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Abstract

Parameterization of subgrid-scale variability of land cover characterization (LCC) is an active area of research, and can improve

model performance compared to the dominant (i.e., most abundant tile) approach. The “Noah” land surface model imple-

mentation in the global Model for Predictions Across Scales-Atmosphere (MPAS-A), however, only uses the dominant LCC

approach that leads to oversimplification in regions of highly heterogeneous LCC (e.g., urban/suburban settings). Thus, in this

work we implement a subgrid tiled approach as an option in MPAS-A, version 6.0, and assess the impacts of tiled LCC on

meteorological predictions for two gradually refining meshes (92-25 and 46-12 km) focused on the conterminous U.S for January

and July 2016. Compared to the dominant approach, results show that using the tiled LCC leads to pronounced global changes

in 2-m temperature (July global average change ˜ -0.4 K), 2-m moisture, and 10-m wind speed for the 92-25 km mesh. The

tiled LCC reduces mean biases in 2-m temperature (July U.S. average bias reduction ˜ factor of 4) and specific humidity in the

central and western U.S. for the 92-25 km mesh, improves the agreement of vertical profiles (e.g., temperature, humidity, and

wind speed) with observed radiosondes, and there is a general decrease in error for precipitation in the U.S.; however, there is

increased bias and error for incoming solar radiation at the surface. The inclusion of subgrid LCC has implications for reducing

systematic warm biases found in numerical weather prediction models.
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Key Points 15 

 The use of tiled land cover characterization (LCC) has significant impacts on global 16 

meteorological predictions in MPAS-A. 17 

 Tiled LCC reduces bias and error for near-surface temperature, moisture, and wind speed 18 

over the U.S. 19 

 The tiled LCC approach can help mitigate systematic warm biases in weather and climate 20 

models.  21 

 22 
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Abstract 23 

Parameterization of subgrid-scale variability of land cover characterization (LCC) is an 24 

active area of research, and can improve model performance compared to the dominant (i.e., 25 

most abundant tile) approach.  The “Noah” land surface model implementation in the global 26 

Model for Predictions Across Scales-Atmosphere (MPAS-A), however, only uses the dominant 27 

LCC approach that leads to oversimplification in regions of highly heterogeneous LCC (e.g., 28 

urban/suburban settings). Thus, in this work we implement a subgrid tiled approach as an option 29 

in MPAS-A, version 6.0, and assess the impacts of tiled LCC on meteorological predictions for 30 

two gradually refining meshes (92-25 and 46-12 km) focused on the conterminous U.S for 31 

January and July 2016.  Compared to the dominant approach, results show that using the tiled 32 

LCC leads to pronounced global changes in 2-m temperature (July global average change ~ -0.4 33 

K), 2-m moisture, and 10-m wind speed for the 92-25 km mesh. The tiled LCC reduces mean 34 

biases in 2-m temperature (July U.S. average bias reduction ~ factor of 4) and specific humidity 35 

in the central and western U.S. for the 92-25 km mesh, improves the agreement of vertical 36 

profiles (e.g., temperature, humidity, and wind speed) with observed radiosondes, and there is a 37 

general decrease in error for precipitation in the U.S.; however, there is increased bias and error 38 

for  incoming solar radiation at the surface.  The inclusion of subgrid LCC has implications for 39 

reducing systematic warm biases found in numerical weather prediction models.   40 

 41 

 42 

 43 

 44 

 45 

 46 
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1. Introduction 47 

 48 

The land cover characterization (LCC), i.e., the physical characteristics of Earth’s land 49 

surface (vegetated, wetlands, water, ice, or urban/impervious), is inherently heterogeneous, in 50 

some areas extreme, and is rapidly changing due to recent and projected future fluctuations in 51 

the LCC for both developed and developing countries.   Changes in LCC due to human 52 

activities (e.g., deforestation, industrialization, agriculture, urban sprawl) produce physical 53 

changes in land surface albedo, latent (LH) and sensible heat (SH) fluxes, and atmospheric 54 

aerosol and greenhouse gas concentrations.  Consequently, LCC changes have accounted for 55 

approximately half of the human-caused global radiative forcing from 1850 to the present 56 

day (Hibbard et al., 2017).  57 

Numerical atmospheric, or weather prediction models (NWPs) are used to predict the 58 

near- and long-term weather and climate changes, which are tightly bound to the land surface 59 

model (LSM) component that represents the lower physical boundary, controls the 60 

representation of LCC variability, is the memory of climatic changes, and apportions the 61 

physical responses in surface LH and SH fluxes. NWP models, however, consistently 62 

simulate warmer surface temperatures compared to ground  observations, where most of the 63 

systematic 2-meter temperature biases appear by day-5 predictions, and the largest warm bias 64 

is found in the Central U.S. (Ma et al., 2014).   A joint model-observation intercomparison 65 

project, the Clouds Above the United States and Errors at the Surface (CAUSES), evaluated 66 

the role of clouds, radiation, and precipitation processes in contribution to the surface 67 

temperature biases in the Central U.S (Morcrette et al., 2018).  One of the important findings 68 

from the CAUSES project was that the large warm bias in NWP models are attributed to the 69 

simulation of deep convective clouds and the evaporative fraction (EF = LH/[LH+SH]) at the 70 
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surface (Steiner et al., 2018; and references contained within).  Thus, there exists a direct 71 

