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Abstract

Existing data returned in > 40 years of planetary missions to Mars provided a good basis to understand that liquid water

hardly existed on the surface of the planet during its whole history. The presence of environmental indicators like unaltered

jarosite and olivine deposited by the early volcanic activity can be seen as evidence that liquid water was never abundant nor

widespread on the surface of Mars since the Noachian. There is a dramatic mismatch with the water equivalent volume of the

outflow channels sources with the volume needed to form an ocean. The ubiquitous presence of large volcanoes, with their

huge lava fields exactly where liquid water was claimed to be abundant during the Noachian age, makes now very clear that

lava and not water was involved in the formation of the outflow channels and the fluvial networks. As a consequence, cheaper

robotic exploration might be favoured with respect to the ambitious human exploration program planned for Mars. Unless

enough water supplies will be brought to the equatorial regions from the poles through long pipelines, or from nearby asteroids

through cargo ships, it will be very difficult to exploit the rich equatorial resources brought up from the mantle by the massive

volcanism that characterized the early history of the planet. Digging deeply the equatorial regions searching for water would

be too expensive, of uncertain reward, and thus unpractical.
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 10 

Abstract 11 

Existing data returned in > 40 years of planetary missions to Mars provided a good basis to 12 

understand that liquid water hardly existed on the surface of the planet during its whole 13 

history.  The presence of environmental indicators like unaltered jarosite and olivine 14 

deposited by the early volcanic activity can be seen as evidence that liquid water was never 15 

abundant nor widespread on the surface of Mars since the Noachian. There is a dramatic 16 

mismatch with the water equivalent volume of the outflow channels sources with the 17 

volume needed to form an ocean. The ubiquitous presence of large volcanoes, with their 18 

huge lava fields exactly where liquid water was claimed to be abundant during the 19 

Noachian age, makes now very clear that lava and not water was involved in the formation 20 

of the outflow channels and the fluvial networks. As a consequence, cheaper robotic 21 

exploration might be favoured with respect to the ambitious human exploration program 22 

planned for Mars. Unless enough water supplies will be brought to the equatorial regions 23 

from the poles through long pipelines, or from nearby asteroids through cargo ships, it will 24 

be very difficult to exploit the rich equatorial resources brought up from the mantle by the 25 

massive volcanism that characterized the early history of the planet. Digging deeply the 26 

equatorial regions searching for water would be too expensive, of uncertain reward, and 27 

thus unpractical.   28 

 29 

1. Introduction 30 

The observation of anastomosing networks of smaller channels and huge outflow channels 31 

has historically fueled speculations that once liquid water may have flowed abundantly on 32 

the surface of Mars to feed an ocean in the lowlands (Carr, 1987; Carr & Head, 2015; Carr 33 

& Head, 2019). However, it was already clear since the Mariner 4 mission how the low 34 

pressure of the atmosphere (Ingersoll, 1970), between 2 and 6 mbar recently confirmed by 35 

Curiosity rover measurements (Guzewich et al., 2016), does not allow liquid water to be 36 

stable on the surface of Mars (Leighton et al., 1965). Although such an instability is 37 

generally acknowledged, there were claims for evidence of water (Buhler et al., 2011; 38 



Hobbs et al., 2016; Martha et al., 2017), despite valid arguments in favour of lava (Greeley 39 

et al., 1998; Leone, 2014, 2017;  Leverington, 2006, 2011). It was even suggested that the 40 

outflow channels of Tharsis would have fed an ocean in the lowlands thought to exist at the 41 

frozen state until the Hesperian (Carr & Head, 2019). The evidence shows that the largest 42 

outflow channels spread from the volcanoes of Tharsis (Leverington, 2011), where the 43 

stratospheric height favours sublimation (Moyer et al., 1996).  There is also evidence of 44 

lava mantling the lowlands as far as Chryse and Acidalia Planitia (Salvatore et al., 2010), 45 

which are the debouching locations of the Tharsis outflow channels. The olivine naturally 46 

contained in lava appears unaltered since the Noachian (Ehlmann et al., 2010; McSween et 47 

al., 2006a), as it can also be seen from the corresponding units in the geochronological map 48 

of Mars (Tanaka et al., 2014). The Noachian has always been regarded as the wet period of 49 

Mars (Carr & Head, 2010a) but the presence of unaltered olivine suggests a dry 50 

environment. So, it appears that Mars was dry even earlier than the Hesperian when the 51 

ocean was postulated. Thus, if water was not present during the Noachian to alter the 52 

olivine in the lowlands, it is very likely that this ocean never existed during the Hesperian. 53 

Although Mars is an objectively dry world, yet there are authors who claim that liquid 54 

water may currently exist to form gullies (Malin & Edgett, 2000) or recurring slope lineae 55 

(RSL) (Ojha et al., 2015). These claims were later dismissed and replaced by alternative 56 

hypotheses involving granular flows of sand (Dundas et al., 2017). Some authors suggested 57 

that water may have existed in the past for long periods of time from the Noachian to the 58 

Hesperian (Carr & Head, 2019), or even during the Amazonian (Cabrol et al., 1998), 59 

claiming different and favourable climatic conditions, or that conditions for liquid water 60 

were transient or time-limited (Wade et al., 2017). However, there are also authors who 61 

suggested that water never existed in its liquid state (Lin-Gun Liu, 1988). Several studies 62 

assuming a wide range of atmospheric pressures, a faint young Sun, and a denser CO2 63 

atmosphere, concluded that the climate of early Mars was cold (Forget et al., 2013; 64 

Wordsworth et al., 2013; Wordsworth et al., 2015). Several rovers were sent to Mars to 65 

verify the hypothesis that the impact craters were once filled of water to form paleolakes 66 

