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Abstract

Variability in the El Nino-Southern Oscillation has global impacts on seasonal temperatures and rainfall. Current detection

methods for extreme phases, which occur with irregular periodicity, rely upon sea surface temperature anomalies within a

strictly defined geographic region of the Pacific Ocean. However, under changing climate conditions and ocean warming,

these historically motivated indicators may not be reliable into the future. In this work, we demonstrate the power of data

clustering as a robust, automatic way to detect anomalies in climate patterns. Ocean temperature profiles from Argo floats

are partitioned into similar groups utilizing unsupervised machine learning methods. The automatically identified groups of

measurements represent spatially coherent, large-scale water masses in the Pacific, despite no inclusion of geospatial information

in the clustering task. Further, temporal dynamics of the clusters are strongly indicative of El Nino events, the Pacific warming

phase of the El Nino-Southern Oscillation. The unsupervised clustering task successfully identifies changes in the vertical

structure of the temperature profiles through reassignment to a different group, concisely capturing physical changes to the

water column during an El Nino event, such as tilting of the thermocline. Clustering proves to be an effective tool for analysis

of the irregularly sampled (in space and time) data from ocean floats and may serve as a novel approach for detecting future

anomalies given the freedom from thresholding decisions. Unsupervised machine learning approaches could be particularly

valuable due to their ability to identify patterns in datasets without user-imposed expectations, facilitating further discovery of

anomaly indicators.
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Key Points:6

• Unsupervised clustering based solely on temperature profiles effectively partitions7

water masses in the Pacific Ocean.8

• The temporal evolution of the clusters reveals spatial oscillations associated with9

El Niño events.10

• Unsupervised machine learning serves as a flexible and robust approach to anomaly11

detection in oceanographic data.12
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Abstract13

Variability in the El Niño-Southern Oscillation has global impacts on seasonal temper-14

atures and rainfall. Current detection methods for extreme phases, which occur with ir-15

regular periodicity, rely upon sea surface temperature anomalies within a strictly defined16

geographic region of the Pacific Ocean. However, under changing climate conditions and17

ocean warming, these historically motivated indicators may not be reliable into the fu-18

ture. In this work, we demonstrate the power of data clustering as a robust, automatic19

way to detect anomalies in climate patterns. Ocean temperature profiles from Argo floats20

are partitioned into similar groups utilizing unsupervised machine learning methods. The21

automatically identified groups of measurements represent spatially coherent, large-scale22

water masses in the Pacific, despite no inclusion of geospatial information in the clus-23

tering task. Further, temporal dynamics of the clusters are strongly indicative of El Niño24

events, the Pacific warming phase of the El Niño-Southern Oscillation. The unsupervised25

clustering task successfully identifies changes in the vertical structure of the tempera-26

ture profiles through reassignment to a different group, concisely capturing physical changes27

to the water column during an El Niño event, such as tilting of the thermocline. Clus-28

tering proves to be an effective tool for analysis of the irregularly sampled (in space and29

time) data from ocean floats and may serve as a novel approach for detecting future anoma-30

lies given the freedom from thresholding decisions. Unsupervised machine learning ap-31

proaches could be particularly valuable due to their ability to identify patterns in datasets32

without user-imposed expectations, facilitating further discovery of anomaly indicators.33

Plain Language Summary34

The climate phenomenon know as El Niño leads to variable temperatures and rain-35

fall amounts around the world and occurs at unpredictable intervals. The most commonly36

used measurement to determine an El Niño is occurring relies on the differences in the37

average temperature at the surface of the ocean in a rectangular region near the equa-38

tor. However, as climate changes, these historically defined ways of measuring an El Niño39

may no longer be helpful. In order to develop a more flexible way to observe an El Niño,40

we use tools from the field of machine learning. Specifically, temperature measurements41

in the Pacific Ocean from the surface down to a depth of 1,000 m are grouped automat-42

ically (i.e. without pre-defined rules) using machine learning methods. Without using43

information about the location of the measurements, this process groups measurements44
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that are also close together in space. Changes over time of group assignments are very45

tightly matched with an El Niño happening, and also point to physical changes to that46

region in the ocean. Altogether, automatic grouping by machine learning works very well47

to signal an El Niño and could potentially be a useful tool for future study of data from48

the ocean.49

1 Introduction50

The oceans are critical in governing global climate through heat transport and ab-51

sorption of carbon from the atmosphere (Marshall & Plumb, 2008). Extensive effort is52

put toward monitoring and predicting the state of the ocean, providing valuable data53

for daily weather prediction as well as long term understanding of climate variability. The54

