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Abstract

Large earthquakes are difficult to model in real-time with traditional inertial seismic measurements. Several algorithms that

leverage high-rate RT-GNSS positions have been proposed and it has been shown that they can supplement the earthquake

monitoring effort. However, analyses of the long-term noise behavior of high-rate RT-GNSS positions, which are important to

understand how the data can be used operationally by monitoring agencies, have been limited to just a few sites and to short

time spans. Here we show results from an analysis of the noise characteristics of one year of positions at 213 RT-GNSS sites

spanning a large geographic region from Southern California to Alaska. We characterize the behavior of noise and propose

several references noise models which can be used as baselines to compare against as technological improvements allow for

higher precision solutions. We also show how to use the reference noise models to generate realistic synthetic noise that can

be used in simulations of HR-GNSS waveforms. We discuss spatiotemporal variations in the noise and their potential sources

and significance. We also detail how noise analysis can be used in a dynamic quality control to determine which sites should

or should not contribute positions to an earthquake modeling algorithm at a particular moment in time. We posit that while

there remain important improvements yet to be made, such as reducing the number of outliers in the time series, the present

quality of real-time HR-GNSS waveforms is more than sufficient for monitoring large earthquakes.
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Key Points 14 

● We study the noise behavior of 213 HR-GNSS sites from California to Alaska 15 

● We characterize the spatiotemporal noise behavior and propose reference noise 16 

models 17 

● The present real-time noise is low enough that GNSS can be used for monitoring 18 

earthquakes 19 

 20 

Abstract 21 

 22 

Large earthquakes are difficult to model in real-time with traditional inertial seismic 23 

measurements. Several algorithms that leverage high-rate RT-GNSS positions have been 24 

proposed and it has been shown that they can supplement the earthquake monitoring 25 

effort. However, analyses of the long-term noise behavior of high-rate RT-GNSS positions, 26 

which are important to understand how the data can be used operationally by monitoring 27 

agencies, have been limited to just a few sites and to short time spans. Here we show 28 

results from an analysis of the noise characteristics of one year of positions at 213 RT-29 

GNSS sites spanning a large geographic region from Southern California to Alaska. We 30 

characterize the behavior of noise and propose several references noise models which can 31 

be used as baselines to compare against as technological improvements allow for higher 32 

precision solutions. We also show how to use the reference noise models to generate 33 

realistic synthetic noise that can be used in simulations of HR-GNSS waveforms. We 34 

discuss spatiotemporal variations in the noise and their potential sources and significance. 35 

We also detail how noise analysis can be used in a dynamic quality control to determine 36 

which sites should or should not contribute positions to an earthquake modeling algorithm 37 

at a particular moment in time. We posit that while there remain important improvements 38 

yet to be made, such as reducing the number of outliers in the time series, the present 39 

quality of real-time HR-GNSS waveforms is more than sufficient for monitoring large 40 

earthquakes. 41 

 42 

1. Motivation 43 
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 44 

There is broad interest in the international earthquake monitoring community in high rate 45 

(HR, epoch length <= 1sps) real-time position estimation from Global Navigation Satellite 46 

Systems (GNSS) such as the Global Positioning System (GPS) and others. It has been 47 

shown that HR-GNSS displacement waveforms can supplement measurements from 48 

traditional seismic networks based on inertial sensors and can be leveraged to characterize 49 

moderate to large earthquakes in seconds to minutes. This interest arises because 50 

algorithms that rely on inertial sensors “saturate” for large events, particularly at local and 51 

regional distances (e.g. Hoshiba and Ozaki, 2014). Saturation means that large and very 52 

large events look similar in inertial recordings and cannot be distinguished from one 53 

another in the first minutes following a significant event. The exact causes for this are still a 54 

matter of some debate but are most likely that the long period band of ground motion 55 

(period >10s) is not faithfully recorded by strong motion sensors in the near-field. In 56 

contrast, this low frequency energy which distinguishes large events is recorded with fidelity 57 

by HR-GNSS from the Nyquist frequency out to and including static, or permanent, offsets. 58 

As a result, many researchers have studied and proposed algorithms based on HR-GNSS 59 

that compute magnitude [Melgar et al., 2015], focal mechanisms (faulting style) [Crowell et 60 

al. 2016, Riquelme et al. 2016], and slip distribution [Grapenthin et al. 2014, Minson et al., 61 

2014; Kawamoto et al. 2016] in real- or near real-time. Several of these algorithms have 62 

been systematically evaluated with both real and simulated events and are being used to 63 

complement traditional seismic approaches in earthquake and tsunami early warning 64 

systems. Thorough reviews of these issues can be found in Bock & Melgar [2016] and 65 