(Cabrol et al., 1998, 2009). The findings of Pathfinder at Ares Vallis (Foley et al., 2003; 67 

Rieder et al., 1997), Spirit at Gusev (McSween et al., 2006a, 2006b), Opportunity at Sinus 68 

Meridiani (Arvidson et al., 2006), and Curiosity at Gale crater (Payré et al., 2017), revealed 69 

andesitic and basaltic compositions or presence of specific minerals like tridymite (Morris 70 

et al., 2016) more consistent with volcanic (Sautter et al., 2015, 2016) rather than aqueous 71 

activity, even if thought to be transported there by putative fluvial processes (Le Deit et al., 72 

2013). Indeed, Gale crater revealed to be just another lava filled crater (Gasparri et al., 73 

2019) like Gusev (Greeley et al., 2005; McSween et al., 2006a) or Palos ( Leverington, 74 

2006). The cm-scale of the observed structures in the so-called sedimentary material, 75 

including conglomerates (Mangold et al., 2016) or mud-cracks found at Gale (Stein et al., 76 

2018) are too small to justify 154 km of crater filled by water. The chemistry of the 77 

sedimentary material is igneous (Stolper et al., 2013; Ollila et al., 2014; Sautter et al., 2014, 78 

2016; Schmidt et al., 2014; Cousin et al., 2017; Payré et al., 2017). As well as already 79 

occurred at Gusev, it is likely that evidence previously interpreted as fluvio-lacustrine 80 

processes is more consistent with volcanic activity instead (Martínez-Alonso et al., 2005). 81 

Conglomerates can also be formed by movement of lava flows and were already classified 82 

as “flow breccia” (Fisher, 1960). These findings, coupled to the constraint of the upper 83 

limit for the alteration of olivine into serpentine at relatively low temperature (Oze & 84 

Sharma, 2007), already raised doubts on the total duration of the stability of liquid water on 85 



the surface of Mars bringing down the estimates to 10,000 years (Grotzinger et al., 2015). 86 

Also, the jarosite found at the Opportunity landing site indicates total dry conditions on 87 

Mars (to much less than 10,000 years) because it is a mineral that rapidly decomposes in 88 

ferric oxyhydroxides in humid climates (Madden et al., 2004) thus favouring the hypothesis 89 

of volcanic processes (Hynek et al., 2002) for the formation of the hematite found in Sinus 90 

Meridiani. The presence of phyllosilicates (Carter et al., 2015; Ehlmann et al., 2011), 91 

claimed as the evidence of liquid water on the surface of Mars (Bibring et al., 2006), 92 

showed scarce or no correlation with the lowlands where the ocean was supposed to exist. 93 

Furthermore, these phyllosilicates show no correlation with the outflow channels where 94 

liquid water was supposed to flow abundantly. So, other mechanisms of formation 95 

alternative to surface aqueous processes should be invoked or that aqueous processes must 96 

have occurred under the surface of Mars to keep into account the environmental indicators 97 

(i.e. unaltered olivine, jarosite). The giant impact event that formed the Martian dichotomy 98 

must have removed much of the primordial atmosphere and part of the water that survived 99 

after the accretion (Leone et al., 2014). The remaining water was then lost to space 100 

(Gillmann et al., 2011; Kurokawa et al., 2014; Krasnopolsky, 2015; Villanueva et al., 2015) 101 

through degassing from a still wet mantle (Balta & McSween, 2013; Leone, 2017). Today 102 

the amount of water present on the surface and in the atmosphere is nearly negligible. 103 

Water is in the order of 1 ppm during winter (Lewis, 1996), with a maximum of ~ 200 ppm 104 

(consistent with the maximum amounts of 60-70 precipitable microns) found during the 105 

northern summer (Trokhimovskiy et al., 2015) when the CO2 polar cap retreats and releases 106 

its annealed content of water in the atmosphere.  107 

On the basis of the knowledge acquired in > 40 years of missions to the Red Planet this 108 

paper will make a scientific case for the fate of past water on Mars explaining why the 109 

planet never had an ocean and appears so dry today.    110 

 111 

2. Sources and sinks of water 112 

The analysis of all the possible sources and sinks of water since the initial accretion of the 113 

planet is important to estimate the potential global and total inventory that Mars may have 114 

ever had. Considering both hypotheses of local source (from planetesimals along the orbit) 115 

and distal source (from the asteroid belt and comets), Mars had less initial water than the 116 

Earth, a global equivalent layer (GEL) of 600-2700 meters (Lunine et al., 2003). 117 

Measurements of volatiles in the coma of the comet 67P/Churyumov-Gerasimenko showed 118 

how the contribution of cometary water to Earth and Mars was minor than 1% (Marty et al., 119 

2016) also taking into account the possibility of a different impact flux for the two planets 120 

(Quintana & Schultz, 2019). The deuterium/hydrogen (D/H) ratio of 5.5 standard mean 121 

ocean water (SMOW) estimated for Mars (Owen & Tobias, 1992) was essentially 122 

confirmed as order of magnitude by the value of ~ 6 SMOW obtained by in situ 123 

observations (Webster et al., 2013). Variations between 6.2 and 7.1 SMOW corresponded 124 

to a loss to space of 1200 m of GEL and probably occurred in the first 500 Ma 125 

(Krasnopolsky, 2015). The loss of water during the pre-Noachian ranged between 41 and 126 

99 GEL at ~ 6 SMOW, higher than the 10-53 GEL that occurred during the remainder of 127 

the whole Martian history; the remaining inventory of water was about 20-30 GEL on the 128 

surface and 100-1000 GEL underground (Kurokawa et al., 2014). The latter thought as 129 

enough water to carve the outflow channels and the fluvial networks (Lunine et al., 2003). 130 