Pacific Ocean, the world’s largest ocean basin, has many associated oscillations, most55

notably as part of the El Niño-Southern Oscillation (ENSO). Due to complex coupling56

between the ocean and atmosphere, sea surface temperatures and atmospheric winds in57

the Pacific region interact in a positive feedback loop to produce major oscillations in58

climate with repercussions at a global scale. An El Niño period, characterized by anoma-59

lous warming of eastern equatorial Pacific waters, occurs approximately every 3-8 years60

and, due to global teleconnections, results in varying temperatures and precipitation lev-61

els around the globe (Rasmusson & Carpenter, 1982; Wyrtki, 1975). The ensuing shift62

in seasonal temperatures and rainfall leads to droughts and flooding in Africa, Latin Amer-63

ica, North America, and Southeast Asia. These extreme events have major consequences64

for human health and economic costs in the billions (Buizer et al., 2000; Iizumi et al.,65

2014). Despite the importance of forecasting such events, El Niño prediction remains chal-66

lenging, particularly beyond a six-month horizon, due to the high non-linearity of the67

system and the relatively unique development of each El Niño event (Dijkstra et al., 2019).68

Current El Niño detection relies on sea surface temperature anomalies within a specif-69

ically designated region (Niño 3.4) in the equatorial Pacific. Extensive study of histor-70

ical patterns have identified this region as the dominant location of the coupled ocean-71

atmosphere interactions (Trenberth, 2019). However, a strictly defined rectangular ge-72

ographic region and empirical thresholds are likely not robust to change, even minor shifts73

in oceanic and atmospheric circulation. The exclusive consideration of surface measure-74

ments in a small geographic location potentially disregards indicators in other regions75

of the Pacific Ocean basin and in subsurface variation of the vertical structure. Similarly,76
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an anomaly threshold assumes the historic running average will remain stationary into77

the future, an unlikely scenario in the context of global climate change and ocean warm-78

ing (Yeh et al., 2009; Ashok & Yamagata, 2009). Therefore, methods for El Niño detec-79

tion incorporating large horizontal and vertical scales and utilizing directly measured data80

without empirical thresholds are of particular value.81

Direct measurements of the state of the ocean are relatively limited and substan-82

tial analysis and prediction relies on remotely sensed (e.g. sea surface temperature) or83

model calculated data. In situ measurements are valuable sources for subsurface mea-84

surements as well as for model validation and improvement, particularly in a changing85

climate. In situ measurements come with additional challenges, particularly in terms of86

spatial and temporal sparsity and nonuniform sampling for free-floating measurement87

profilers. In situ instruments have begun collecting increasing amounts of data, thus meth-88

ods for effective analysis are critical for data utilization and could provide new approaches89

to ocean observation and prediction.90

Unsupervised machine learning methods for clustering data provide an effective and91

robust approach for partitioning complex data, particularly adaptable to the spatial and92

temporal irregularity of many in situ ocean observations. Additionally, clustering can93

reveal patterns or similarities in a dataset while avoiding biased expectations of what94

patterns should exist (i.e. thresholds derived from prior assumptions of the system). Pre-95

vious work has considered unsupervised clustering of temperature profile measurements96

in the Atlantic and Southern Oceans (Jones et al., 2019; Maze et al., 2017) and found97

groupings consistent with known oceanic water masses. In this work, we analyze mea-98

surements in the Pacific Ocean basin and consider the temporal evolution of the clus-99

tered data for the first time. The openly-available dataset of ocean temperature profiles100

from the Argo program is analyzed with unsupervised machine learning methods to re-101

veal El Niño indicators without thresholding decisions. We find that temporal dynam-102

ics in the spatial location of cluster assignments are strongly correlated with current met-103

rics for El Niño occurrence. The unsupervised methods successfully partition the tem-104

perature profiles into physically meaningful groups and the variation over time identi-105

fies changes in both thermocline depth and sea surface temperatures, key physics asso-106

ciated with ENSO. The data and analysis methods are described in the following sec-107

tion. Section 3 describes the patterns identified by the clustering algorithm and section108