connection between the accuracy of the NWP models’ representation of the LCC and subgrid 72 

scale variability in its coupled LSM, and the predictive accuracy of EF and associated 73 

feedbacks with surface temperature and moisture, clouds, and precipitation. 74 

Using a “dominant” approach to LCC in LSMs, where each grid cell is assumed to be 75 

entirely composed of the most abundant land use (LU) type, is an oversimplification of the 76 

real-world LCC variability, especially in regions with high spatial heterogeneity. Of course, 77 

in practice there must exist a balance between representing the myriad of processes that 78 

relatively coarse models cannot resolve, and the available computational efficiency and 79 

resources for the respective application of the model. Spatial variability in LCC and the 80 

resulting hydrologic and atmospheric responses, are driven by a number of factors with both 81 

random and nonrandom components.   Thus, depiction of  subgrid-scale LCC variability in 82 

LSMs has been an active area of research over the past three decades (Giorgi and Avissar, 83 

1997), where Avissar and Pielke (1989) first proposed a subgrid LCC parameterization that 84 

used a number of patches (or tiles), i.e., the “tiled” approach, and showed that it resulted in 85 

strong contrasts in total surface energy fluxes. In the tiled approach, the corresponding 86 

surface fluxes, energy, and water balances in the LSM are calculated for each explicit LU 87 

category with unique vegetation attributes in the model grid cell, and then are spatially 88 

averaged to produce the surface fluxes  for each cell.   89 

Other subgrid LCC methods include the “composite” approach, which is similar to the 90 

dominant approach, but the surface properties are either linearly or non-linearly aggregated 91 

based on the properties of all the tiles within the grid cell (Koster and Suarez, 1992; 92 

Verseghy et al., 1993).  The statistical-dynamical approach assumes that the land surface 93 
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parameters that are critical for calculating surface fluxes follow certain probability density 94 

functions (PDFs) (Avissar, 1991; Entekhabi and Eagleson, 1989; Famiglietti and Wood, 95 

1991). The multivariate mosaic subgrid approach (i.e., “k-means clustering”) method is used 96 

to take an arbitrary number of input descriptors and objectively determine areas of similarity 97 

within a grid cell.  This is in contrast to a “univariate approach” that only uses one spatially 98 

varying parameter to aggregate a catchment into a relatively few classes (Newman et al., 99 

2014).  The k-means clustering method may in fact be well suited to represent subgrid spatial 100 

complexity in LSM applications on the global to regional scales.  Other global- to regional-101 

scale LSMs have incorporated subgrid LCC, such as the Community Land Model (CLM) that 102 

has a nested subgrid hierarchy in which grid cells are composed of multiple land units 103 

(vegetated, lake, urban, glacier, and crop), snow/soil columns, and plant functional types 104 

(PFTs).  In essence this may be considered a “semi-tile” method, as each subgrid level has a 105 

physical data structure that handles quantities that are not involved in conservation checks.  106 

A true tiled scheme called “newsnow” is also an option in the European High Resolution 107 

Limited Area Model (HIRLAM), and it includes seven individual subgrid tiles that are 108 

treated with unique values of vegetation, roughness length, and albedo (Samuelsson et al., 109 

2006; Gollvik and Samuelsson, 2011).   110 

The unified National Center for Atmospheric Research (NCAR), Oregon State 111 

University, the U.S. Air Force, and National Centers for Environmental Prediction’s 112 

(NCEP’s) Office of Hydrology (“Noah”) LSM (Chen & Dudhia, 2001; Chen et al., 1996, 113 

1997, 2007; Ek et al., 2003; Li et al., 2013; Mitchell et al., 2004; Niu et al., 2011; Pan & 114 

Mahrt, 1987; Yin et al.,2015) has been widely developed, applied, and evaluated in its parent 115 

atmospheric grid model, the Weather Research and Forecasting (WRF) model (Powers et al., 116 
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2017; Skamarock & Klemp, 2008).  The Li et al. (2013) method of explicit tiling (referred to 117 

as the “mosaic” method) in WRF/Noah is intriguing as it maintains tile-specific surface 118 

energy flux calculations that are then weighted averages for the entire grid cell used in 119 

conservation checks.  Furthermore, Li et al. demonstrated that the tiled LCC method 120 

demonstrates stark differences, better model performance, and less sensitivity to spatial grid 121 

resolution for surface energy fluxes, land surface temperature, near-surface states, boundary 122 

layer growth, as well as rainfall distribution compared against the dominant approach in 123 

Noah. However, the applications of tiled LCC in global LSMs are limited to simulated 124 

energy and carbon balances at select boreal, temperate and tropical locations across the world 125 

(Li and Arora, 2012), and do not truly investigate the global, coupled atmospheric feedbacks 126 

as a result of the tiling (Melton and Arora , 2014).  Furthermore, studies that do investigate 127 

such atmospheric feedbacks to subgrid LCC are specific to regional-scale applications (Li 128 

and Arora, 2012; Li et al., 2013; Li et al., 2017; Mallard et al., 2018). We note that all the 129 

above referenced studies show that the surface parameters and energy fluxes are very 130 

sensitive to using a tiled LCC compared to a dominant or composite approach.  Thus, there is 131 

a need to implement and test the impacts of tiled LCC from the global to mesoscale to assess 132 

the impacts of more realistic LU on surface energy fluxes and the feedbacks to the cloud and 133 

radiative model predictions. The effects of tiled LCC have implications for both the scientific 134 

and operational weather forecasting communities, especially in areas of highly contrasting 135 