The polar caps, the atmosphere, and the permafrost of the mid-latitudes were suggested as a 131 

possible reservoir for 35 m GEL of water (Christensen, 2006). It was even suggested that a 132 

single impact event produced by an impactor of 250 km of diameter may have freed 50 m 133 

GEL of water in the atmosphere to fall back down as rain for decades to millennia (Segura 134 

et al., 2002). Impactors of this size were recorded for most of the pre-Noachian and 135 

Noachian (Carr & Head, 2010b). Thus rain should have been available since the Noachian 136 

but this is at odds with the lack of alteration of the olivine seen in the geological units of 137 

Noachian age. The lack of specific mineral deposits that require abundant oxygen and 138 

weathering, like bauxite, is another sign of the absence of meteoritic waters during the 139 

Noachian (West & Clarke, 2010). Assuming 2 wt% of water in magma, which is perfectly 140 

reasonable and within estimates made for similar compositions on Earth (Ushioda et al., 141 

2014), and assuming that 120 m GEL degassed only for the build-up of Tharsis with the 142 

potential formation of a CO2 atmosphere estimated at 1.5 bar between the Noachian and the 143 

Hesperian (Phillips et al., 2001), there must have been no more water than 155 GEL of total 144 

inventory summed to the ≈ 35 GEL currently estimated in the permafrost of the polar 145 

regions (Christensen, 2006). These estimates about past water might even be too optimistic 146 

because the current low atmospheric pressure may have already been present since the early 147 

ages of Mars due to the erosion by primordial impacts (Melosh & Vickery, 1989). This 148 

hypothesis includes the giant impact that formed the Martian dichotomy, regardless 149 

whether occurred in the northern (i.e. Wilhelms & Squyres, 1984) or in the southern 150 

hemisphere (i.e. Leone et al., 2014). Several studies of isotopic hydrogen showed how Mars 151 

lost much of its water already in its first 500 Ma (Gillmann et al., 2011; Kurokawa et al., 152 

2014; Krasnopolsky, 2015; Villanueva et al., 2015). Impacts eroded the atmospheres of the 153 

terrestrial planets and particularly the giant impacts seriously dehydrate planets (Ahrens et 154 

al., 2004). Complete loss of structural water in serpentine may have occurred from 155 

accretional impacts already at ~ 3 km s
-1

 (Lange & Ahrens, 1982). The southern polar giant 156 

impact (SPGI), for example, was modelled with a giant impactor of 1600 km of radius, 157 

80% of iron in radius, hitting Mars at ~ 5 km s
-1 

between 4 Ma and 15 Ma after CAI (Leone 158 

et al., 2014). Such a huge impactor was still barely sufficient to form the Martian 159 

dichotomy but its effect was undoubtedly so devastating that it must have reduced further 160 

any remaining water after the accretion. Furthermore, the effect of solar wind erosion must 161 

be added to the erosion of the impacts. Available estimates account for additional removal 162 

from 0.2 to 4 mbar of CO2 and a few cm of water (Barabash et al., 2007). Combined, 163 

impact and sputtering processes may even account from 95 to 99% of the primordial 164 

atmosphere (Brain & Jakosky, 1998). The strongest phase of volcanism that Mars had in its 165 

first 500 Ma, as consequence of the SPGI, then might have replenished some CO2 but 166 

degassed any remaining water in the mantle as final process (Leone, 2017). This is 167 

consistent with the analysis of the shergottites formed by melting of an original wet mantle 168 

that degassed over time (Balta & McSween, 2013). Water is lighter than CO2 to be retained 169 

in an environment characterized by low gravity and low atmospheric pressure. All these 170 

arguments explain why Mars always had an unfavourable environment for the survival of 171 

an ocean of liquid water during its whole history. 172 

 173 

 174 

3. Arguments claiming past presence of water 175 



Several claims of evidence about past existence of water have been done on the basis of the 176 

geomorphologic interpretation of mudcracks, topographic features like shorelines, fluvial 177 

networks, gullies, recurring slope lineae (RSL), or the mineralogical interpretation of 178 

phyllosilicates, hematite, carbonates, perchlorate salts, and secondary veins of calcium 179 

sulphate, or claims of direct radar observations in both equatorial and polar regions. At last, 180 

presence of water was found in zircon grains present in Martian meteorites. The majority of 181 

these claims attempted to extrapolate at large scale some findings at small scale, which is 182 

totally unrealistic, and will be thoroughly reviewed in the following sections. 183 

 184 

3.1. Geomorphological arguments 185 

The presence of a past ocean in the lowlands of Mars was suggested on the basis of the 186 

interpretation of the Arabia and Deuteronilus gradational unit contacts as potential 187 

shorelines (Parker et al., 1989). Subsequent observations of the topographic profiles along 188 

the contacts provided little support to the potential surface of a sea level favouring a 189 

volcanic origin instead (Carr & Head, 2003). This mismatch between topography and 190 

potential shoreline was tentatively explained through a possible true polar wander (TPW) 191 

(Perron et al., 2007), or through the emplacement of Tharsis (Citron et al., 2018), or 192 

through the emplacement of the Vastitas Borealis Formation (VBF) (Ivanov et al., 2017), 193 

the latter two hypotheses being essentially based on volcanic processes. Furthermore, the 194 

paucity of coastal landforms (Ghatan & Zimbelman, 2006) suggested that the putative 195 

shorelines might also be ascribed to the original emplacement of the Martian dichotomy 196 

