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Abstract

Understanding the hydrologic response to rainfall events is vital for flood forecasting and design for peak flows. The Time to

Peak (Tp) is used to characterize the speed of catchment response, as the time from the start of a rainfall event to the time

the peak flow is reached in a stream. Advancing our understanding of a catchment’s temporal response to rainfall is key to

our overall understanding of hydrologic processes. In this study, more than 1400 storm hydrographs were isolated and utilized

to calculate the Tp value for decades of storms spanning Great Britain. Previous works into understanding Tp have been

static, with no variability due to storm magnitude or antecedent conditions, providing a single static value for each catchment.

Using this data and machine learning techniques, dynamic Tp values were predicted for each storm within the hundreds of

catchments, to allow for fuller understanding of the catchment response. Artificial Neural Networks are utilized in this study

to create models which account for antecedent conditions of the catchment, and the storm size, to predict the storm-specific,

dynamic Tp value.
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Objectives

• Previous works into understanding the influencing factors of Time to Peak (Tp) have
been static in nature, dependent upon constant catchment characteristics alone.

• This does not allow for consideration into the variability in Tp between storms or
antecedent conditions

• Identifying this gap in current perceptual understanding, this study looks to perform
a forensic analysis of the influencing factors of catchment response time

Results

Model Inputs R2 NASH MAPE 

(%)

Relative 

Bias

Original FEH 

Equation

L, S, PROPWET, URBEXT1990
0.54 0.42 4.37 -0.31

ANN Model 1 L, S, PROPWET, URB 0.68 0.49 4.11 -0.32

ANN Model 2 L, S, PROPWET, URB, DA 0.69 0.68 3.25 -0.09

ANN Model 3 L, S, PROPWET, URB, DA, Qp 0.71 0.58 3.06 -0.11

Final Model L, S, PROPWET, URB, DA, Qp, LCM 0.78 0.77 2.77 -0.11
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• An extensive data set was collected from the UK National River Flow Archive (NRFA)
and FEH, including more than 1400 storms and the corresponding catchment
characteristics of 153 stream gauges across Great Britain

• The extent of urban area in these watersheds range from 0-25%, with an average of
2%, allowing us to enhance the process understanding of these rural watersheds in
this study.

• Using data and literature analyses the data set was narrowed from 43 variables to
apply only the key inputs to machine learning.

• An iterative model was employed, to demonstrate improved predictive capability
with each additional input parameter.

• Application of seasonal soil moisture trends in conjunction with land cover to
encompass antecedent soil moisture.
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Peak Flow
• Incorporating the peak flow (Qp) allows for the magnitude of the storm

to be considered
• A negative correlation between Tp and Qp has been found and

supported, where increasing Qp corresponded to a reduction in Tp3,4

Drainage Area
• Drainage Area (DA) was included as an additional static catchment

descriptor, after extensive literature review demonstrated the necessity
for DA in catchment response prediction

• Review further discovered that time parameter models that did not
include DA overestimated Qp2, 5, 6, 7, 8

ANN
• Machine learning and Artificial Neural Networks (ANN) have been applied

with great success to the prediction of stream flows, and are lauded for
their ability to understand the complex nature of hydrologic systems9, 10

• ANN is applied as a simple tool to evaluate the effect of different input
combinations

Land Cover Moisture (LCM) Factor

• As in Figure 2, seasonal trends in
soil moisture correspond to trends
in Tp

• This seasonal response was
encapsulated by introducing a new
LCM factor

• Three seasons were identified by
average Soil Moisture Deficit (SMD)

• Each catchment was classified by its
dominant land coverage (woodland,
arable, grass or mountain)

• The average SMD for each season
and land cover was utilized to
create the LCM

• Dynamic prediction provides dynamic variability, rather than providing a single value for a given catchment, by using three key
variable types:

• Storm specific- encompassing the magnitude of the storm (Qp)
• Static catchment-encompassing the variability between each catchment (L, S, DA, PROPWET, URBEXT),
• Dynamic catchment- encompassing the variability within a catchment due to antecedent conditions (LCM)

• Identification and application of seasonal trends in soil moisture applied to hydrologic modelling and introduction of LCM
factor

• Application of machine learning and ANNs to a large data set spanning Great Britain
• Next Steps: Apply this improved perceptual understanding of the processes dominating these study areas to other locations

(data in Canada and the US being collected), and improve ease of application of the model by using other machine learning
methods like GEP to create a simplified empirical equation

Introduction

• The 1975 UK Flood Studies Report (FSR), and the subsequent Flood Estimation

Handbook (FEH)1 are comprehensive guides to understanding flood prediction in

the UK.

• This method is dependent solely upon static catchment descriptors; therefore
predicting the same Tp value for any given storm within a catchment. Figure 1: Location of Stream Gauges on Map of 

Great Britain

Figure 2: Mean Monthly Soil Moisture Deficit (mm) and Time to Peak (Hours)

Table 1: Statistical Results of Iterative ANN Models

Figure 3: Plot of Model Results against Observed Values a) Original FEH Equation b) Final Model
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