LU types (Manrique-Suñén et al., 2013). 136 

The atmospheric component of the Model for Predictions Across Scales-Atmosphere 137 

(MPAS-A) uses an unstructured centroidal Voronoi, nominally hexagonal mesh (grid, or 138 

tessellation) and C-grid staggering of the state variables as the basis for the horizontal 139 
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discretization in the dynamical solver (Skamarock et al., 2012 and references contained 140 

within).  The MPAS-A is ideal for this work as it is a parent, global atmospheric model to the 141 

Noah LSM, and the unstructured variable resolution meshes can be generated having 142 

smoothly-varying mesh transitions. The Noah implementation in MPAS-A (hereafter referred 143 

to as MPAS/Noah), however, only uses the dominant LCC approach.  This results in an 144 

oversimplification in regions of highly heterogeneous LCC (e.g., urban/suburban settings), 145 

which is also impacted by the gradually refining meshes in MPAS for global to mesoscale 146 

applications. Thus, in this work we implement the tiled LCC approach as an option in 147 

MPAS/Noah, version 6.0, and assess the global-to-mesoscale impacts of tiled LCC in 148 

MPAS/Noah on meteorological predictions for two gradually refining meshes (92-25 and 46-149 

12 km) focused on the conterminous U.S for January and July 2016.   The year 2016 was 150 

chosen as relatively fine scale initial conditions are available for that year (see Section 2.2), 151 

and the January/July months represent climatological cool/warm seasons for both the 152 

Northern and Southern Hemispheres.   153 

2. Methods 154 

 155 

2.1  A tiled approach to LCC in MPAS-A  156 

In this work we implement a tiled LCC to MPAS/Noah, which is analogous to the tiled 157 

(i.e., “mosaic”) approach found in the WRF model described by Li et al. (2013) (hereafter 158 

referred to as the “L13-tiled”, or simply the “tiled” approach). Generally applying the L13 159 

approach here, a certain user-defined number (N) of tiles, each representing a land cover 160 

category, is considered within a mesh cell. The atmospheric properties and soil properties are 161 

assumed to be homogenous over the mesh cell when surface fluxes and surface state variables 162 

are calculated for each tile, and all prognostic variables are maintained for each tile, some of 163 
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which are aggregated to yield the mesh cell average variables (Li et al., 2013).  In the L13-tiled 164 

approach the mesh cell average variables are weighted by the normalized area fraction 165 

accounting for the areas of each tile, where the tile with the largest normalized area fraction has a 166 

rank of 1. The smaller normalized area fractions for each land cover category are subsequently 167 

given lower rankings, and the total N tiles are assumed constant for all mesh cells.  This is in 168 

contrast to the dominant LCC approach, which only considers the most dominant tile (i.e., tile 169 

rank = 1), and does not consider fractional impacts of subgrid, tiled heterogeneity in LCC 170 

(Figure 1).  The reader is referred to Li et al. (2013) and the references contained within for 171 

further details regarding the L13-tiled approach.     172 

 173 
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 174 

Figure 1.  Illustration of a hypothetical “real-world” land cover in a hexagonal mesh cell in 175 

MPAS-A, and the corresponding dominant vs. L13-tiled approach to LCC used in the 176 

MPAS/Noah LSM. 177 

 178 

2.2  Model configuration and simulation design 179 

Here we apply two MPAS-A version 6.0 global meshes that seamlessly refine from a 180 

relatively coarse to fine, 92-25 and 46-12 km, horizontal grid spacing over the conterminous U.S. 181 

(CONUS).  The global domain and subset of the CONUS are shown for the 92-25 km mesh in 182 

Figure 2, which also include the corresponding average vegetation fractions for January and July 183 

2016. 184 
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 185 

Figure 2.  Global 92-25 km and seamlessly refined 25 km mesh over CONUS.  The average vegetation fraction at 92-25 km is 186 

also shown for January and July 2016 .   187 
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Here we employ the default MPAS-A v6.0 default physics suite (based on the Advanced 188 

Research WRF model), except for the new implementation of the L13-tiled approach as an 189 

option to dominant LCC (default) in MPAS/Noah (Table 1).  The physics options used here are a 190 

very common configuration in WRF, and thus are well documented on the WRF User’s Page and 191 

references contained within (http://www2.mmm.ucar.edu/wrf/users/).    192 

Table 1.  MPAS-A v6.0 Model Configuration  193 

Model Mesh/Process Configuration 

Mesh Resolutions with Seamless 

Refinement 

92-25 km and 46-12 km 

Time Steps 100 s (92-25 km); 40 s (46-12 km) 

Land Surface Model Dominant and L13-tiled Noah (N=15 tiles per cell) 

Land use Data  Combined 40-Category NLCD (conterminous U.S.) and 

IGBP-MODIS (Global) 

Surface Layer Monin-Obukhov (MO) 

Planetary Boundary Layer Yonsei University (YSU) 

