Introducing icepyx, an open source Python library for obtaining and working with ICESat-2 data

Jessica Scheick¹, Anthony Arendt², Lindsey Heagy³, and Fernando Perez³

¹University of Maine ²University of Washington ³UC - Berkeley

November 22, 2022

Abstract

Within a year of its launch date, the ATLAS altimeter on board ICESat-2 is already providing a wealth of critical data of interest across and beyond the cryospheric sciences. With the satellite returning nearly 1 TB of raw data per day, traditional practices of individual research groups downloading large granules of data and then subsetting, processing, and storing them locally are ultimately impractical. We are leading the development of icepyx (formerly icesat2py), an open source Python library designed to easily query, filter, download, and pre-process ICESat-2 datasets. The project's documentation will include interactive Jupyter Notebook examples, providing a starting point for researchers to create and customize workflows to address their research questions. We actively invite contributions from the community to ensure the project develops in a way that meets a wide range of research needs. The project aims to leverage existing libraries that enable easy parallelization and can be run locally or on cloud-based platforms. As a result, researchers will ultimately download and store minimally-sized subsets of ICESat-2 data and have the opportunity to contribute their code to an established open science project. This presentation will serve to introduce icepyx to the cryosphere community and encourage early adoption of the library by researchers with all levels of coding experience.

Jessica Scheick¹, Anthony Arendt², Lindsey Heagy³, Fernando Pérez³

1. University of Maine, Climate Change Institute, 2. University of Washington, Applied Physics Lab, 3. University of California - Berkeley, Department of Statistics

Motivation and Objectives

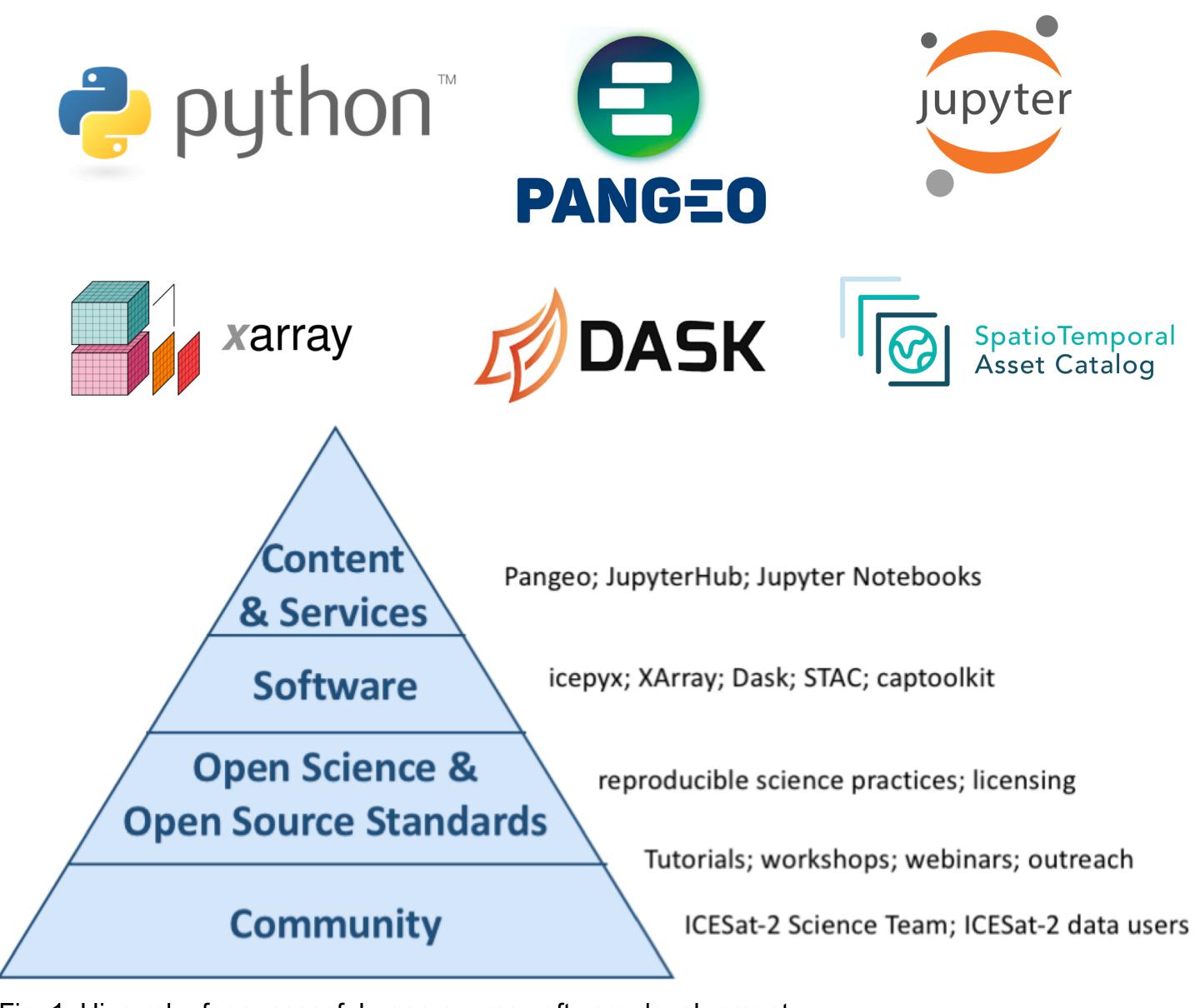
- ♦ The ATLAS altimeter on board ICESat-2 returns ~1 TB of raw data per day
- Traditional practices of downloading large granules of data for local subsetting, processing, and storage are impractical