4 discusses their relationship to current oceanographic understanding. Finally, section109
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5 summarizes the utility of unsupervised methods for analyzing oceanographic data as110

illustrated by effective ENSO detection and highlights future directions.111

2 Data and Methods112

Temperature profiles in the Pacific Ocean acquired by the Argo project (ARGO,113

2000) were reduced to a lower-dimensional embedding using principal component anal-114

ysis (PCA) and then grouped via k-means clustering, an unsupervised clustering method.115

The spatial locations of measurements assigned to each cluster were then considered over116

a thirteen year time period as well as over season-length (three month) time periods. Os-117

cillations in the spatial extent of clusters were compared to indicators of climate phe-118

nomena (El Niño) originating in the Pacific Ocean. A description of the Argo temper-119

ature dataset, dimensionality reduction and clustering methods, and comparison to El120

Niño-Southern Oscillation indicators are included below.121

2.1 Argo Float Dataset122

The Argo program was initiated in the 1990’s and consists of a global array of free-123

drifting profiling floats that have served to substantially expand our global ocean observ-124

ing network. Each profiler in the array measures the vertical structure of temperature125

and salinity in the ocean, with newer profilers taking into account currents and bio-optical126

traits. Currently, nearly 4,000 individual profilers are deployed, each acquiring vertical127

profile measurements to a depth of approximately 2,000 m every ten days. Collected data128

is then made publicly available in near real-time. The free-floating nature of the instru-129

ments leads to a global array of sensors distributed at roughly every three degrees (∼300130

km), with dynamically changing positions over time. Argo is the leading source of global131

subsurface data, particularly for use in ocean data assimilation and model reanalysis (ARGO,132

2000).133

Argo profiler measurements of temperature were acquired in the Pacific Ocean basin134

between 30◦S and 50◦N from January 2006 to September 2019 via the Argovis API (ar-135

govis.colorado.edu). Each measurement had an associated latitude, longitude, and ac-136

quisition timestamp. All temperature profiles containing missing data, insufficient data137

points, or nonphysical values were removed. This corresponded to profiles with fewer than138

50 data points, the initial data point more than 25 mbar from the surface, the final data139
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point less than 1,000 mbar, or temperature values less than -5◦C. Temperature values140

in the remaining profiles were linearly interpolated onto a uniform grid with 5 mbar spac-141

ing from 5 mbar down to 1,000 mbar. Data was only stored down to 1,000 mbar despite142

measurements down to approximately 2,000 mbar due to the majority of temperature143

variability of interest occurring in the upper 1,000 mbar. This yielded a set of approx-144

imately 560,000 temperature profiles consisting of 199 data points each for the thirteen145

year time span that were subsequently assigned to clusters.146

2.2 Dimensionality Reduction and Clustering147

A critical first step toward effective clustering for a high-dimensional variable is di-148

mensionality reduction (Aggarwal et al., 2001). Effective dimensionality reduction casts149

a given sample with many features into a lower-dimensional space where a distance met-150

ric between two samples reasonably captures differences within the dataset. For the tem-151

perature profiles consisting of hundreds of data points over a uniform depth grid, cal-152

culating a point-wise difference between each profile would not fully capture critical dif-153

ferences between profiles, such as the shape of the temperature profile with depth (e.g.154

thermocline location).155

In this work, principal component analysis (PCA) was applied utilizing the scikit-156

learn machine learning library for Python (Pedregosa et al., 2011). This algorithm im-157

plements linear dimensionality reduction using singular value decomposition of the data158

to project each sample into a lower dimensional space of linearly uncorrelated (orthog-159

onal) values, termed principal components (Shlens, 2003). The first principal component160

accounts for the largest possible variance in the data, and each subsequent component161

attempts to further maximally account for variance under the constraint of orthogonal-162

ity to preceding components. Thus, one can specify the desired variance to account for163

in the data and additional components will be calculated to more completely describe164

variance between samples. PCA was applied to cast the 199-data-point profiles into 17165

principal components to capture 99.9% of the variance.166

With dimensionality reduction applied, properties such as Euclidean distance be-167

tween each representation become notably more effective at describing sample differences168