Larson [2019]. 66 

 67 

Measurements of ground motion from HR-GNSS differ from those obtained by inertial 68 

seismic sensors in fundamental ways. In the electro-mechanical systems used in 69 

seismometry the digitized acceleration or velocity of a proof mass inside the instrument 70 

correlates directly, through a known transfer function, to the actual ground motion. HR-71 

GNSS positions are a wholly different kind of derived product. As a space-based geodetic 72 

approach, calculation of HR-GNSS positions relies on measurement of the time of flight of 73 

a microwave transmission between a satellite and a ground based antenna and receiver as 74 

well as the phase with which the signal arrives. These measurements coupled with 75 

knowledge of ancillary variables such as transmission delays through the troposphere and 76 

ionosphere, knowledge of the satellite clocks and orbits, and others, are used by a 77 

positioning algorithm to solve a least squares problem and produce epoch by epoch 78 

solutions of the station coordinates in a particular reference frame. The most common 79 

reference frame is the International Terrestrial Reference Frame (ITRF) which satellite 80 

orbits are generally computed in [Altamimi et al.,2016]. If the GNSS antenna is firmly 81 

coupled to the ground through a geodetic monument and it experiences a sudden motion, 82 

such as the one produced by an earthquake, the position solutions can be used to obtain 83 

displacement waveforms in local topocentric north, east, and vertical components of that 84 

particular point of the surface of the Earth. While the concept behind GNSS positioning is in 85 

essence simple, the estimation of the position of the antenna phase center using satellite 86 

signals, the practice is complex, especially for high sample rates and in real-time. Satellite 87 
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orbits and clocks which determine the spatial and temporal origin of the microwave signal 88 

used to solve for the position are not as well known in real-time as is necessary for precise 89 

positioning. As a result, a number of external corrections must be calculated using a 90 

reference regional network (e.g. Geng et al., 2013) and applied in real-time for the positions 91 

to achieve the cm-level precision needed for earthquake monitoring.  92 

 93 

In spite of this seemingly added complexity when compared to inertial sensors, real-time 94 

HR-GNSS networks have proliferated to almost every tectonically active region (e.g. 95 

Barrientos & Perez-Campos, 2018) and a variety of methods are employed to calculate the 96 

GNSS positions. There exist proprietary software for positioning from a number of vendors 97 

as well as open source academic codes (e.g. Geng et al., 2019). However, in spite of the 98 

significant progress in positioning and in understanding how HR-GNSS can contribute to 99 

real-time earthquake monitoring as well the rapid expansion of real-time networks one 100 

important outstanding issue remains. What are the noise characteristics and long-term 101 

behavior and performance of the position solutions in a real-world setting across a network 102 

with large geographic aperture? Characterization of the actual real-time performance of 103 

HR-GNSS has only been performed in small scale controlled settings such as shaketables 104 

and on individual station to station baselines (e.g. Bock et al., 2000; Langbein & Bock, 105 

2004; Genrich & Bock, 2006; Bock et al., 2011). Tests of real-time performance have also 106 

been carried out in a simulated mode post-hoc for large events [e.g. Fang et al., 2013]. 107 

Recently Melgar et al., [2019] studied the performance of 9 HR-GNSS stations that were 108 

recorded and positioned in real-time and broadcast to end users for the 2019 M6.4 and 109 

M7.1 Ridgecrest, California earthquakes. When compared to post-processed solutions it 110 

was found that the main features of the waveforms used for rapid source characterization, 111 

the peak ground displacement (PGD) and the coseismic offsets compared favorably 112 

between real-time and post-processed data. However, differences between real-time and 113 

post-processed positions were also apparent. Post-processed solutions are able to 114 

leverage final orbit and clock products as well as use iterative approaches and full time-115 

series filtering to compute positions whereas RT-GNSS positions can only utilize recursive 116 

filters and rely heavily on phase ambiguity stability. 117 

 118 

In this work we explore this issue further. We will study the long term noise characteristics 119 

of real-time 1Hz point position time series computed in the ITRF global reference frame by 120 

the Geodesy Lab at Central Washington University (CWU) for a network of 213 stations 121 