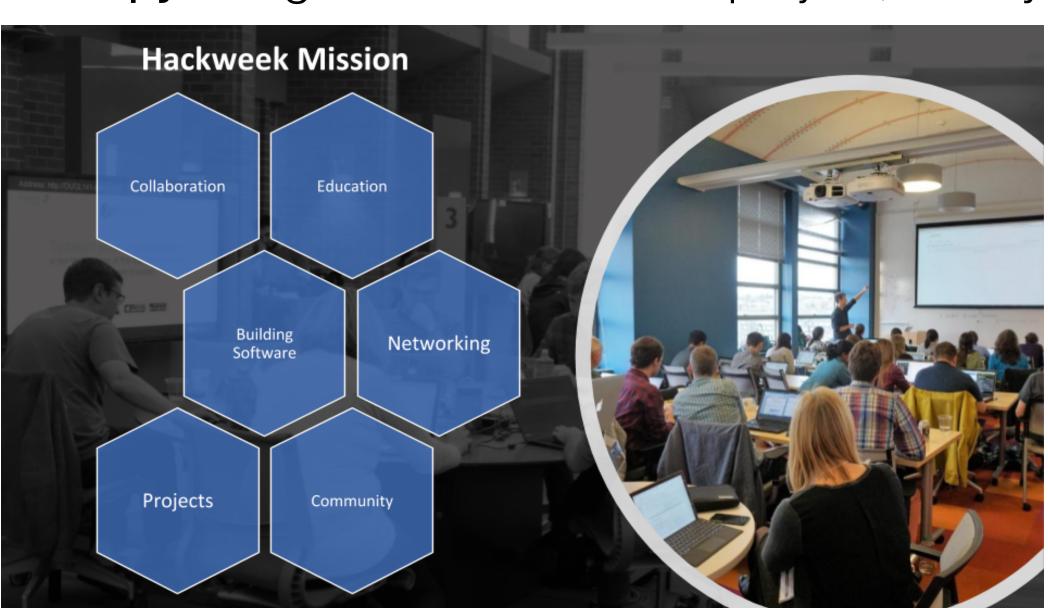
We are developing *icepyx*, an open-source Python library for cryospheric scientists to query, filter, download, and pre-process ICESat-2 datasets. icepyx will:

- Empower the the ICESat-2 user community to utilize advanced
 Aligned Activity
 computing to answer their research questions without needing to become software developers
- ♦ Build a community of cryospheric scientists practicing open science, including contributing to open-source software, regardless of career stage or coding acumen

Software Development Philosophy

- Follow established best practices for software and community
 development
- Integrate our development with existing open-source services
- Output to established communities and their active
 Aligned Communities
 AlignedCommunit commitment to open, reproducible science




Fig. 1: Hierarchy for successful open-source software development

INTRODUCING icepyx: An Open-Source Python Library FOR OBTAINING AND WORKING WITH ICESAT-2 DATA

SpatioTemporal Asset Catalog

Community Development - Hackweeks

- ♦ In June 2019, the University of Washington hosted the first Cryospheric Sciences ICESat-2 Hackweek
- Attendees noted a need for a unifying framework to collate and document code for working with ICESat-2 data

Interested in participating in a Hackweek?

- The next Cryospheric Sciences ICESat-2 Hackweek will be held at the University of Washington 15-19 June 2020
- ♦ Learn about technologies to access and process ICESat-2 data, with a focus on cryospheric applications
- ♦ Become a tutorial lead and share your experience
- ♦ Visit icesat-2hackweek.github.io to apply!

icepyx: Current Framework

Create ICESat-2 data	1	from icepyx imp
<u>object</u>	3	<pre>#define search</pre>
temporal bounds	4 5	<pre>short_name = 'A spatial_extent</pre>
 dataset (e.g. ATL06) 	6	<pre>date_range = ['</pre>
 region of interest 	7 8	#create a data
 optional: start/end time; 	9	region_a = ipd.
dataset version	10	<pre>date_range)</pre>
	10 11	#search for ava
Find granules	12	region_a.avail_
 submit search to 	13 14	#start an Earth
National Snow and Ice	15	earthdata_uid =
Data Center (NSIDC)	16	<pre>email = 'somebo session=region_</pre>
	17 18	#the user is pr
Log in to Earthdata and	19	the real end of the second
order data	20	<pre>#order the gran to your area of</pre>
	21	region_a.order_
Download data	22 23	#download the d
minimally sized dataset	24	<pre>path = './downl</pre>
subset to region and	25	region_a.downlo
variables of interest (in	F	ig. 3: Example se
progress)		cepyx. The same
progross/	0	f 50 lines of code

Fig. 2: Hackweeks are intensive, interactive workshops centered around three components: interactive lectures on current methods, peer-learning, and collaborative, onsite project work (including software development).

port is2class as ipd

parameters ATL06' = [-64, 66, -55, 72] '2019-02-22', '2019-02-28']

object I.Icesat2Data(short_name, spatial_extent,

ailable granules _granules()

hdata session = 'jane.smith' ody@somewhere.edu' _a.earthdata_login(earthdata_uid, email) rompted for their Earthdata password

nules, subsetting them (optional, default) of interest _granules(session)

data loads' .oad_granules(session, path)

earching for and downloading data using ne tasks without i cepyx require a minimum code, in comparison with the 12 shown above.