(Aggarwal et al., 2001). Clustering methods were then applied with the goal of group-169

ing the profiles solely based on differences in temperature and structure without any geospa-170
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tial information or external constraints applied. A wide variety of clustering methods171

exist with different advantages and levels of complexity (Xu & Tian, 2015). While ex-172

ploration of the different clustering outcomes from the variety of methods (i.e. spectral173

clustering, hierarchical models) would potentially reveal interesting insights, the primary174

goal of this study was to find a straightforward approach to assign temperature profiles175

to groups. Previous work utilized Gaussian mixture modeling (GMM), which aims to176

fit the data as a linear combination of multidimensional Gaussian distributions. In this177

work, k-means clustering, a widely utilized and efficient approach in a variety of appli-178

cations (Jain, 2010), was chosen. In comparison to GMM, which works best when the179

data are multivariate Gaussian, k-means is non-parametric, is computationally efficient,180

and provides hard assignments to each sample. Results from k-means were compared with181

GMM (see supplement).182

Given a set of samples (x1,x2, ...,xn), where each sample is represented by a d -183

dimensional vector, the k-means clustering algorithm aims to partition the n samples184

into k clusters, C={C1, C2, ..., Ck}, with the objective of minimizing the within-cluster185

sum of squares (WCSS). In particular, let µi be the mean of the data within the ith clus-186

ter, Ci. The k-means algorithm seeks to identify the partition, C, that minimizes187

WCSS = arg min
C

k∑
i=1

∑
x∈C`

‖x− µi‖2 . (1)188

The embeddings of the temperature profiles produced by PCA were clustered fol-189

lowing the scikit-learn implementation of the k-means clustering task to assign each pro-190

file measurement to a cluster.191

One limitation of k-means clustering lies in the required choice of number of clus-192

ters, k, to create. However, due to the efficiency of implementation of the algorithm, a193

range of cluster counts can be tested and cluster characteristics can be analyzed to as-194

sess optimal cluster count. A common strategy to assess the cohesion of clusters in a par-195

tition is to measure the average silhouette score of the cluster assignment (Rousseeuw,196

1987).197
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To obtain a silhouette score, for each data point i ∈ C`, the mean distance be-198

tween i and all other data points in the same cluster is given by:199

a(i) =
1

|C`| − 1

∑
j∈C`,i6=j

d(i, j) (2)200

where d(i, j) is the distance between cluster points i and j in the cluster C`, and |C`|201

denotes the number of data points in cluster `. The dissimilarity of point i ∈ C` to other202

clusters is then defined by:203

b(i) = min
k 6=`

1

|Ck|
∑
j∈Ck

d(i, j) (3)204

where the cluster to which sample i is closest, but not assigned, is used (indicated by the205

min operator). Combining the similarity of a sample to its assigned cluster (a(i)) and206

dissimilarity to clusters it is not assigned (b(i)), yields a silhouette score, s, defined as:207

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(4)208

which can then be aggregated for all partitioned points. To assess the cohesion of209

a partition, C , we measure the average silhouette score across all data points. An op-210

timal silhouette score of 1.0 indicates a large distance to non-assigned clusters and small211

distance to other samples in the assigned cluster. The global silhouette score can be cal-212

culated for varying cluster counts, ideally encountering a cluster count, k, that maximizes213

sglobal. The silhouette score was taken into account with physical intuition regarding the214

Pacific Ocean in order to find an optimal cluster count that maximizes uniqueness of data215

in the clusters with sufficient clusters to describe variability in the Pacific. Specifically,216

inspection of the unique water masses in the Pacific Ocean (Emery, 2008) indicated likely217

more than three clusters would be useful to capture variability.218

Following selection of appropriate k, data across all time (2006-2019) were simul-219

taneously clustered and the assigned cluster identity was used for subsequent analysis.220

