselt329

numbers for transfer of dissipated mechanical energy to the walls were determined to be330

2.40 and 4.99 for the circular conduit and sheet respectively. These values are smaller331

than the corresponding Nusselt numbers for the heated wall case.332

3.2 Turbulent flow333

Figure 8 shows a typical set of temperature profiles at different distances from the334

conduit entrance for fully developed turbulent flow, with Re = 104 and a Prandlt num-335

ber (Pr = ν/κ) = 13.5 (corresponding to water at 0 degrees C). To explore the depen-336

dence of the Nusselt number on Reynolds number, we performed numerical simulations337

of (1) and (2) for a range of Reynolds numbers. For each value of Reynolds number, the338

friction factor (f) was determined from (15) and used to calculate the wall shear stress339

and shear velocity, from which the velocity, eddy diffusivity and dissipation profiles were340

calculated. Nusselt numbers were estimated across a range of Re using the approach de-341

scribed in Section 2.6 and Appendix 1. Figures 9 and 10 respectively show the variation342
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Figure 7. Temperature profile evolution for laminar flow through a circular conduit and

flat sheet in the (a) heated wall and (b) internal dissipation cases. Note that T∞ used to non-

dimensionalize the temperature in the dissipation case is defined as the temperature at the flow

center of the cross-section (r = 0 or z = 0) in the fully developed thermal region.
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of Nusselt number with Reynolds number for the circular conduit and sheet flow geome-343

tries. For the circular conduit case, Figure 9 also shows the Nusselt number values ob-344

tained using the Dittus-Bolter correlation. The Dittus-Boelter correlation was developed345

for 0.7 ≤ Pr ≤ 120 and 2500 ≤ Re ≤ 1.24 × 105. It is frequently used due to its sim-346

plicity:347

Nu = 0.024Re0.8Pr0.4 (24)
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Figure 8. Temperature profile evolution for fully developed turbulent flow (Pr = 13.5,

Re = 10, 000) in the (a) heated wall and (b) internal dissipation cases. Temperature profiles

are shown for both the circular conduit and sheet. Note that T∞ used to non-dimensionalize the

temperature in the internal dissipation case is defined as the temperature at the center of the

cross-section (r=0 or z=0) in the thermally fully developed region.
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For 3 ≤ Pr ≤ 10 (typical values for water), the Dittus-Boelter correlation is 15%348

lower to 7% higher than the well respected Gnielinski correlation (Kakaç et al., 1987).349

For the circular conduit, our estimates of the Nusselt number for the heated wall case350

agree very well with values obtained using the Dittus-Boelter correlation (Figure 9), con-351

firming that our overall approach accurately represents heat transfer processes for this352

previously well studied problem. Thus, our approach incorporating the dissipation func-353

tion Φ from Section 2.5 is expected to accurately represent the transfer of heat gener-354

ated by mechanical energy dissipation over the cross-section to the walls. For the cir-355

cular conduit, the corresponding Nusselt number is smaller than that predicted by the356

Dittus-Boelter correlation by about a factor of 2 (Figure 9). Figure 10 shows the Nus-357

selt number as a function of Reynolds number for fully developed turbulent flow in a wide358

sheet. The Nusselt number correlations for a circular pipe are also shown for compar-359

ison. As in circular conduit flow, the Nusselt number for the dissipation case is smaller360

than that for the heated wall case. The Nusselt numbers for the channel are systemat-361

ically larger than in the circular conduit. Somewhat coincidentally, the Nusselt number362

for transfer of dissipated energy in the sheet is very close to the Nusselt number for the363

circular conduit heated wall case.364

Our numerical simulation results and fitted values of Nusselt number suggest a power-365

function relationship between Nu and Re, of the form Nu = aRebPr0.4, where the 0.4366

exponent for the Prandtl number is retained from the Dittus-Boelter correlation. Val-367

ues of a and b were fit to the estimated Nusselt numbers, yielding the following Nusselt368

number correlations for the transfer of heat generated by mechanical energy dissipation369

in a circular conduit and wide sheet:370

Circular conduit:371

Nu = 0.0032Re0.9325Pr0.4 (25)