(Erkeling et al., 2015), or to the possibility that such an ocean would have been completely 197 

frozen (Carr & Head, 2019). 198 

The fluvial networks have always been interpreted as formed by flows of water originated 199 

mainly by ground sapping rather than surface runoff (i.e. rain) (Baker, 2001). Although it 200 

was recognized that some of these fluvial networks required huge amounts of water, if 201 

compared to their terrestrial counterparts, there was lack of understanding on how such 202 

amounts of water were released from the ground (Baker, 2001). Some authors invoked 203 

volcanic heating from rising dykes cutting through a shallow cryosphere (Bargery & 204 

Wilson, 2011) or environmental warming due to favourable obliquity (Carr, 2012) in order 205 

to melt the ground ice. A possible origin for the ground ice was proposed as “outgassed 206 

water entombed as frost, snow, and ice during heavy bombardment” (Brakenridge, 1990). 207 

Being located in the ancient cratered regions of Mars, it was suggested that the origin of the 208 

valley networks might be quite old, probably since the end of the late heavy bombardment 209 

(Brakenridge et al., 1985). Hydrothermal systems produced by impact melting were also 210 

invoked to form the fluvial networks, then ice covered the rivers allowing water to stay 211 

liquid even in a cold environment. (Brakenridge et al., 1985). Such an hypothesis did not 212 

need any significant climatic change from the current status, thus implying that the 213 

environment of the surface of Mars was also thought to be cold and with a thin atmosphere 214 

like it is today. It was also acknowledged that some fluvial networks and the main outflow 215 

channels spreading from the high volcanoes of Tharsis and Elysium can only have a 216 

volcanic origin, thus carved by lava, because heated ice would sublime rather than melt at 217 

atmospheric pressure well below the triple point of water (Carr, 2012). The volcanoes of 218 

the Tharsis and Elysium regions have heights of ≥14 km, corresponding to the stratosphere 219 



of Mars, where sublimation or evaporation rather than melting are the dominant conditions 220 

(Moyer et al., 1996). Even at the ground height of the Phoenix landing site, ice sublimated 221 

in about 4 sols without showing any liquid form of water or significant erosional activity 222 

(Smith et al., 2009).  223 

The presence of gullies in several steep slopes of various locations on Mars was claimed as 224 

the evidence of recent activity by liquid water, invoking once more an ice barrier to prevent 225 

liquid water from sublimation (Malin & Edgett, 2000). Follow-up studies considering a 226 

wide range of possible processes, such as insulation (Mellon & Phillips, 2001), geothermal 227 

heating (Hartmann, 2001), cryovolcanism (Gaidos, 2001), brine seeps (Knauth & Burt, 228 

2002), eruptions of liquid CO2 (Musselwhite et al., 2001), and granular flows (Treiman, 229 

2003), concluded that liquid water was not likely involved in the formation of the gullies 230 

(Treiman, 2003). 231 

A similar conclusion was reached years later for the RSL as well (Dundas et al., 2017). A 232 

phenomenon of water retention by perchlorate salts called “deliquescence” was put forward 233 

to explain the seasonal change of low-reflectance features, exactly the RSL, which would 234 

be forming on present-day Mars (Ojha et al., 2015). These features were explained later 235 

with the same granular flows of sands that explained the gullies (Dundas et al., 2017). The 236 

claim of possible current activity of liquid water on seasonal timescale (Ojha et al., 2015) 237 

was based on a theoretical effect of salts that were studied at a fixed pressure of 7 mbar 238 

(Altheide et al., 2009) and on a range of theoretical conditions of temperature and 239 

concentration of salts per volume of water that were never verified yet on the surface of the 240 

planet. Furthermore, the RSL in Palikir, Horowitz, Hale, and Coprates Chasma are all 241 

located in terrains with very low contents (2 mass percents) of water equivalent hydrogen 242 

(WEH) as shown in the Mars Odyssey neutron map (Christensen, 2006). 243 

 244 

3.2. Mineralogical arguments 245 

The presence of phyllosilicates and clays was claimed as evidence of aqueous presence on 246 

Mars (Bibring et al., 2006). Spectra of submarine terrestrial clays were compared to 247 

available CRISM spectra of Martian clays, the results showed that the largest group of 248 

clays (smectitic samples with FeO/MgO ratios ≈ 10-30, supposedly between submarine and 249 

low-submarine environment) were found on the Noachian highlands of Mars (Michalski et 250 

al., 2015) where no ocean was ever reported or possibly be present. Even the presence of 251 

smectite is not unambiguously the proof of formation in ponding water (Ehlmann et al., 252 

2013) and might be the result of thermal alteration by lava instead (Che & Glotch, 2014). 253 

Another possibility is that phyllosilicates were formed by >400°C-hot hydrothermal fluids 254 

under the surface (Ehlmann et al., 2011), where the lithostatic pressure of the rocks still 255 

allows the stability of liquid water, and then exposed as outcrops upon erosion or transport 256 

by subsequent lava flows. The geochemistry of the clays analysed at Yellowknife Bay 257 

shows little evidence for chemical weathering during the transport into the basin 258 

(McLennan et al., 2014), so that less support for aqueous processes into Gale crater is 259 

available. 260 

Although thermal oxidation of magnetite-rich lavas was included among the alternative 261 

hypotheses, the presence of crystalline hematite (α-Fe2O3) over an area of 350 by 350-750 262 



km in size located at Sinus Meridiani was preferred as mineralogic evidence for large-scale 263 

water interactions (Christensen et al., 2000). Subsequent global mapping revealed detection 264 

of crystalline hematite in basaltic sediments at Sinus Meridiani, Aram Chaos, and along 265 