Alternatively, temperature profiles could be divided into shorter time periods and then221

subsequently clustered. However, simultaneous clustering across all time yielded simi-222

lar partitions and provided a more consistent approach, particularly given the free-floating,223

intermittent nature of the measurements in contrast to a fixed set of sampling locations.224

Repeatability of the clustering assignment was quantified with an Adjusted Rand225

index measuring the similarity between two different groupings, adjusted for random chance226
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of assignment (Rand, 1971). An index of 1.0 indicates exactly identical clustering, re-227

gardless of specific label changes (i.e. a cluster labelled #1 in one partitioning can be228

labelled cluster #4 in a subsequent partitioning but have the same members).229

2.3 El Niño-Southern Oscillation Indicator230

The current leading diagnostic metric of El Niño-Southern Oscillation state uti-231

lized by the National Oceanic and Atmospheric Administration (NOAA) relies on the232

sea surface temperature anomaly within the rectangular Niño 3.4 region of the Pacific233

defined from 5◦S to 5◦N and 170◦W to 120◦W (Trenberth, 2019). The three-month run-234

ning mean of the anomaly in this region is termed the Ocean Niño Index (ONI). This235

index must exceed ±0.5◦C for at least five consecutive months to classify the period as236

a full-fledged El Niño (+5◦C) or La Niña (-5◦C) (Trenberth, 2019). ONI values were ob-237

tained from NOAA (noaa.gov) and used directly for comparison.238

2.4 Spatio-temporal Cluster Analysis239

Following clustering of temperature measurements without any associated tempo-240

ral or geospatial information, the locations of measurements assigned to each cluster were241

analyzed over time and compared to historic ENSO events, utilizing the ONI as a ground242

truth on the historic presence or absence of an El Niño event. All profile measurements243

occurring in a 90 day window were aggregated into a single timestep with the window244

shifting by 30 days for each subsequent timestep, providing statistics representing a three-245

month running mean for comparison with NOAA reported values. The zonal (east-west)246

extent of measurements within a cluster was then considered. To effectively capture the247

changes in zonal extent of a cluster, all unique longitudes of measurements within a clus-248

ter were aggregated. The unique set of longitudes represented within a cluster were then249

averaged and zero-meaned. This method minimized the importance of several measure-250

ments at the same longitude (but potentially different latitude) and highlighted oscil-251

lations in the zonal extent of a cluster.252
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3 Results253

3.1 Clustering254

K-means clustering was found to be effective at partitioning, reproducible, and highly255

computationally efficient. The silhouette score for cluster counts ranging 3 to 10 exhib-256

ited no global maximum, but a stable point at k = 7 (figure 1), indicating partitioning257

at that granularity aligned with separations in the data. Seven clusters were chosen in258

order to balance uniqueness of clusters from sufficient partitions with improvement in259

silhouette score. While choice of k did involve decision making in an otherwise unsuper-260

vised process, variation of cluster count did not fundamentally alter the partitioning oc-261

curring, but rather led to a coarsening (for fewer clusters) or refining (for more clusters)262

of the divisions along similar lines (see supplementary figure 1).263

Repetition of the PCA embedding process and clustering produced very similar re-264

sults such that the same profiles were consistently grouped together. Ten repeated em-265

beddings and clusterings produced an average adjusted Rand index of 0.997, indicating266

high repeatability of the analysis.267

Each group produced by the clustering algorithm contained profiles with relatively268

similar vertical structure and temperature values (figure 2) indicated by the uniqueness269

of the average temperature profile of each cluster and the standard deviation within the270

group relative to variation between groups. The unsupervised clustering method was able271

to detect differences and partition profiles with similar surface temperatures but unique272

vertical structures (e.g. clusters 0 and 5), as well as similar vertical structures but shifted273

temperatures (e.g. clusters 2 and 5), a complex task to achieve with hard-coded selec-274

tion rules. Each measurement assigned to a cluster also had an associated latitude and275

longitude allowing visualization of clusters in geographic space. Each measurement dis-276

played on a map and colored by its corresponding cluster assignment (figure 3b) illus-277