Sheet:372

Nu = 0.0055Re0.9415Pr0.4 (26)

4 Conclusions373

The motivation for this exploration was to examine in detail the suitability of heat374

transfer correlations commonly used in englacial and subglacial hydrology models. Specif-375

ically, we were inspired to determine whether heat transfer correlations developed for the376
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Figure 9. Nusselt number as a function of Reynolds number for fully developed turbulent flow

with Pr = 13.5 through a circular conduit for the heated wall case and for the dissipation case,

compared with empirical correlations for the heated wall case. For the dissipation case, Nu is

consistently lower than in the heated wall case.
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Figure 10. Nusselt number as a function of Reynolds number for fully developed turbulent

flow with Pr = 13.5 through a sheet with heated walls and for the dissipation case. The cor-

responding Nusselt numbers for the circular conduit are shown for comparison. For both the

circular conduit and the sheet, Nusselt numbers for the dissipation case are smaller than in the

heated wall case.
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wall heat transfer case with no internal dissipation would accurately represent heat trans-377

fer in a scenario where internal dissipation is the main source of heat. Our results show378

that Nusselt numbers corresponding to the dissipation case are consistently lower than379

those for the wall heat transfer case (Figs. 9 and 10) for both a circular conduit and a380

sheet. We determined correlations based on our numerical results for heat transfer from381

internal dissipation for fully developed turbulent flow through a circular conduit and a382

sheet in Eqs. (25) and (26), respectively. These correlations may be used in place of tra-383

ditional wall heat transfer correlations in solving the energy equation in englacial or sub-384

glacial hydrology models for improved physical completeness and accuracy.385

While the Nusselt number is consistently smaller with internal dissipation than with386

heated walls, the difference is only about a factor of two (not an order of magnitude dif-387

ference). Even so, this small difference may have significant implications for how quickly388

a viable subglacial drainage system can form when liquid meltwater is introduced into389

cold ice, as melt increases further inland on ice sheets with warming air temperatures390

at higher elevations. We leave this problem open for further research.391

Appendix A Appendix 1392

In the heated wall case with 〈Φ〉 = 0, (21) and (22) can be manipulated to give:393

d (ln(Tw − Tb))
dx

= −2πr0H

ρCpQ
(A1)

d (ln(Tw − Tb))
dx

= − 2H

ρCpq
(A2)

In the fully developed thermal region, where H is a constant, H (and Nu = HL/k,394

with L = 2r0 in the circular conduit geometry and L = 4h in the sheet geometry) are395

thus related to the negative slopes (m) of linear fits to ln(Tw−Tb) versus x. Using Tb396

calculated from the full numerical solutions of (1) and (2), with Q = πr20ub and q =397

2hub, negative slopes (m) of linear fits to ln(Tw−Tb) versus x were determined, and H398

and Nu were calculated from:399

H =
ρCpr0ub

2
m;Nu =

r20ub
κ

m (A3)
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400

H = ρCphubm;Nu =
4h2ub
κ

m (A4)

In the dissipation case, the thermally fully developed region is characterized by dTb/dx =401

0. Thus, H and Nu may be estimated by equating the terms on the right hand sides of402

(21) and (22). Siegel and Sparrow (1959) employed a similar approach to estimate Nus-403

selt numbers for engineering heat transfer problems with arbitrary internal heat sources404

(e.g. heating elements) inside the conduit. We determined the bulk temperature in the405

thermally fully developed region (Tb∞) by numerically integrating the temperature pro-406

files obtained from numerical solutions of (1) and (2). Using these Tb∞ values, we cal-407

culated H and Nu from:408

H =
〈Φ〉

2πr0(Tb∞ − Tw)
;Nu =

2r0H

k
(A5)

409

H =
〈Φ〉

2(Tb∞ − Tw)
;Nu =

4hH

k
(A6)

It should also be noted that (A5, 6) are valid in the thermally fully developed re-410

gion even if the wall temperature Tw is different from the fluid temperature T0 at the411

entrance.412
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