(Figure 1) spanning from southern California to Alaska. These data are streamed from the 122 

field site to CWU where positions are computed on the fly. The solutions are re-broadcast 123 

to a number of users including the U.S. Geological Survey and the National Oceanographic 124 

and Atmospheric Administration (NOAA). The data are streamed as well to the Universities 125 

of Oregon and Washington where they are analyzed and archived. Here we will discuss the 126 

temporal and spatial behavior of noise in these HR-GNSS solutions. We emphasize that 127 

the performance we aim to characterized here is by definition a snapshot in time. GNSS 128 

positioning technology is improving constantly and it is our hope that the noise models we 129 

will demonstrate can be used by others to benchmark improvements and progress. These 130 

proposed reference noise models can potentially be used to determine the quality of the 131 
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positioning solutions from a particular positioning algorithm or at a particular station of 132 

interest. Finally, we will demonstrate how to use the reference models to generate synthetic 133 

time series of noise which can be added to simulations of earthquake ground motions to 134 

more accurately represent a real-world scenario and to test rapid source estimation 135 

methods. 136 

 137 

2. Data and Analysis Method 138 

 139 

2.1 Network and Positioning 140 

 141 

Many continuous GNSS networks operate in the region spanned by this study (Figure 1, 142 

the U.S West Coast, Canada, and Alaska) and, while an exact figure on the number of 143 

available sites is hard to come by and changes frequently, it is likely on the order of ~1000 144 

stations (e.g. Blewitt et al., 2018). Of these, a subset of 213 was chosen for a 145 

demonstration project for NOAA. This agency is interested in using GNSS to supplement its 146 

local tsunami warning effort and so, starting in 2017, positions for this subset of sites began 147 

to be streamed in real-time to the Tsunami Warning Centers in Hawaii and Alaska 148 

[Melbourne et al., 2018]. In order to analyze the performance of the data, starting in 149 

October 2018 the positions are also being streamed to the University of Oregon where they 150 

archived as individual daily station files in miniSEED format for later analysis. 151 

 152 

 153 
Figure 1. Distribution of real-time stations analyzed in this study. The inset histogram 154 

shows how many days of real-time data are available for each station. 155 

 156 

The positions themselves are produced by Central Washington University’s FastLane 157 

algorithm. The raw GNSS data are telemetered from the field to the central location for a 158 

particular network operator such as Boulder CO for UNAVCO Inc. sites or Berkeley CA, for 159 

UC Berkeley stations. From there the individual network operators streams the data to 160 
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CWU in Ellensburg, WA where Fastlane computes the epoch by epoch position solutions 161 

and in turn serves them to other users such as NOAA and the UO. 162 

 163 

The Fastlane positioning system [Santillan et al., 2013] produces precise point position 164 

(PPP, Zumberge et al., 1997) estimates based primarily on GNSS carrier phase 165 

observables (currently only from the GPS constellation) and satellite clock corrections 166 

provided by the Real-Time Service (RTS) of the International GNSS Service (IGS). The 167 

GPS carrier phase data is internally continuously calibrated using geometry free 168 

combinations of the L1 and L2 pseudorange and phase observables. This calibration step 169 

is a Kalman filter based algorithm that simultaneously estimates the best floating point 170 

ambiguities while monitoring and correcting for possible cycle slips. Fastlane uses GPS 171 

carrier phase based only, unlike other PPP algorithms (e.g. Kouba & Heroux 2001) that rely 172 

on both phase and pseudorange. This approach to PPP relies on the fact that the 173 

calibration procedure greatly mitigates the influence of code multipath that may affect the 174 

estimation of the floating point ambiguities. By using well calibrated data Fastlane uses only 175 

half the number of input observations therefore reducing the overall computation of the 176 

position estimates which also translates into smaller latencies. This approach is far less 177 

contaminated  by multipath error, one of the largest sources of noise in high-rate 178 

positioning. Fastlane uses a highly efficient algorithm for the resolution of carrier phase 179 

initial ambiguities, which for most stations can be initially resolved in 20-30 seconds. After 180 

this the positions can be efficiently determined. Positions are computed in SI units (meters) 181 

in Earth Centered Earth Fixed reference frame (XYZ coordinates). Prior to streaming out 182 

the solutions to users these are rotated to a more familiar topocentric local north, east, and 183 

vertical reference frame. An example year-long waveform is shown in Figure 2. 184 

 185 

2.2 Noise Analysis 186 

 187 

First we study simple time domain features of the real-time waveforms such as the number 188 

and amplitude of outliers. For every station we count how frequently displacement levels of 189 

certain thresholds are exceeded in order to quantify the frequency of occurrence of the 190 

large displacement excursions seen in Figure 2.  However, the bulk of our analysis focuses 191 

on the frequency domain. We employ the probabilistic power spectra (PPSD) technique of 192 