Grid Microphysics/Subgrid 

Convection 

WRF Single Moment 6-class (WSM6)/Kain-Fritsch 

(KF) 

Radiation Rapid Radiative Transfer Model for GCMs (RRTMG) 

 194 

The meteorological initial  conditions are based on NCEP operational Global Forecast System 195 

analysis and forecast grids on a 0.25° x 0.25° global latitude longitude grid 196 

(https://rda.ucar.edu/datasets/ds083.3/).  A combined 40-category LU dataset is used to represent 197 

the LCC, where the National Land Cover Database (NLCD) is used within the CONUS, and 198 

elsewhere the International Geosphere-Biosphere Programme (IGBP)-Modified Moderate 199 

http://www2.mmm.ucar.edu/wrf/users/
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Resolution Imaging Spectroradiometer (MODIS) satellite database.  Independent tests of a 200 

similar WRF model configuration/domain over the U.S. also indicates that setting the number of 201 

LU tiles (N) = 8 results in about 97% of all model grid cells having 99% of their LU categories 202 

represented (Campbell et al., 2019).  To ensure all MPAS/Noah mesh cells have ≥ 99% of their 203 

LU categories represented, here we employ a very conservative value of N = 15.   204 

The simulation design consists of 1-month simulations using dominant and tiled LCC for 205 

January and July 2016, both at 92-25 and 46-12 km variable mesh grid spacing (total of 8 206 

simulations). Each simulation applies a 10-day spin-up (not used in analysis) and 5-day 207 

reinitialization strategy (Table 2), which both reduces the error ingested from the initial 208 

conditions and helps avoid model divergence typical of longer simulation periods (e.g., multiple 209 

weeks or months).   210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 
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  Table 2.  MPAS-A v6.0 Model Simulation Design 220 

Run MPAS/Noah LCC  Period Mesh Resolution 

#1  Dominant January 2016 92-25 km  

#2 Dominant July 2016 92-25 km  

#3 L13-tiled  January 2016 92-25 km  

#4 L13-tiled  July 2016 92-25 km  

#5 Dominant January 2016 46-12 km  

#6 Dominant July 2016 46-12 km  

#7 L13-tiled  January 2016 46-12 km  

#8 L13-tiled  July 2016 46-12 km  

 221 

The simulation design in Table 2 allows for the analysis of the impacts of L13-tiled compared to 222 

dominant LCC during both a winter and summer month, while also providing insight into the 223 

impact of the L13-tiled approach on reduction of the sensitivity of the MPAS/Noah model to 224 

different mesh resolutions. 225 

2.3 Observations and Evaluation Protocol 226 

Observations from both surface and upper-air platforms are used for the evaluation of 227 

MPAS-A dominant versus the tiled method and the sensitivity to the refining mesh resolution. 228 

The near-surface observations of 2-meter temperature (T2), 2-meter specific humidity (Q2), and 229 

10-meter wind speed (WSPD10) are based on the Surface Weather Observations and Reports for 230 

Aviation Routine Weather Reports (METAR) which are collected by NCEP’s Meteorological 231 

Assimilation Data Ingest System (MADIS) (https://madis.ncep.noaa.gov/madis_metar.shtml).  232 

https://madis.ncep.noaa.gov/madis_metar.shtml
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The shortwave radiation at the ground (SWDOWN) observations are obtained from the World 233 

Radiation Monitoring Center’s (WRMC) Baseline Solar Radiation Network (BSRN) 234 

(https://bsrn.awi.de/; Driemel et al., 2018;).  The precipitation observations are obtained from the 235 

Climate Group at Oregon State University’s Parameter-elevation Regressions on Independent 236 

Slopes Model (PRISM) (http://www.prism.oregonstate.edu/ ).  Vertical profile observations of 237 

temperature, relative humidity, and wind speed are obtained from the National Oceanic and 238 

Atmospheric Administration (NOAA), Earth System Research Laboratory’s (ESRL) Radiosonde 239 

Database (RAOB) (https://ruc.noaa.gov/raobs/). 240 

Typical meteorological statistical metrics are used to evaluate the performance of MPAS-A 241 

dominant versus the tiled approach, which include the mean bias (MB), root mean square error 242 

(RMSE), Pearson’s correlation coefficient (R), and index of agreement (IOA).  Such statistical 243 

metrics have been well defined in the available literature (e.g., Table 3 in Emery et al., 2016).  244 

3. Results  245 

 246 

3.1   Impacts of the tiled approach for the MPAS-A 92-25 km mesh  247 

Globally, the tiled method’s top ranked tiles (i.e., ranking of LU types by dominance) 248 

show a high heterogeneity in LU categories and associated LU fractions compared to the 249 

dominant category (Figure 3a-f).  In the western U.S., the tiled method allows for forest LU 250 

fractions in cells dominated by grasses/shrubs, while in the eastern U.S., there are urban and 251 

grass/shrub fractions in cells dominated by forest LU (Figure 3g-l).  Ultimately, the amount of 252 

tiled LCC heterogeneity depends on the combination of the specific input LU dataset and model 253 

cell resolution, which in this case varies from the global (IGBP-MODIS and 92 km) to the U.S. 254 

scale (NLCD and 25 km).   255 

https://bsrn.awi.de/
http://www.prism.oregonstate.edu/
https://ruc.noaa.gov/raobs/
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 256 