Valles Marineris (Christensen et al., 2001). In fact, a subsequent study confirmed that the 266 

crystalline hematite in Terra (Sinus) Meridiani may have been formed by thermal oxidation 267 

precipitated from circulation of fluids in a 600 m-thick stack of pyroclastic deposits (Hynek 268 

et al., 2002). The Opportunity rover discovered that the hematite signature was associated 269 

to 1-5 mm small concretions in aeolian deposits dominated by abundant pyroxene-rich 270 

basaltic material (Arvidson et al., 2006). These findings revealed nothing that can justify a 271 

large-scale or global layer of water so far away from the lowlands where the ocean was 272 

postulated. 273 

The search for carbonates started already at the end of the 80’s with ground-based 274 

observations of the Syrtis Major-Arabia-Hellas regions of Mars (Blaney & McCord, 1989), 275 

KAO observations of dust on the surface (Pollack et al., 1990), and the analysis of Mariner 276 

6/7 spectral data (Calvin et al., 1994). Despite a claimed detection of a strong feature at 5.4 277 

micron consistent with hydrous magnesium carbonate (Calvin et al., 1994), the 278 

spectroscopic identification of carbonates on the surface of Mars revealed quite uncertain 279 

and elusive (Bandfield et al., 2003). The light-toned outcrops at Paso Robles of Gusev 280 

crater were sulphates likely formed as volcanic hydrothermal fumarolic condensates (Yen 281 

et al., 2008) whilst the 16 to 34 wt% content of carbonate found in the 5 m Comanche 282 

outcrop (grain sizes of 0.5 – 1 mm) of the Columbia Hills (Morris et al., 2010) is too small 283 

to support the hypothesis of an extensive aqueous process (i.e. paleolake) that would be 284 

filling the crater. The finding at the Phoenix landing site is even smaller with a content of 285 

CaCO3 of 3-5 wt% in the Wicked Witch sample (Boynton et al., 2009). The various 286 

analyses made during the Phoenix mission showed mineral phases (i.e. smectite, 287 

montmorillonite) formed at high temperatures (Smith et al., 2009), which only lava flows 288 

can explain in the cold environment of Mars. The findings at Nili Fossae showed spectral 289 

features of Mg-carbonate scattered over an area of 50 km but with too low spatial 290 

resolution to distinguish small quantities and the finding was never confirmed at global 291 

scale on Mars (Ehlmann et al., 2008). The scarcity of carbonate on the surface of Mars was 292 

tentatively justified by possible volcanic emissions of SO2, which might have been 293 

abundant on Mars as well as on Earth, thus implying an unnecessary presence of worldwide 294 

acidic waters (Halevy & Schrag, 2009). The scarce findings of carbonates are not indicative 295 

of a past dense atmosphere but rather of a limited availability of water in little and localized 296 

hydrothermal environments (Niles et al., 2013).    297 

The presence of perchlorate salts was also considered as the evidence of the activity of 298 

water or as a factor favouring the stability of liquid brines on the surface of Mars (Chevrier 299 

et al., 2009; Cull et al., 2010; Marion et al., 2010). However, these studies did not even 300 

consider the possibility that salts could also be deposited from the vapours emitted during 301 

volcanic degassing (Naughton et al., 1974; Glotch et al., 2010) known to occur in the early 302 

history of Mars. Nor that formation of perchlorates could even be an ongoing process, 303 

produced photochemically on Cl minerals without atmospheric chlorine or aqueous 304 

conditions, occurring wherever chloride-bearing mineral phases exist (Carrier & Kounaves, 305 

2015). 306 



At last, water was found in zircon grains present in Martian meteorite NWA7533 aged 307 

about 4.43 Ga (Nemchin et al., 2014). However, the isotopic values of δ
18

O between 3.5 of 308 

the SNC and 7.5 of the zircons contained in NWA7533 and of the decarbonated sample of 309 

the meteorite NWA7034 (Agee et al., 2013) likely indicate that it was just mantle water. 310 

The higher values of δ
18

O (>9) in Jack Hill zircons (JHZ) showed that the Earth’s crust 311 

coexisted with liquid water whereas values of δ
18

O between 5 and 6 indicate zircons 312 

crystallized from the mantle (Cavosie et al., 2009). 313 

 314 

 315 

3.3. Radar observations 316 

Claims of underground ice through SHARAD sounding radar analysis (Karlsson et al., 317 

2015; Orosei et al., 2018), although at the pole might be expected, remained ambiguous at 318 

best because the dielectric constant for water used in the experiments (k = 3.15) is not too 319 

far from that of dacitic lava (k = 3.80). The dry tephra in the upper layers of Arsia Mons 320 

showed k = 2.90 (Ganesh et al 2019). Depending dramatically on the porosity of the 321 

geologic layers, the higher the porosity the lower the value of the constant for the same 322 

material (Russell & Stasiuk, 1997), the radar sounding remains a method of investigation 323 

quite uncertain. Even basaltic lava, if highly degassed and thus very porous, might have a 324 

low dielectric constant similar to that of water. Thus, basaltic tephra deposits would be 325 

difficult to distinguish from eventual water annealed in the cage of frozen CO2 forming the 326 

polar caps. The mid-latitude regions selected for the experiments of radar sounding were 327 

the Mamers Valles (23°E – 39°N and 28°E – 40°N) and Reull Vallis (103°E – 41°S and 328 

105°E – 43°S) (Karlsson et al., 2015), both located in volcanic terrains covered by an 329 

eolian blanket of volcanic ashes transported by the wind and characterized by porosity 330 

comparable to that of tephra that may vary from a few cm to hundreds of meters of 331 

thickness depending on the topography (Leone, 2016). Both regions have much lower 332 

WEH than the polar regions (Christensen, 2006). 333 

 334 

4. Arguments in favour of lava  335 

The strength of the arguments in favour of lava comes essentially from: a) the weakness of 336 

the arguments in favour of water discussed so far; b) the geomorphological observations of 337 

the outflow channels spreading directly from the main volcanoes of Mars (Leverington, 338 

