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Abstract

Recent research showed that machine learning, in particular deep learning, can be applied with great success to a multitude

of seismological tasks, e.g. phase picking and earthquake localization. One reason is that neural networks can be used as

feature extractors, generating generally applicable representations of complex data. We employ a convolutional network to

condense earthquake waveforms from a varying set of stations into a high dimensional vector, which we call event embedding.

For each event the embedding is calculated from instrument-corrected waveforms beginning at the first P pick and updated

continuously with incoming data. We employ event embeddings for real time magnitude estimation, earthquake localization

and ground motion prediction, which are central tasks for early warning and for guiding rapid disaster response. We evaluate

our model on the IPOC catalog for Northern Chile, containing 100,000 events with low uncertainty hypocenters and magnitude

estimates. We split the catalog sequentially into a training and a test set, with the 2014 Iquique event (Mw 8.1) and its fore-

and aftershocks contained in the test set. Following preliminary results the system achieves a test RMSE of 0.28 magnitude

units (m.u.) and 35 km hypocentral distance 1 s after the first P arrival at the nearest station, which improves to 0.17 m.u.

and 22 km after 5 s and 0.11 m.u. and 15 km after 25 s. As applications in the hazard domain require proper uncertainty

estimates, we propose a probabilistic model using Gaussian mixture density networks. By analyzing the predictions in terms

of their calibration, we show that the model exhibits overconfidence i.e. overly optimistic confidence intervals. We show that

deep ensembles substantially improve calibration. To assess the limitations of our model and elucidate the pitfalls of machine

learning for early warning in general, we conduct an error analysis and discuss mitigation strategies. Despite the size of our

catalog, we observe issues with two kinds of data sparsity. First, we observe increased residuals for the source parameters of

the largest events, as training data for these events is scarce. Second, similar inaccuracies occur in areas without events of a

certain size in the training catalog. We investigate the impact of these limitations on the Iquique fore- and aftershocks.
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Parametric magnitude estimation

Most source based early warning methods

rely on waveform features and parametric

models. Typical features are peak

displacement (Lancieri and Zollo 2008),

energy (Festa et al. 2008), or dominant

period (Allen 2007). We use the Bayesian

peak displacement method by Lancieri

and Zollo (2008) as baseline, as it

performed best on our data sets.

Parametric models suffer from imprecise

assumptions, saturation effects for large

magnitudes and errors in location

estimates. Location errors are especially

pronounced for estimates with only few

contributing stations. For the baseline

experiments we use the final hypocenter

estimate, which is overly optimistic as it is

only avaible after P wave detections at a

sufficient number of stations.

Method

Our model consists of a

feature extraction, a

feature combination

and an estimation step

for magnitude and

location. The feature

extraction is a

convolutional neural

network independently

applied to each station.

The feature

combination is a

transformer model

(Vaswani et al. 2017),

integrating information

from a variable set of

stations. The estimators are mixture density networks, outputting probabilistic estimates for

magnitude and location. We train the model end-to-end.

The output of the feature combination is a vector representation of the event, which we call

event embedding. It is independent of the contributing stations and the time. Therefore event

embeddings can be used as features for predicting event properties like magnitude and

location.

Abstract

Timely and accurate earthquake source parameter estimates are essential for early

warning. Classical parametric models suffer from simplified assumptions and discard

information. We use a deep learning model directly on the waveforms to alleviate these

issues. A key idea of our model is to represent events as vectors that are independent of

the specific set of contributing stations and the time. We call these representations event

embeddings.

We compare our model to a Bayesian peak displacement baseline on two catalogs from

Japan and Chile. On both catalogs our model achieves a higher precision 2 s after the first

P arrival than the baseline after 8 s. After 8 s our model has a 50 % lower RMSE.

Probabilistic predictions

At each time after

the first P arrival (t

= 0 s) our model

outputs a

distribution over

magnitudes. This

allows to evaluate

the model's

response to real

time data.

The model input

always consists of

30 s long waveform

samples at 100 Hz.

The samples start

5 seconds before

the first P arrival at

any station. To

simulate real time

data, all

measurements

after a given time

are set to zero. This

data augmentation

is applied both in

training and

evaluation of the

model. As the

Japanese data set is trigger based, there we always blind out stations until their respective

trigger time.