Figure 3.  Spatial plots of the top three ranked (#1 = dominant LU, #2 and #3), tiled LU 257 

categories and their associated LU fractions for the combined 40-category NLCD (CONUS) and 258 

(IGBP)-Modified MODIS satellite database (elsewhere global). The IGPB-MODIS (1-17) and 259 

NLCD (21 – 40) LU categories are (combined for simplification):  Forests: 1-5 & 28-30; 260 

Grasses, Shrubs, or Savannahs: 6-10 & 31-34 & 37; Lichens/Moss: 35-36; Wetlands: 11 & 39-261 

40; Croplands: 12, 14, & 38; Urban/Developed: 13 & 23-26; Snow and Ice: 15 & 22; 262 

Barren/Sparsely Vegetated: 16 & 27; Water: 17 & 21; Unclassified: 18-20; Regions of LU 263 

fraction <0.01: 0 (Filled-grey).264 
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 Including additional LU categories in the tiled method results in global differences for the 265 

top three ranked tiled (i.e., tile #2 - #1 and #3 - #1) surface/skin temperature (TSKtile), surface 266 

specific humidity (QSFCtile), sensible heat flux (SH_flxtile), latent heat flux (LH_flxtile), ground 267 

heat flux (Gtile), and aerodynamic roughness length (Ztile) in January (Figure 4) and July 2016 268 

(Figure 5) for the 92-25 km mesh (Supporting Figure S1 also shows the albedo, ALBtile,  and 269 

emissivity, EMIStile differences). Clearly the regions of appreciable LU fractions for tile rankings 270 

#2 and #3 (Figure 3) spatially agree well with the areas of largest changes in surface variables 271 

and fluxes, where the magnitude of TSK change is generally larger in July (e.g., Figure 4a;  272 

global avg. ΔTSKtile#2-#1 = -0.13 K) compared to January (e.g., Figure 5a; global avg. ΔTSKtile#2-273 

#1 = -0.04 K), especially in the CONUS region application of the NLCD at the refined mesh scale 274 

(~25 km).   275 

 276 
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 277 

Figure 4.  January 2016 average differences in the top ranked tiled LU categories (#2-#1 and #3-#1) for a)-b) TSKtile , c)-d) SHtile, e)-f)  278 

Gtile, g)-h) QSFCtile, i)-j) LHtile, and k)-l) Ztile on the 92-25 km resolution mesh. 279 
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 280 

Figure 5.  Same as in Figure 4, but for July 2016.281 
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On average, comparing the #2 and #3 ranked tiles to the dominant (#1 rank) leads to 282 

decreased global TSKtile and SH_flxtile, and slightly increased G (more heat flux into the ground) 283 

in both January and July (Figures 4a-f and 5a-f).  There are exceptions, however, where the #2 284 

and #3 ranked LU tiles demonstrates increased TSKtile,  SH_flxtile, and Gtile, especially in the 285 

eastern CONUS for Tile #2-1 and #3-1 in July.  These increases are due to the effects that urban 286 

and crop/grasslands in the #2 and #3 ranked LU tiles have on the surface energy balance 287 

compared to the dominant deciduous and evergreen forest in mesh cells found in this region 288 

(Figure 3).  In the western U.S. in July, the #2 and #3 ranked LU tiles have appreciable fractions 289 

of forests  compared to the dominant grasses, shrubs, or savannahs in this region that leads to a 290 

strong cooling effect with widespread decreases in TSKtile,  SH_flxtile, and Gtile.   291 

The tiled  method also impacts the aerodynamic roughness length (Ztile), which have the 292 

same changes for January and July 2016 because Ztile is solely a function of the tabulated LU 293 

category in the Noah LSM. On average, there is a slight decrease in Ztile globally; however, there 294 

are locally larger increases and decreases dependent on the level of contrast in roughness lengths 295 

for different LU categories.  For example, there are relatively large decreases in Ztile in the 296 

eastern U.S. due to smaller average roughness lengths for croplands (~0.1; #2 and #3 ranked 297 

tiles) compared to the dominant forests (~0.5).   Changes in roughness lengths, Ztile, will have 298 

impacts on the diagnosed average wind speeds above the surface, as discussed further below.   299 

There are prominent changes in the average January and July 2016 difference plots (tiled 300 

– dominant) for MPAS-A diagnostic variables T2, Q2, and WSPD10 at the 92-25 km resolution 301 

mesh (Figure 6). 302 
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 303 

Figure 6.  Average January and July 2016 dominant and difference plots (tiled – dominant) for 304 

the diagnostic variables a)-d) T2, e)-h) Q2, and i)-l) WSPD10 on the 92-25 km resolution mesh. 305 
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The tiled  method results in global average cooling in both January (~ -0.1 K) and July 2016 (-306 

0.4 K), which is due to widespread decreases in net SWDOWN, total net radiation, G (i.e., less 307 

heat flux into the ground), and the resulting available energy and partitioning (Supporting 308 

Figures S2-S5).  The global increases in LH_flx and widespread decreases in SH_flx that result 309 

in widespread increases in the EF (Evaporative Fraction; See Section 1 for explanation), 310 

especially in July, results in a feedback that increases the low cloud water mixing ratio 311 