2011; Carr, 2012; Hopper & Leverington, 2014; Leone, 2014, 2016, 2017, 2018); and c) 339 

the widespread presence of unaltered olivine (Ehlmann et al., 2010). The environmental 340 

problems for liquid water on Mars were already well known before the Viking missions 341 

(Leighton et al., 1965; Ingersoll, 1970). Even the latest rover missions did not find 342 

compelling evidence of liquid water within the craters but just interpretation at large scale 343 

of mineralogy of ambiguous origin observed at very small scale. In fact, the mineralogy 344 

found in these craters showed scarce sedimentary outcrops, mostly at cm-scale (Mangold et 345 

al., 2016), and prevailing basaltic composition (McSween et al., 2006b; Stolper et al., 2013; 346 

Ollila et al., 2014; Schmidt et al., 2014; Grotzinger et al., 2015; Sautter et al., 2015, 2016; 347 

Cousin et al., 2017), including tridymite at Gale (Morris et al., 2016), thus suggesting 348 

infilling of lava rather than water because tridymite is a mineral that forms at temperatures 349 



above 850 
◦
C (Morris et al., 2016). Regardless whether autoctonous or alloctonous, 350 

tridymite is just one of the many pieces of evidence about volcanic activity. The 351 

geochemistry of the crater infill is of volcanic origin, despite the wide and inappropriate use 352 

of the term sedimentary that mainly recalls deposition in water in the mind of a geologist. It 353 

is now clearly evident that Gale crater was filled by lava coming from Tyrrhenus Mons 354 

(Gasparri et al., 2019). Nothing different than something already observed at Gusev 355 

(McSween et al., 2006a, 2006b), Palos (Leverington, 2006), or elsewhere on Mars (Leone, 356 

2016). After the initial post-Mariner (Leighton et al., 1965) and post-Viking views (Baird 357 

& Clark, 1984), there is now a growing literature that shows compelling evidence of lava as 358 

the main fluid carving the outflow channels and the fluvial networks (Leverington & 359 

Maxwell, 2004; Leverington, 2004, 2007, 2009, 2011; Hopper & Leverington, 2014; 360 

Leone, 2014, 2016, 2017, 2018). Such evidence is also supported by the scarcity of the 361 

sources which should have provided the amounts of water necessary to fill the lowlands 362 

with enough water to form an ocean.  363 

 364 

 365 

4.1 Volumetric comparison among outflow channels, fluvial networks, and putative 366 

sources of water. 367 

 368 

The volume of terrain removed to form Valles Marineris and Kasei Valles was estimated at 369 

12.90 × 10
6
 km

3
, a lower estimate that includes the lava filling of the two channels (Leone, 370 

2014). Two or three orders of magnitude of volume of water would be realistically required 371 

to carve the outflow channels (Andrews-Hanna & Phillips, 2007; Leone, 2014; 372 

Leverington, 2011), something between 90 m GEL and 9000 m GEL. If such a volume of 373 

water was concentrated underground on the flanks of the Tharsis volcanoes over the whole 374 

area of Noctis Labyrinthus, the column would be ~ 6.24 km deep at an unrealistic value of 375 

porosity of 100%, or fractional void space (FVS) of 1. The average FVS of basaltic lava on 376 

Earth is 0.25, Mars has essentially a similar basaltic composition, and decreases 377 

exponentially with increasing lithostatic pressure (Head & Wilson, 1992) 378 

 379 

Vv = Vv0 exp (-P)      (1) 380 

 381 

where Vv is the porosity at depth, the lithostatic pressure is P, Vv0 is the surface porosity, 382 

and  is a constant equal to 1.18 × 10
-8

 Pa
-1

 independent of the gravity (Leone & Wilson, 383 

2001). The lithostatic pressure of basaltic lava at depth of 6.24 km on Mars would be ~ 67 384 

MPa and the corresponding FVS would be reduced at 0.11. Less space would thus be 385 

available to accommodate water in the putative aquifer. Another study obtained essentially 386 

similar results with FVS 0.16 at the surface and 0.04 at 10 km of depth (Hanna & Phillips, 387 

2005). There are also problems of unrealistic permeability, ~ 300 times larger than those 388 

associated to the most permeable aquifers on Earth, as already found at Mangala Valles 389 

(Ghatan et al., 2005). The proposed mechanism of aquifer recharge from the south polar 390 

basal melting (Russell & Head, 2007) is difficult when the outflow channels are located at 391 



too high elevations (Carr, 2002; Leverington, 2011). This is particularly evident at Noctis 392 

Labyrinthus and Valles Marineris (Leone, 2014). A model of snowpack melting that would 393 

recharge the aquifers from above was also suggested (Carr & Head, 2003) but the cold 394 

conditions would also prevent water from accessing the subsurface (Clifford, 1993; Russell 395 

& Head, 2007). All these problems suggested that water is not a viable fluid to explain the 396 

formation of Valles Marineris and of the other outflow channels (Leverington, 2011; 397 

Leone, 2014). Volumetric discrepancies were found at Ladon Valles, the channel shows a 398 

minimum volume of ~ 4000 km
3
 whereas the source can account for only ~ 600 km

3
, and at 399 

Mamers Valles, the formation of which would have required a column of pure water 7.5 km 400 

deep at an unrealistic 100% constant porosity all over the aquifer (Leone, 2016). 401 