trated the spatial coherency of measurements in each cluster, with few outliers and min-278

imal spatial overlap of cluster members. This spatial coherency was similar to previous279

analyses by Maze et al. (2017) and Jones et al. (2019), despite utilization of a different280

clustering method (k-means versus Gaussian mixture model). Notably, when only sea281

surface temperature (i.e. the uppermost measurement by the profiler) was used for clus-282

tering (figure 3a), the clusters were significantly less spatially well-defined with a scat-283
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tered overlap of measurements belonging to different groups, indicating the full vertical284

structure of the temperature profile was critical in partitioning.285

3.2 Temporal Dynamics286

Measurements from three-month time periods exhibited clear spatial oscillations287

in cluster assignments correlated with the Ocean Niño Index. Oscillations were primar-288

ily observed in clusters with measurements at lower latitudes (see figure 4 and supple-289

mentary video). Figure 4 revealed a noticeable change in clustering assignments which290

closely matched El Niño events.291

3.2.1 Niño 3.4 Region292

For direct comparison with the current region considered for diagnosis of El Niño293

conditions, measurements in the constrained geographic region of Niño 3.4 (N3.4) were294

considered first. The cluster assignments, rather than the traditional surface tempera-295

ture values, were analyzed. Two groups primarily populated the N3.4 region over the296

thirteen years, a low latitude western group (cluster 5, teal) and a low latitude eastern297

group (cluster 2, orange). The two groups occupied unique spatial regions with an east-298

west division. Qualitatively, the division oscillated east and west irregularly, in synchrony299

with the ONI (inner boxed regions, figure 4). During neutral ENSO periods, the N3.4300

region was approximately evenly divided between one group in the western half and one301

group in the eastern half. During a positive ONI anomaly (El Niño event), the western302

cluster distinctly shifted eastward to occupy the majority of the N3.4 region. Following303

an event, as the ONI rapidly returned to neutral levels, the western cluster shifted back304

to its original balance partially occupying the N3.4 region along with eastern cluster mea-305

surements. The shifting of the spatial locations of measurements assigned to a group is306

quantified by the anomaly in longitudinal extent of measurements in the eastern clus-307

ter (figure 6a). The average longitudinal position of measurements in cluster 2 was con-308

sistently further east (positive longitudinal anomaly) during periods above the El Niño309

threshold, and near average or further west during other periods.310
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3.2.2 Tropical Pacific Region311

Temporal dynamics of cluster assignments in the entire tropical Pacific region span-312

ning ± 23.4◦ latitude indicated additional larger-scale patterns. The tropics were pri-313

marily populated by three groups: one group (2, orange) in the eastern Pacific spanning314

the tropical latitudes, a second group in the western Pacific confined to lower latitudes315

(cluster 5, teal), and a third group (cluster 0, maroon) also in the western Pacific to the316

north and south of the second group (figure 3). During an elevated ONI period, the east-317

ern cluster that had shifted further east at very low latitudes (N3.4 region), simultane-318

ously significantly expanded its extent westward at slightly northern latitudes, leading319

to the presence of measurements assigned to the majority eastern group (cluster 2) all320

the way in the western Pacific in a narrow band around 10◦N (figure 4). This phenomenon321

exhibited itself during every El Niño event during the time period assessed (2006-2019).322

This oscillation was quantified with the anomalous longitudinal extent of the eastern clus-323

ter (figure 6b). Opposite to the N3.4 region, on a large scale, the eastern cluster exhib-324

ited strong location anomalies to the west during El Niño events, once again in synchrony325

with ONI oscillations.326

4 Discussion327

The ocean is composed of a distribution of water masses with unique temperature328

and salinity characteristics that can be related to the region of water mass formation (Emery,329