(especially in the Northern Hemisphere), decreases the net SW radiation at the surface, and 312 

decreases the overall net radiation (Figures S2-S5).  Clearly the tiled method results in 313 

widespread global increases in the EF and decreases in T2, which may mitigate the systematic 314 

warm bias found in NWP models (Ma et al., 2014; Steiner et al., 2018 and references found 315 

within). 316 

There is also a qualitative agreement for areas that are typical of higher (lower) 317 

temperatures (Figures 6a-b) with areas of decreased (increased) temperature due to tiled LCC 318 

(Figures 6c-d).  The regions of lower (higher) humidity (Figures 6e-f) also agree with regions of 319 

increased (decreased) humidity (Figures 6g-h) due to tiling.  The opposing directions of change 320 

in T2 and QSFC, particularly for the U.S. in July (see dipoles of change in the west and east 321 

U.S.), further indicates that the impacts of the tiled method are a result of changes in the surface 322 

energy balance and a shift in the partitioning of the SH_flx and LH_flx, which is due to the 323 

incorporation of appreciable fractions of various LU types in the mesh cells (Figures S2-S5).    324 

There are spatially variable impacts on WSPD10 with both increases and decreases (Figure 6i-l), 325 

but the impact of the tiled LCC is largest in July, and also leads to non-linear interactions in the 326 

northern high latitudes.    327 

 328 
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The impacts of the tiled method on EF also has feedbacks to the topmost soil temperature 329 

(TSLB) and moisture (SMOIS), as well as the planetary boundary layer height (PBLH) (Figure 330 

S6).  In January, the TSLB increases in the high Northern latitudes and decreases in the low 331 

Northern latitudes and Southern Hemisphere.  The increases (decreases) in TSLB qualitatively 332 

agree with decreases (increases) in SMOIS due to the effects of EF changes and cloud feedbacks 333 

on radiation.  In July, the effects are similar but exacerbated, where there are widespread 334 

decreases in TSLB and increases in SMOIS, respectively, which is most prominent in the 335 

Northern Hemisphere mid- to high latitude regions where there are large increases in low cloud 336 

fraction.  As expected, the increases (decreases) in PBLH are spatially well correlated with the 337 

regions of increases (decreases) in T2.   338 

The spatial differences in tiled and diagnostic variables in January and July 2016 (Figures 339 

4-6) are further elucidated when comparing the diurnal patterns of G, LH, SH, QSFC, and TSK 340 

for the dominant and 2
nd

 ranked LU category, most notably in July (Figure 7).   341 
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Figure 7. Diurnal analysis of the 

differences in dominant – 2
nd

 ranked 

LU cateogory for TSK, QSFC, G, 

SH, and LH in a)-e) January and f)-

j) July 2016.  Analysis has been 

averaged over all CONUS grid 

cells.  Approximate daytime hours 

for CONUS are shaded in light 

yellow. 
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In much of the central and western U.S. the widespread shrubs/grasses LU dominate the 342 

landscape (Figure 1), where including appreciable fractions of evergreen and decidous forest in 343 

the tiled approach leads to a net increase in heat flux into the ground (ΔG > 0) at the expense of  344 

sensible heat flux (ΔSH < 0), which results in cooler surface temperatures (ΔTSK < 0) at night in 345 

July (black line; Figure 7f-j). During the daytime transition period, the ΔG, ΔSH, and change in 346 

latent heat flux (ΔLH) approach zero, and there is a minimum in ΔTSK due to the tiled effects.  347 

Later in the daytime hours in July, however, the presence of more evergreen and deciduous 348 

forest result in a net loss of ground heat flux (ΔG < 0) which enhances  latent heat flux to the 349 

atmosphere (ΔLH>0), where energy partitioning also requires that ΔSH<0 and consequently 350 

cooler surface temperatures, ΔTSK < 0.  There is also a net increase in specific humidity 351 

(ΔQSFC>0) during both night and day in July due to the presence of more forest canopy and 352 

enhanced evapotranspiration (black line; Figure 7f-j).  The opposite is true when including tiled 353 

fractions of shrubs/grasses LU types in either the dominant evergreen or deciduous forest 354 

regions, which are found mainly in the eastern U.S, and leads to predominantly drier (ΔQSFC<0) 355 

and warmer surface conditions (ΔTSK > 0) (red and blue lines; Figure 7f-j).   A similar drier and 356 

warmer pattern is also true when including tiled fractions of evergreens LU types in cells that are 357 

dominated by decidous forest, as evergreens typically have less daytime transpiration (ΔLH<0) 358 

compared to deciduous trees in July (green lines; Figure 7f-j).   In January, the diurnal patterns of 359 

G, LH, SH, QSFC, and TSK in January are similar to July, but have smaller amplitudes due to 360 

smaller net radiation energy for the U.S. winter, and consequently smaller magnitudes for the 361 

ΔG, ΔLH, and ΔSH partitioning (Figures 7a-7e).    362 

 363 

 364 
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3.2  Model evaluations of the MPAS-A dominant and tiled LCC approach 365 