 402 

 403 

5. Discussion 404 

The ubiquitous presence of unaltered olivine and jarosite on Mars, including the low ratio 405 

of oxygen isotopes found in Martian zircons, is the best evidence that an ocean of liquid 406 

water never existed. These minerals are both environmental and chronological indicators, 407 

they show no alteration in dry conditions and the low oxygen isotope ratio indicates mantle 408 

water rather than surface water. The contact of water, either liquid or frozen, alters the 409 

olivine in 100-10,000 years (Oze & Sharma, 2007). The jarosite is even quicker as it 410 

quickly decomposes into ferric oxyhydroxides in presence of humidity (Madden et al., 411 

2004). The presence of phyllosilicates and other mineralogical phases, thought as the 412 

evidence of running water on the surface, suggests that an alternative explanation of 413 

volcanic origin under the surface of Mars may exist.  414 

The hypothesis of tsunami resurfacing events produced by an impact on Mars during the 415 

Hesperian (Rodriguez et al., 2016) was put forward in both the cases of past cold and a 416 

warm climates conditions opening the possibility that such events could have happened in a 417 

briny and salty ocean surviving for 2.7 millions of years at least (Turbet & Forget, 2019). 418 

Such a long duration of a Martian ocean is practically impossible. The scarce or absent 419 

alteration into serpentine of the olivine deposited during the Noachian in the lowlands 420 

(Ehlmann et al., 2010) and in the highlands (McSween et al., 2006b), as can also be 421 

observed from the geo-chronological map of Mars (Tanaka et al., 2014), rules out any 422 

possibility that such an ocean ever existed. Depending on warm or cold conditions, the 423 

olivine naturally contained in basaltic lava gets altered at the contact with water after 100 or 424 

10,000 years (Oze & Sharma, 2007). Subsequent deposition of fresh lava in the lowlands 425 

during the Hesperian (Salvatore et al., 2010) or afterwards does not change the situation. 426 

The jarosite just deposited with lava would have quickly formed ferric oxyhydroxides from 427 

the humidity that such an ocean would have produced in its interaction with the Martian 428 

atmosphere (Madden et al., 2004). At the proposed timescales of millions of years for the 429 

existence of the putative ocean in the lowlands of Mars (Rodriguez et al., 2016; Turbet & 430 

Forget, 2019) it is clear that traces of alteration would have certainly appeared. As a term of 431 

comparison, the olivine deposited in submarine environment on Earth during 1.9-0.5 Ma 432 

shows unambiguous traces of alteration (Garcia et al., 2016). So, the Earth and Mars did 433 



not have a similar wet past as postulated before (Gulick & Baker, 1989; Paige, 2005; Carr 434 

& Head, 2010a, 2010b). 435 

How can be explained such a sharp environmental difference between Mars and the Earth? 436 

The Earth was able to retain its water while Mars not, this is an incontrovertible fact that we 437 

can still observe today. The low atmospheric pressure of Mars favours degassing from 438 

magma already at higher depth compared to the Earth (Bargery & Wilson, 2010). As a 439 

consequence, Martian water was likely lost to space and there is evidence that it may have 440 

already happened in the first 500 Ma, corresponding to thePre-Noachian – Noachian ages 441 

of the Martian history (Gillmann et al., 2011; Kurokawa et al., 2014; Krasnopolsky, 2015; 442 

Villanueva et al., 2015). Both olivine and jarosite do not show traces of aqueous alteration 443 

at global scale ( Madden et al., 2004; Ehlmann et al., 2010) and this is a strong evidence 444 

that even a humid climate never existed since the Noachian on Mars. Any degassed water 445 

from the strong magmatic activity which started already in the Pre-Noachian never came 446 

back to the surface as rain or stationed in the atmosphere as humidity. It is likely that the 447 

arid and cold conditions that we see today on Mars might have been already established 448 

since then. Regardless of the presence of salts and brines, which are not as widespread as it 449 

would be expected from the presence of a global layer of water, it is really hard to imagine 450 

any presence of water able to feed the putative Martian ocean only from volcanic sources as 451 

shown by the outflow channels spreading from them. It is more a problem of low 452 

atmospheric pressure, rather than low surface temperature, which prevents the stability of 453 

liquid water on Mars. With these conditions, even ice would sublime as soon as it is 454 

brought to the surface. Liquid water would have had no chance of survival, even less of 455 

eroding the hard basaltic bedrock on which were carved the outflow channels. 456 

 457 

5.1. Implications for the Human Exploration Programme and possible cost-458 

effective solutions 459 

Among the various resources needed for the Human Exploration Programme (HEP) the 460 

most important is water, that is also why particular emphasis was put on the search for 461 

water in the Mars Sample Return (MSR) programme (Beaty et al., 2019). The estimates of 462 

the daily need of drinking water for an astronaut varies from at least 1 or 2 litres (Kerwin & 463 

Seddon, 2002) to 3.5 litres (Sanchez & McInnes, 2011) per day. Even with the current 464 

recycling systems, water is still consumed for the production of breathing oxygen while 465 

hydrogen is dumped to space (Shimada & Fujii, 2012). A study of the water needs per 466 

astronaut on the ISS has estimated a daily consumption of 14.2 litres with a specific mass 467 

consumption varying from 10 to 20% of the total (Bobe et al., 2007). Water is also 468 

important for its use as propellant, better than the carbon monoxide-oxygen combination, 469 

and for radiation shielding (Lewis, 1996). The amount of the possible MSR or surface 470 

operations and their sustainability with time will depend on the availability of in-situ 471 

propellant to send back material to Earth. So where shall we go to find this precious 472 

resource on Mars? If the prospections of water under the polar caps with SHARAD will be 473 

successful, the polar regions are the obvious choice. Equally obviously, a possible 474 



misinterpretation should be taken into account. Even in the successful case of significant 475 

finding, transporting water where it is needed by the various operations on the surface 476 