Results

The proposed model improves precision

and timeliness in both data sets compared

to the parametric estimates. This holds

true in terms of both R2 and RMSE. The

quality of predictions is generally better for

the Chile dataset, likely caused by the

more homogeneous data set and lower

amount of offshore events.

Large magnitudes are generally

underestimated. For events with a

magnitude above 5.0 we see an increased

RMSE for the Chile catalog compared to

the baseline. For the Japan catalog, we still

see a decrease in RMSE compared to the

baseline, but it is lower than the average

decrease. Underestimation occurs already

for smaller magnitudes in the Chile

catalog than in the Japan one.

Conclusion

• We built an end to end model to estimate magnitude and location in real time after the

first P arrival. The model provides probabilistic estimates.

• Our model achieves the same precision 2 s after the first P arrival as a baseline method

after 8 s.

• Transfer learning form the Japan catalog to the Chile catalog reduces RMSE for large

magnitude events (M>5) by 40 %.

• We propose the event embedding, a vector representation for events that is

independent of time and the specific set of contributing stations.

Figure 3: Schematic overview of the fast assessment model. Each row

corresponds to one station. Boxes represent neural networks, arrows represent

data vectors.

Figure 4: Predicted magnitude distributions for four sample events indicated by

quantile lines. The additional ticks above the x axis show approximate P arrivals at

contributing stations for interpretation purposes. These picks were not used by the

algorithm. The events are: a large (M
A

= 5.0), deep (150 km) on-shore event in Chile (top

left) ; a deep (110 km) but small (M
A

= 1.3) event colocated with the one before (bottom

left) ; a large (M
w

= 6.2) shallow (20 km) event offshore (100 km) the Japanese east coast

(top right); an intermediate size (M
w

= 4.2) event underneath central Honshu at 47 km

depth (bottom right). The inset shows the evolution of the location prediction over time

through its likelihood.
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Data and Evaluation

We consider two test

data sets in Northern

Chile and Japan. We

split both data sets

into training,

development and test

sets with a ratio of 60:10:30. The test set for Chile consists of all

events after 07/2012, for Japan after 02/2013. We use the

development set for model selection. All results reported on this

poster are test set results.

Catalogs from Sippl et al. (2018)/Münchmeyer et al. (2019) and NIED F-

net. Waveforms from NIED KIK-net, IPOC, GEOFON, CSN, WestFissure,

Iquique and Minas networks.

Gain

Japan

25.5° x 34.5°

M
W

3.5 - 8.7

696

1997 - 2018

Strong motion

8 258

322 205

37 km

Trigger based

All stations

Chile

4.5° x 3.5°

M
A

1.2 - 8.1

29

2007 - 2014

Broadband &
Strong motion

Instrument
response

96 132

1 785 434

17 km

Continuous

None

Spatial extent

Magnitude range

Stations

Years

Sensors

Correction

Events

Records

Station density

Recordings

Borehole sensors

Table 1: Characteristics of the two data sets used for

evaluation. Station density is given as median

inter-station distance.
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Figure 2: Early magnitude estimates at 2 s and 8 s

after the first P arrival using the Bayesian peak

displacement method from Lancieri and Zollo (2008).

The lines indicate moving 20th and 80th percentiles.

Figure 5: Mean magnitude predictions at different

times after the first P arrival (t = 0 s). The lines

indicate moving 20th and 80th percentiles.

Transfer learning

We assume the underestimation of large

magnitude events is caused by data

sparsity. Therefore we trained an

additional transfer learning model for the

Chile data set by first training on the

combination of both catalogs and then

finetuning on the Chile one. This increases

the number of large events available in the

training set and reduces the severity of

underestimation. On the other hand we

see a slight degradation for the predictive

performance at small magnitudes, while still clearly outperforming the baseline.

Figure 6: Mean predictions for the Chile catalog

using transfer learning. The lines indicate moving

20th and 80th percentiles.
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Figure 1: Events (dots) and stations (triangles) in

the Japan (top) and Chile (bottom) catalogs.
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