snow height in non-glaciated regions

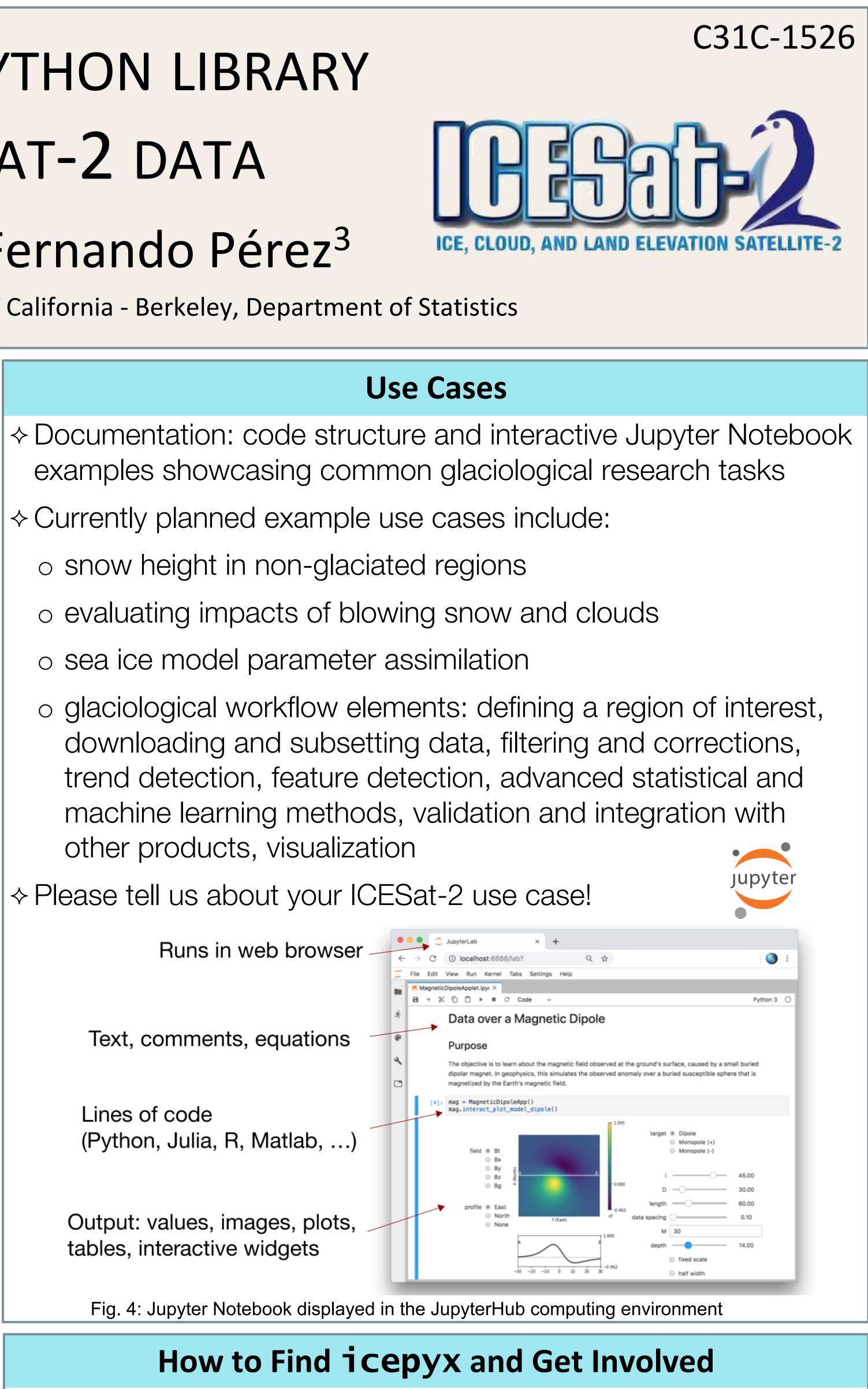
o sea ice model parameter assimilation

other products, visualization

♦ Please tell us about your ICESat-2 use case!

Runs in web browser

Text, comments, equations


Lines of code (Python, Julia, R, Matlab, ...)

Output: values, images, plots, tables, interactive widgets

- coming soon)

- \diamond What resources would be helpful?
- ♦ What examples would you like to see?

Find icepyx on GitHub: <u>http://github.com/icesat2py/icepyx</u>

 \diamond Installation: fork our repo (pypi and conda are coming soon)

 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request on GitHub
 Output to icepyx: submit a pull request (resources to assist new contributors with this process are

Apply for the next ICESat-2 themed Hackweek (see left)

♦ Join the conversation: https://discourse.pangeo.io

University of California, Berkeley **DEPARTMENT OF STATISTICS**

Funding: NASA Awards (80NSSC18M0157 and 80NSSC19K0495) to AArendt