The tiled approach results in widespread reductions in MB for T2, Q2, and WSPD10 366 

across the U.S. for a 92-25 km mesh during January and July 2016 (Figure 8).  The largest, and 367 

most prolific reductions in MB are found in the western U.S. in July, where there are large 368 

decreases in T2 and increases in Q2 (Figures 8c-d and 8g-h).  There are some smaller areas of 369 

increased MB for T2 and Q2, most notably in the southeast U.S. for July where increased 370 

temperatures exacerbate the simulated warm bias for T2, and in parts of the Central U.S. where 371 

decreases in predicted mixing ratio exacerbates the model dry bias for Q2. While more variable 372 

in nature, there are predominantly decreased MB for WSPD10 across the U.S. There are also 373 

widespread decreases in the RMSE for the tiled approach for T2, Q2, and WSPD10 (Supporting 374 

Figure S7).   375 

 376 
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 377 

Figure 8.  Average January (left) and July 2016 (right) absolute and MB difference (|tiled MB| – |dominant LCC MB|) compared 378 

against available MADIS-METAR stations for a)-d) T2, e)-h) Q2, and i)-l) WSPD10 on the 92-25 km resolution mesh.379 
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The results from the 92-25 and 46-12 km meshes show a reduction in diurnal MB and 380 

RMSE for T2, Q2, and WSPD10 in the western U.S. during July, and there is preliminary 381 

indication of decreasing model sensitivity to the mesh resolution for T2 when using the tiled 382 

approach (i.e., MB red lines closer than blue lines) (Figures 9a-9b); however, testing of more 383 

resolutions are necessary for a full investigation of grid sensitivity.  The impacts of the tiled 384 

approach are less for January in the eastern U.S., with some model degradation for similar 385 

reasons as discussed previously.  The average CONUS and global statistical summaries (i.e., R, 386 

MB, RMSE, and IOA) are found in Supporting Tables S1 and S2.  Overall, the largest model 387 

performance change in CONUS is for T2, where the average MB is reduced by a factor of ~ 4 388 

due to the tiled approach.  There is also lower MB for the WSPD10 in the western U.S. for July; 389 

however, there are increases in MB and RMSE for Q2 and WSPD10 in the eastern U.S.  This 390 

dipole in model performance change apparent across CONUS is consistent with the strong east-391 

west vegetation and moisture gradient and its interaction with the tiled compared to dominant 392 

LCC approaches.   393 

 394 

 395 
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 396 

Figure 9a. Diurnal MB comparisons for a)-d) T2, e)-h) Q2, and i)-l) WSPD10 against MADIS-METAR for 92-25 and 46-12 km over 397 

eastern and western CONUS. 398 

 399 

 400 

 401 

 402 
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 403 

Figure 9b.  Same as in Figure 9a, but for RMSE. 404 

 405 
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The effects of the tiled LCC approach on the partitioning of SH_flx and LH_flx and 406 

feedbacks to cloud formation also has implications for the total incoming SWDOWN (Figure 407 

10). 408 

 409 

Figure 10.  Average diurnal time series of SWDOWN and bias comparisons against BSRN for 410 

10 CONUS sites for both 92-25 and 46-12 km meshes. 411 

For an average of 10 BSRN sites across CONUS (Supporting Figure S8 contains a map of the 412 

U.S. sites), the tiled approach leads to an overall reduction in total SWDOWN during the local 413 

peak time, which leads to an overall increase in MB (and RMSE; see Supporting Figure S9) 414 

compared to the dominant LCC approach.  This effect is more prominent during summer in July 415 

due to appreciable forest LU fractions included in the dominant shrublands/grasslands across the 416 

western U.S. (Figure 3h),  and the resulting increase in EF (Figure S5), Q2 (Figure 6h), and low 417 

to high clouds that scatter incoming shortwave radiation.  A spatial evaluation of SWDOWN 418 

against the global BSRN observation sites also shows increases in MB and RSME in the early to 419 
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late afternoon hours due to the tiled approach, particularly in July 2016 for BSRN sites in the 420 

Northern Hemisphere (Supporting Figures S10-S11).  421 

Incorporating more detailed and realistic LCC in MPAS-A leads to widespread model 422 

performance improvements (decreased MB and RMSE) for T2 and Q2, particularly in the 423 

western U.S., but a degradation (increased MB and RMSE) in the evaluation of SWDOWN 424 

driven by cloud-radiative feedback effects, both in the U.S. and globally.  This result is the 425 

impact of a relatively “tuned” model performance towards more accurate predictions of near-426 

surface temperature and moisture in MPAS-A (and other NWP models),  at the expense of 427 

degrading performance (and more unknown) cloud-radiative feedback processes that affect the 428 

surface radiative balance (Ma et al., 2014).   429 

 The impact of the tiled approach on total precipitation over the U.S. is more scattered 430 

compared to PRISM observations, with both increases and decreases in MB compared to the 431 

dominant approach (Figure 11;  Supporting Figure S12 shows the gridded 46-12 km PRISM data 432 

for comparison).  For an average CONUS, however, there is a slight reduction in MB for 433 

precipitation due to the L13-tiled LCC, moreso for the 46-12 km compared to the 92-25 km 434 

mesh (Figures 11e-f).  This is a result of reduced forest cover and slight decreases in EF in this 435 

region for the tiled approach, which deacreases precipitation and offsets the typical MPAS-A 436 

(and other NWP models) overprediction in eastern U.S. rainfall in the summer.  437 