2008). These water masses typically have both a horizontal and vertical (e.g. upper, in-330

termediate or deep) extent. Therefore, a profile measurement down to 1,000 mbar would331

likely sample multiple water masses, indicated by temperature and salinity variability332

over depth in the profile. This layering of unique water masses with variable horizon-333

tal extents results in the high variability seen in temperature profiles. However, temper-334

ature profiles obtained physically proximate are likely sampling the same set of water335

masses and therefore likely to exhibit similar structure. The effective clustering of sim-336

ilarly structured temperature profiles in turn led measurements within a given cluster337

to be spatially proximate, as seen in figure 3. The Pacific is known to have strong east-338

west variations in upper water masses (Emery, 2008) and contains east and west cen-339

tral waters in both the northern and southern hemispheres, which was seen in the par-340

titioning of profiles in both the meridional and zonal direction. Intermediate waters are341

formed off the coast of California in the northern hemisphere and off the coast of South342
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America in the southern hemisphere as a consequence of coastal upwelling, and were also343

partitioned. Additionally, the Pacific is unique for its Pacific Equatorial Water, a large344

band spanning the low latitudes. This region was also partitioned by the clustering task,345

and was divided into an eastern and western cluster at low latitudes which were found346

to be particularly relevant in terms of temporal variability.347

The dynamics of the El Niño-Southern Oscillation are associated with a high pres-348

sure system over the eastern Pacific Ocean and a low pressure system over the western349

Pacific and Indonesia. This pressure gradient across the Pacific leads to persistent west-350

erly winds near the equator that drive upwelling along the eastern Pacific coasts, lead-351

ing to cooler surface temperatures and a tilted thermocline. During an El Niño event,352

the pressure gradient driven atmospheric circulation decreases, reducing upwelling along353

the eastern Pacific, enhancing sea surface temperatures and leveling the depth of the ther-354

mocline in that region (Wang et al., 2000; Meinen & McPhaden, 2000).355

The switching of cluster assignment in a region signals a physical change to the wa-356

ter column indicated by the differences in temperature profiles in the two dominant os-357

cillating clusters (figure 5). At the surface, the profiles in the western cluster (5) have358

warmer temperatures than profiles in the eastern cluster (2). In terms of vertical struc-359

ture, the thermocline is deeper in the western cluster and shallower in the eastern clus-360

ter. Thus, during neutral conditions, the east-west division in the two clusters corresponds361

to a tilted thermocline and colder temperatures in the east. During an El Niño, the west-362

ern cluster extends further eastward at the equator, indicating warmer surface temper-363

atures and a deeper thermocline than under neutral conditions, consistent with phys-364

ical understanding of ENSO dynamics (Meinen & McPhaden, 2000). Additionally, the365

eastern cluster extends far westward in a band north of the western cluster, leading to366

a north-south gradient in cluster identity and accompanying north-south surface tem-367

perature gradient and thermocline tilt that is unique to periods with an elevated Ocean368

Niño Index. The spatial extent of the clusters thus provided a concise method for ob-369

servation of oscillations characteristic of Kelvin and Rossby wave-driven ENSO dynam-370

ics (Kim & Kim, 2002; Battisti, 1989). The ability to compare the general characteris-371

tics of profiles in each group produced by the clustering provided a concise way to iden-372

tify complex shifts in water column structure over time and clearly identify anomalous373

periods.374
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Unsupervised clustering provided a robust way to delineate regions with distinct375

water masses without imposing thresholds or arbitrary latitude or longitude limits. Ad-376

ditionally, the spatial locations of measurements within a cluster evolved over time, and377

relating back to the original temperature profiles in a given cluster indicated the phys-378

ical dynamics at work, such as a shift in thermocline depth.379

5 Conclusions380

Approximately 560,000 temperature profiles in the Pacific Ocean taken from 2006-381

2019 were partitioned into seven groups via the k-means clustering method. Analysis of382

all measurement assignments illustrate spatially coherent patterns associated with known383

water masses of the Pacific despite no inclusion of geospatial information in the cluster-384

ing decision. Cluster assignments over time oscillate in spatial extent, particularly at lower385

latitudes. These oscillations are strongly correlated with the Oceanic Niño Index, the386

broadly utilized indicator of an El Niño event. The representative profiles of each clus-387

ter correspond to current understanding of oceanic dynamics, particularly the shift in388

sea surface temperature and thermocline depth as a result of reduced eastern Pacific up-389

welling during El Niño events.390

By analyzing the sparse (relative to grid cells of a model) but directly measured391