McNamara & Buland (2004) for all sites. The PPSD method is common in seismology to 193 

characterize the long term noise behavior of broadband sites. We take 20 min windows at 194 

each site and for each of the three components of motions and calculate the power spectra. 195 

This is repeated for every time window available for each site and an empirical probability 196 

density function (PDF) of the distribution of power at each frequency is obtained for every 197 

station. An example of the PPSD calculation for the same station in Figure 2 is shown in 198 

Figure 3. The PPSD approach is desirable because it minimizes the need to “fix” issues 199 

with the time series prior to calculating the spectra. As shown in Figure 2 there are outliers, 200 

steps, and spikes, as well as gaps in the data. The PPSD will naturally deal with these. A 201 

window with one of these behaviors will simply plot at a higher power. Meanwhile windows 202 

without these issues, which are more frequent, will eventually illuminate the median 203 

behavior as well as the lowest possible expected noise. 204 
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 205 

` 206 

Figure 2. Example time series for the east-west component of station BILS. Plotted are 207 

successive closeups of the data starting from the entire span and finishing with a three 208 

hour period. 209 

 210 
 211 

Figure 3. Example PPSD for the east-west component of displacement of station BILS 212 

(Figure 2). The black lines are used as a reference and denote the power of a 213 

Gaussian white noise time series with the specified standard deviation. The bar at the 214 

bottom denotes the time-spans covered by the data. 215 

 216 
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After we obtain PPSDs for each of the 213 sites in this study and for each component of 217 

motion we aggregate all of them to obtain the overall behavior of the HR-GNSS noise. 218 

From this regional PPSD we can extract reference noise models, for example, we select 219 

the 1th percentile from the regional PPSD and term this the “low-noise” model. Similarly the 220 

50th and 90th percentiles of the PPSD are use to define the “median” and “high-noise” 221 

models. 222 

 223 

2.3 Generation of synthetic noise time series 224 

 225 

Using the regional reference noise models we demonstrate a simple method for generating 226 

synthetic time series of noise that recreate the behavior observed in the real data. We 227 

follow the approach first proposed by Boore [1983] and further detailed in Graves & Pitarka 228 

[2010] for generating stochastic time series in seismology. The approach has three simple 229 

steps, first, we create a Gaussian white noise time series with a specified sample rate (e.g. 230 

1Hz) and duration. Second, we apply the Fourier transform to the white noise time series 231 

and keep the random phase spectrum but replace the white noise PSD with the reference 232 

noise model PSD. Finally we inverse Fourier transform to the time domain and recover a 233 

time series.  While we have proposed three reference models at the 1th, 50th, and 90th 234 

percentiles, we have also extracted noise models for every 10th percentile. In the 235 

acknowledgments we provide links to code and a tutorial that demonstrates how to 236 

generate the synthetic time series.   237 

 238 

3. Results 239 

 240 

3.1 Overall noise characteristics 241 

 242 

The time series in Figure 2 show seemingly meter-level accuracies in the positions, this is 243 

far too high to satisfy the cm- to decimeter requirement needed to monitor large events 244 

(e.g. Melgar et al., 2015; Ruhl et al, 2018), however if the data are plotted over shorter time 245 

scales we can see that this is the result of outliers and that in reality over time scales of 246 

minutes the data show cm-level precision. To further demonstrate this we take every 20min 247 

segment, remove its mean and count how frequently it exceeds displacement thresholds of 248 

certain levels. We do this for all sites and all epochs. The distribution of positions in the 249 

east direction and the  cumulative density function are in Figure 4 and show that in spite of 250 

the outliers 90% of the data have noise smaller than 20cm. 251 
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 252 
Figure 4. Number of outliers in the position waveforms in the east direction for 253 

different thresholds and for all sites and all epochs.  The black dashed line in the 254 

cumulative density function is the 90% level. 255 

 256 

Figure 5 shows the aggregate PPSD plot for all three components of motion for all stations. 257 

We note that as first described by Genrich & Bock [2006] the real time positions have 258 

roughly red noise with a plateau at periods longer than ~100s and decreasing noise levels 259 

at shorter periods. The noise is generally lowest for the east component, followed by the 260 

north component, with the highest noise levels in the vertical direction. This is consistent 261 

with what is seen in post-processed data (e.g. Bock et al., 2011, Melgar et al., 2019) and is 262 

usually attributed to the geometry of the constellation of satellites. This is more clearly seen 263 

in Figure 6 where the 1th, 50th, and 90th percentiles of the PPSDs for each component of 264 

motion are plotted together. The average difference in noise between each component of 265 

motion is about 3dB. We note that while the time domain analysis of the outliers in Figure 4 266 