would require a long network of pipes all over the planet. Or, at least, connect the poles to a 477 

first primary base where to start the initial operations. It could be possible to sample (and 478 

launch) directly from the polar regions but the samples would be indicative only of the 479 

geologic situation of the place where they are taken without counting the extra propellant 480 

needed to move into more favourable orbits to readjust the trip towards the Earth. An 481 

expansion towards the equatorial regions seems inevitable in the long run, now the question 482 

is how to support this expansion in the meanwhile. Alternative sources of water are needed 483 

to support the operations and the ongoing prospections. Sending water directly from Earth 484 

has a prohibitive cost, due to its high gravity (Sanchez & McInnes, 2011), so we need to 485 

find sources much closer to Mars. Despite the various claims seen so far, the water 486 

resources available on Mars seem scarce and unreliable for a long-term and sustainable 487 

HEP. 488 

A viable source of water might be available from the asteroids, Mars-crossing (MCs) 489 

Amors in particular, with their low delta-V (Lewis, 1996). The MCs Amors contain a 490 

significant fraction (50-60%) of water-rich carbonaceous asteroids (Lewis, 2014) and their 491 

spectral properties can be studied through available Sloan data (Carry et al., 2016). In order 492 

to support the Martian exploration and future settlements, the strategic idea would be using 493 

the low delta-V of the MCs asteroids and of the Martian satellites to deliver by cargo ships 494 

the water extracted from their surfaces where is needed on Mars. This is a different and 495 

more flexible approach than focusing only on the surface of Mars for the search of water. 496 

Delta-V maps of many asteroids are already available and improved rocket technologies 497 

have made this approach more feasible (Ventura et al., 2005). Furthermore, the advantage 498 

in this approach is that the lack of water on the surface of Mars would not be a problem for 499 

the support of the initial stages of the HEP and the subsequent necessary prospections. 500 

Water supplies can be selectively delivered in any place of the equatorial regions of the 501 

planet exploiting the orbits of the Phobos and Deimos satellites or any MCs asteroids. Even 502 

shepherding asteroids in Mars’ orbit could be possible using the methods proposed for the 503 

Earth (Brophy et al., 2012). This requires a continued search and knowledge of the spectral 504 

properties of all the possible profitable asteroidal targets and their orbital periods (Elvis, 505 

2014). Running the initial operations from low Earth orbit (LEO) to reach the MCs or the 506 

Martian satellites, with both intelligent logistics and use of energy, launching costs would 507 

fall down to just one dollar per kilogram (Lewis, 1996) from the previous 10,000 dollars 508 

per kilogram (Sanchez & McInnes, 2011). However, exploiting the MCs asteroids is not an 509 

unlimited resource, using it well is very important. It takes a long time to replenish a region 510 

once it is depleted, something like millions years of natural orbital evolution (Sanchez & 511 

McInnes, 2011). Unless we decide to use the available Near Earth Asteroids (NEAs) to 512 

jump from asteroid to asteroid towards the water resources of the Asteroid Belt (AB) as a 513 

first step to harvest more abundant water resources. The C-type asteroids are mostly located 514 

in the outer half of the AB (Chapman et al., 1975). This operation would clearly be aimed 515 

at shepherding more water-rich asteroids from the AB to the inner solar system. This 516 

strategy could pay off in the long run and would be more cost-effective than just 517 



prospecting Mars for years, other profitable mineral resources worth billions of dollars plus 518 

water would be available for future Mars operations (Lewis, 1996). Enough resources to 519 

support the exploration of Mars and the Moon for long time if a good supply chain will be 520 

established. 521 

 522 

6. Conclusion 523 

A different picture thus arises with respect to the one that prevailed during the past decades. 524 

Mars was not a warm and wet planet but was actually a cold and dry planet. It was 525 

dominated by a strong volcanic activity during its early history, shown by the extent of the 526 

lava fields forming the largest volcanic provinces of the solar system. Mars was 527 

characterized by the loss of any remaining water after that the southern polar giant impact 528 

(SPGI) severely dehydrated the planet and triggered its massive volcanism. The SPGI has 529 

its advantage with respect to any other impact hypothesis because better explains the 530 

distribution of the volcanoes on the planet and the perfect timing of the decline of the 531 

magnetic field with the waning of the peak volcanism. This phase of peak volcanism 532 

deposited the bulk of the large volcanic edifices and their lava fields containing the olivine 533 

that we still see today. It is very unlikely that any ocean may have existed before this event 534 

took place, Mars was a planet still very hot due to the decay of the short lived radiogenic 535 

elements such as 
26

Al and 
60

Fe.  536 

In conclusion, according to the available results in the Martian literature, no ocean could 537 

have existed in the lowlands or anywhere else on the surface of Mars. In such a case, no 538 

tsunami events could have been existed in any possible climatic scenario because no ocean 539 

was ever present to host it on Mars. The fluvial networks and the outflow channels were 540 

formed by fluid lava flows that had rheological behaviour similar to water. The warm and 541 

wet planet as speculated so far is just a misconception that should not prevent the space 542 

agencies from future exploration. The planet is very rich of mineral resources that will 543 

become extremely precious when the resources available on Earth will be inevitably 544 

depleted. At that point, new techniques of extraction and delivery will make Martian 545 

mining economically convenient by using the Mars crossing asteroids and the moons of 546 

Mars as close bases. In the meanwhile, it would be good practice to have a map of the 547 

available resources on the planet. The scarcity or absence of water should not be seen as an 548 

obstacle to any future exploration. Robotic prospections will optimize the initial limited 549 

water resources that may come from the poles of Mars (if definitely confirmed) or from the 550 

nearby asteroids. 551 
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