### Neutral density measurement from simultaneous radar observation of meteors

Nicolas Lee<sup>1</sup> and Sigrid Close<sup>1</sup>

<sup>1</sup>Stanford University

November 21, 2022

### Abstract

Observations of atmospheric neutral density and associated dynamics within the lower thermosphere has been a challenge to the atmospheric science and space community due to its inaccessibility to balloon-borne or orbital in situ instruments. We present a methodology to study the latitudinal and temporal variation of neutral density in this region through a simultaneous campaign at geographically distinct high-power large-aperture (HPLA) radar facilities to observe meteor trajectories. These meteors are formed by meteoroids entering the Earth's atmosphere; the deceleration they undergo due to atmospheric drag provides a source of information to determine the neutral density of the atmosphere at altitudes of 80 to 140 km. Through the measurement of meteor head echo trajectories using specialized radar waveforms and signal processing to enhance the range resolution, combined with novel statistical techniques to account for the distribution of meteoroid properties, the temporal evolution of atmospheric neutral density from 70 to 140 km can be characterized with sub-km altitude resolution. Initial results will be presented from the first of four observation campaigns planned during the 2019-2021 period using the HPLA radar sites at Jicamarca, Millstone Hill, and Resolute Bay, which span equatorial to polar latitudes at similar longitude. The simultaneous measurements across facilities complements other measurements of atmospheric composition and structure at similar altitudes to provide improved identification of latitudinal coupling and forcing from lower altitudes into the magnetosphere-ionosphere-thermosphere (MIT) system.

# Neutral density measurement from simultaneous radar observation of meteors

# Stanford ENGINEERING Aeronautics & Astronautics

# Nicolas Lee and Sigrid Close

Department of Aeronautics and Astronautics, Stanford University nnlee@stanford.edu sigridc@stanford.edu (650) 725-2863

Neutral density estimation

## Introduction

- Thermospheric neutral density difficult to measure directly
- Space-based in situ measurements down to ~360 km
- What is coming into the Earth system and what is it passing through?
- Meteoroids provide information on the properties and phenomena of the lower thermosphere

# Meteoroids

- Plasma interactions throughout meteoroid lifetime
- Sporadic meteoroids entering the Earth's atmosphere provide:
- A source function of extraterrestrial material (metallic ions, etc.)
- A probe into the atmospheric conditions being traversed
- Ablation of meteoroids in atmosphere produces meteor plasma, which is detectable by groundbased radar



Prior work by Li and Close [2016] using ALTAIR meteor data

• Simultaneously estimate relative neutral density profiles and meteoroid parameters

• Use order statistics with known meteoroid distribution to anchor density profiles to absolute density value

**Combined:** 

Matrix formulation:

$$\ln\left(\frac{a_2^2}{v_2^2}\right) - \ln\left(\frac{a_1^2}{v_1^2}\right) = D(v_1^2 - v_2^2) + \ln\left(\frac{\rho_{a2}}{\rho_{a1}}\right)$$

$$F_{i,j} = \ln\left(\frac{a_{i,j+1}}{v_{i,j+1}^2}\right) - \ln\left(\frac{a_{i,j}}{v_{i,j}^2}\right)$$