set of profiles, unsupervised clustering methods are shown to be highly effective at re-392

vealing anomalies. Despite the difficult task of uniformly sampling a massive extent of393

the worlds oceans with free-drifting devices, Argo sensors are gathering sufficient data394

to observe oscillations in oceanic dynamics over relatively short time periods (i.e. three395

months) at relatively high resolution (3-5 degrees), indicating the unparalleled value of396

the ever increasing observing network and the real-time data distribution.397

While unsupervised clustering methods have been applied across a variety of fields,398

utilization within ocean and climate sciences remains limited (Karpatne et al., 2019). How-399

ever, as climate change continues and potentially accelerates (IPCC, 2019), identifying400

robust methods to identify patterns and anomalies within climate and environmental data401

could prove invaluable as metrics like temperature anomalies from historic means become402

obsolete. Unsupervised methods such as clustering and other complex network theory403

approaches (e.g. anomaly detection on a graph) provide an automated approach to seg-404

mentation and analysis driven by statistics of the dataset rather than potentially impos-405
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ing biases toward expected, but not necessarily fully representative, patterns. Altogether,406

unsupervised machine learning techniques prove to be a highly effective approach for an-407

alyzing Argo data and gaining physical insights into the system.408
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Figure 1. Silhouette score as a function of number of clusters, k, from 3 to 10 calculated

following equation 4. A local maximum (highlighted in gray) is observed at k = 7.
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a b c d

e f g h

Figure 2. Temperature profiles collected by the Argo project, colored corresponding to cluster

assignment. (a-g) For each cluster, the mean temperature profile (solid line) and ± one standard

deviation of temperature (dashed line) is plotted. (h) Overlay of a random subset of profiles from

each cluster, with thicker lines indicating the mean temperature profile in each cluster, colored by

cluster assignment.
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a

b

Figure 3. The spatial distribution of Argo measurements in the Pacific, colored by cluster

assignment. Cluster IDs are randomly set by the clustering algorithm initialization, therefore ID

magnitudes are arbitrary. The large black box corresponds to the tropical zone (± 23.4◦ lati-

tude), and the smaller inner box corresponds to the Niño 3.4 region. (a) Measurements grouped

by sea surface temperature (uppermost profile measurement only). (b) Measurements grouped by

PCA embedding of full temperature profile, used for subsequent analysis.
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Figure 4. Upper: Three-month periods of measurements colored by cluster assignment. Two

periods (t1, t3) correspond to a neutral ENSO phase and two periods (t2, t4) correspond to El

Niño events during northern winter. During elevated ONI periods, the eastern cluster (2, orange)

extends in a narrow band across the Pacific at approximately 10◦N while simultaneously shifting

westward out of the Niño 3.4 designated region. During neutral periods, the eastern cluster shifts

back eastward overall, but extends slightly westward in the Niño 3.4 region (see supplementary

video for cluster assignments over all time). Lower: The ONI anomaly from 2006 to 2019 indi-

cating several El Niño events. Vertical gray shaded bars correspond to time periods visualized in

upper plots.
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Figure 5. Relative to the eastern cluster (2), the western cluster (5) contains profiles with

a warmer surface temperature and deeper thermocline. A shift in cluster assignment from 5

to 2 in a spatial region indicates a decrease in the thermocline depth and a decrease of surface

temperatures.
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a

b

c

Figure 6. Spatial oscillations in the eastern low latitude cluster (2) are indicative of ENSO

events. (a) During an El Niño, a shift eastward of measurements assigned to the eastern cluster

is seen in the Niño 3.4 region. (b) Over the entire tropics, the eastern cluster measurements shift

westward. White lines and gray shading correspond to standard deviations from the mean. All

anomalies in spatial location beyond one standard deviation occur simultaneously with an El

Niño event, and only the major event in 2015-2016 exceeds two standard deviations. The eastern

cluster is characterized by cooler surface temperatures and a shallower thermocline (figure 5),

therefore a shift of that cluster out of the N3.4 Region aligns with the positive ONI temperature

anomaly. Vertical gray bars on all plots correspond to a full El Niño event occurring.
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