 438 

 439 
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 440 

Figure 11.  Total January and July 2016 PRISM precipitation observations gridded to the 92-25 km mesh (top) and the spatial bias 441 

difference (|MB tiled| - |MB dominant|) for the 92-25 (middle) and 46-12 km meshes (bottom).442 
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The impacts of the tiled approach extend above the surface as well, and there are 443 

increases in the IOA for the temperature, relative humidity, and wind speed profiles compared to 444 

RAOB sites across CONUS (Figure 12).  The tiled approach shows increases in IOA for 445 

temperature up to about 500-600 hPa model heights for all the RAOB sites shown except in the 446 

northwest (Boise, Idaho; KBOI) and southwest U.S. (Salt Lake City, UT; KSLC).  The relative 447 

humidity also shows increased IOA across an increased depth of the atmosphere (up to 200 hPa) 448 

for the central (Lincoln, IL; KILX) and northeast U.S. (Pittsburgh, PA; KPIT) compared to the 449 

dominant approach.  There are slight decreases in IOA for the tiled approach in the lower 450 

atmosphere (> 800 hPa) in the upper midwest (Detroit, MI; KDTX) and western U.S. (Oakland, 451 

CA; KOAK), but overall there are larger increases in IOA compared to the decreases across the 452 

RAOB sites (i.e., generally improved model column performance).  There are also larger 453 

increases in IOA for wind speed compared to the decreases for the tiled approach, where in some 454 

cases these increases are across a significant depth of the model column, e.g., in the south 455 

(Amarillo, TX; KAMA) and northeast U.S. (KPIT).     456 

 457 

 458 
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 459 

Figure 12.  Vertical profiles of IOA compared against select RAOB sites across CONUS for temperature (top), relative humidity 460 

(middle), and wind speed (bottom) for the dominant (black) and tiled (red) approach for the 92-25 km mesh. 461 

 462 
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4. Summary and Implications 463 

In this work a tiled approach to land cover characterization (LCC) in the Noah land 464 

surface model, following Li et al. (2013), is implemented in the Model for Prediction Across 465 

Scales – Atmosphere (MPAS-A), version 6.0, and was tested for January and July 2016 on 466 

both the 92-25 and 46-12 km refining meshes (focused on the conterminous U.S.; CONUS).  467 

Compared to the dominant LCC approach, the tiled LCC leads to significant impacts on 468 

global soil conditions, surface fluxes, near-surface and column meteorological variables, and 469 

cloud-radiative feedbacks.  Specifically, the tiled LCC leads to both moderate warming and 470 

cooling in the Northern and Southern Hemisphere in January, respectively, with more 471 

dramatic, globally widespread cooling in July.  For CONUS, there is a strong dichotomy of 472 

cooler and moister conditions in the west, and warmer and drier conditions in the east due to 473 

the tiled LCC. Such temperature and moisture changes are a result of shifts in tiled evergreen 474 

and deciduous forests, grasslands/shrublands, and urban land use in the eastern and western 475 

U.S. compared to the dominant approach, which alter the overall cloud-radiative balance, 476 

available energy, and diurnal partitioning between the ground, sensible, and latent heat 477 

fluxes.  These changes in turn effect the development of near-surface wind flow, boundary 478 

layer heights, cloud formation processes, and resulting cloud-radiative feedbacks.   479 

The tiled LCC has a strong impact on model performance, where there are significant 480 

reductions in both mean bias and root mean square error in CONUS for 2-m temperature, 2-481 

m specific humidity, and 10-m wind speed.  There is indication that the tiled LCC also 482 

reduces the sensitivity of predicted 2-m temperature to the finer 46-12 km mesh resolution in 483 

the eastern U.S.    There are increases in model bias and error for incoming solar radiation, 484 

however, and the impacts on precipitation are more variable.  There is an average decrease in 485 
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mean bias for precipitation over the CONUS.  The effect of the tiled LCC is felt through 486 

significant depths of the atmospheric column, and there is improved agreement of 487 

temperature, relative humidity, and wind speed with observations for many radiosonde 488 

observations across CONUS.     489 

An important implication of this work is the effect of the tiled LCC on the evaporative 490 

fraction, cloud-radiative feedbacks, and the overall reduction in global temperatures in July 491 

(Northern Hemisphere summer).   As demonstrated by the improved model performance for 492 

2-meter temperature in CONUS, use of a tiled LCC could potentially help mitigate the 493 

systematic, global summertime warm biases that are apparent in most numerical weather 494 

prediction (NWP) models.  The improved near-surface meteorology, but degraded 495 

performance in incoming solar radiation due to the more detailed tiled LCC further 496 

demonstrates that NWP models such as MPAS-A have experienced prolonged deficiencies in 497 

the LCC representation and processes, while being preferentially “tuned” to improve the 498 

above ground meteorological predictions despite unresolved cloud-feedbacks.  The need for 499 

more iterative model developments with respect to LCC methodologies in LSMs and the 500 

impacts on soil/surface, meteorological, and cloud-feedbacks in NWP models cannot be 501 

overstated.   While further testing is needed (e.g., a multi-year evaluation), it is further 502 

recommended that computationally efficient subgrid LCC schemes be continually developed 503 

and integrated in the LSMs coupled to global weather forecast models.  504 

 505 

 506 

 507 

 508 
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