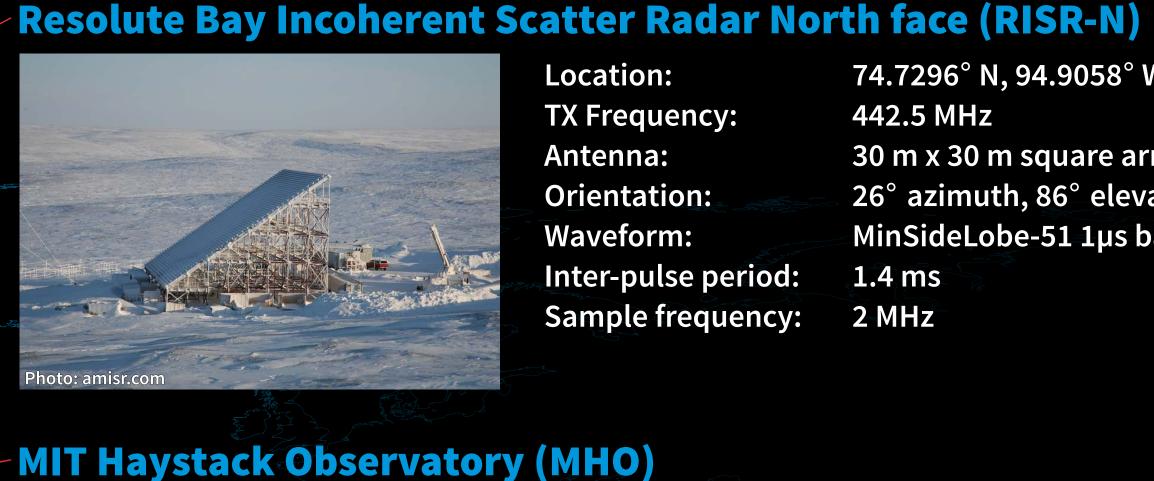
$$V_{i,j} = v_{i,j}^2 - v_{i,j+1}^2$$

$$\rho_{rj} = \frac{\rho_{a,j+}}{\rho_{a,j}}$$

$$\begin{bmatrix} F_{i,1} \\ F_{i,2} \\ \vdots \\ F_{i,m} \end{bmatrix} = \begin{bmatrix} I_{i,j=1} & 0 & \dots & 0 & W_{i,1} \\ 0 & I_{i,j=2} & \dots & 0 & W_{i,2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & I_{i,j=m} & W_{i,m} \end{bmatrix} \begin{bmatrix} \ln(\rho_{r1}) \\ \ln(\rho_{r2}) \\ \vdots \\ \ln(\rho_{rm}) \\ D_i \end{bmatrix}$$

Convex optimization problem:

Subject to

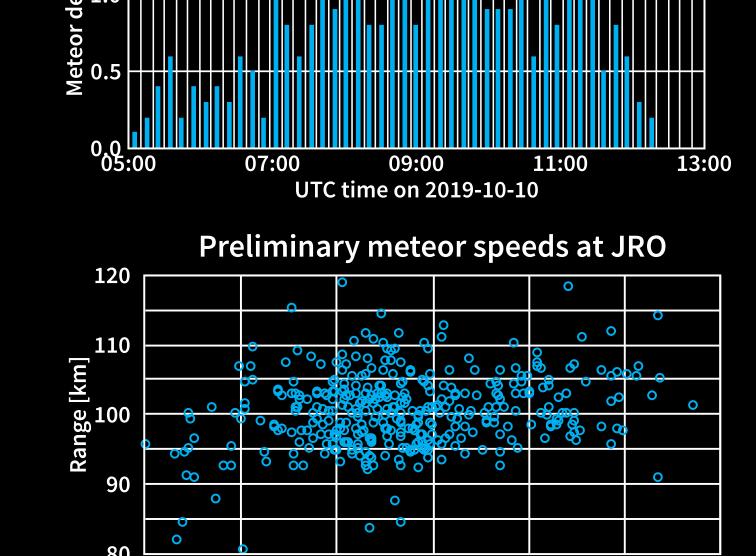

# Radar facilities

- High-power large-aperture (HPLA) radar typically uses higher frequencies and narrower beams than dedicated meteor radar
- Track head plasma to determine deceleration of meteoroid subject to drag and ablation

# Meteor campaign

- Simultaneous measurement from multiple facilities spanning equatorial to polar latitudes
- Four-hour windows spanning period of maximum sporadic meteoroid flux:
- 2019-10-10T09:00Z to 2019-10-10T13:00Z
- 2019-10-11T09:00Z to 2019-10-11T13:00Z
- Binary phase coded pulse compression selected based on Volz and Close [2012]

Seconds after 2019-10-10T07:07:12






74.7296° N, 94.9058° W, 145 m 30 m x 30 m square array 26° azimuth, 86° elevation MinSideLobe-51 1µs baud Sample frequency:

Meteors at RISR-N, MHO, and JRO Preliminary meteor detection rate at JRO (Matched filtered range-time-intensity)

## 42.6195° N, 71.4917° W, 146 m 46 m steerable dish 270° az, 45° el Barker-7 6 µs baud 1 MHz (10 minutes at 25 MHz)



# Acknowledgment

of other atmospheric parameters

trajectories for population studies

Conclusion

• Funding for this research was provided by NSF under award number AGS-1920383

Meteor-derived atmospheric density measurements provide a technique for

Upcoming/ongoing meteor radar campaigns will yield new data set of meteor

continuous monitoring using existing facilities that complements measurements

- Experimental support at JRO: Marco Milla, Karim Kuyeng Ruiz
- Experimental support at MHO: Phil Erickson, Ryan Volz
- Experimental support at RISR: Roger Varney

### Jicamarca Radio Observatory (JRO)



TX Frequency: Inter-pulse period:

Location:

**Antenna:** 

**Orientation:** 

TX Frequency:

Inter-pulse period:

11.9515° S, 76.8745° W 49.9 MHz 300 m x 300 m square array 90° elevation MinSideLobe-51 1µs baud 1.25 ms

# Seconds after 2019-10-10T10:02:24 Initial detection using Hough transform

## References

- Li, A., and S. Close (2016), Neutral density estimation derived from meteoroid measurements using high-power, large-aperture radar, J. Geophys. Res. Atmos., 121, 8023-8037, doi:10.1002/2015JD024547.
- Volz, R. and S. Close (2012), Inverse filtering of radar signals using compressed sensing with application to meteors, Radio Sci., 47, RS0N05, 1–11, doi:10.1029/2011RS004889.