suggests that noise levels in the 10-20cm range are not uncommon, the frequency domain 267 

analysis shows a more nuanced perspective. At shorter periods, shorter than 100s, which 268 

are comparable with the duration of large earthquake, noise is much closer to the ~5cm 269 

level. Meanwhile at shorter periods than that (e.g. 10s) 1cm or even sub-cm level noise is 270 

prevalent. 271 

 272 
Figure 5. Aggregate PPSDs for the three components of motion for all stations in this 273 

study. The continuous black lines denote the 1th, 50th, and 90th percentiles. The dashed 274 
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lines are used as a reference and denote the power of a time series of Gaussian white 275 

noise with specified standard deviation. 276 

 277 

 278 
Figure 6. Comparison plot of the 1th, 50th, and 90th percentiles of the PPSD noise 279 

distribution for all sites from Figure 5. The horizontal thin black reference lines are used as 280 

a reference and denote the power of a time series of Gaussian white noise with specified 281 

standard deviation 282 

 283 

3.2 Spatiotemporal characteristics of noise 284 

 285 

We are also interested in the variations of the noise distribution over long periods of time. 286 

Figure 7 shows the spectrogram for the nearly year-long time series at station BILS and for 287 

a period of 1 week. We find that, while there can be short periods of higher or lower noise 288 

overall, the general spectral shape and the behavior of the noise is somewhat stable. At a 289 

particular period the average standard deviation of the PSD throughout the year is only 5-290 

6dB with larger excursion from this baseline behavior occurring only over short periods of 291 

time (e.g. P1 in Figures 7 and 8). The time series of power at selected periods, also shown 292 

in Figure 7, hint at regular variations in the noise behavior and also suggest that the 293 

temporal changes to the noise covary between periods. This is especially obvious in the 294 

week long time series. In Figure 9 we explore this further, we extract the time series of 295 

power spectral density at these 3 periods (2s, 60s, and 300s) for each site and calculate 296 

the spectra for each. We then stack them across all the sites to see if there are any spectral 297 

peaks that are systematically present at all sites. There are several (Figure 9), of particular 298 

prominence we note peaks at 1.96hrs, 11.38hrs and 21-23hr periods. This “spectra of 299 

spectra” should not be interpreted to suggest position signals at these periods, rather they 300 

show that with a periodicity of, for example ~2hrs, the entire spectra of the positions at all 301 

frequencies shift wholesale to higher or lower noise levels. The spectra explains some of 302 

the temporal variability in the noise behavior but we note, and will discuss further on, that 303 

the time series are punctuated by short periods of very high noise (e.g. P1 in Figures 7 and 304 

8) that occur at irregular intervals. 305 

  306 
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We also explore the spatial distribution of noise across the sites. Figure 10 is a map of the 307 

amplitude of the noise at a period of 60s across the entire network. We do not observe any 308 

strong spatial pattern with respect to preferential locations or environments for low or high 309 

noise sites. For example in the Southern California cluster there are many low noise sites 310 

(~-26dB) however, in between many of them are interspersed high noise sites with power 311 

closer to -22dB or -21dB. The same is true in the other three clusters in the Bay area, the 312 

Pacific Northwest, and Alaska. Additionally we do not observe systematically higher noise 313 

in any of the regions shown in Figure 10. 314 

 315 

3.3 Synthetic noise time series 316 

 317 

Figure 6 exemplifies three potential reference noise models from which to choose. We 318 

define the 1th percentile model as the “low” noise model, the 50th percentile as the 319 

“median” model, and the 90th percentile as the high noise model. These can be used to 320 

generate arbitrarily long synthetic time series of noise to be injected into simulations of 321 

earthquakes or any other potential application where high-rate positions are used or 322 

required [e.g. Melgar et al., 2016]. Figure 11 shows by way of an example a three 323 

component 20 minute time series of median synthetic noise compared to a twenty minute 324 

window from station BILS. The figure illustrates that the two are, as designed, very similar 325 

to each other. 326 

 327 
Figure 7. Top, year long spectrogram of positions for the east component of station 328 

BILS (Figure 2). For ease of interpretation we also plot the time series of power for 3 329 

selected periods, 2s, 60s, and 300s. Bottom, same as the top but for a shorter time 330 

span of only 1 week. The time periods labeled P1, P2, P3 enclosed in the rectangles 331 
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correspond to periods of high, medium, and low noise. Time series for these periods 332 

are in Figure 8. 333 

 334 
 335 

Figure 8. Left: Example 10 minute long time series for periods of high, medium, and 336 

low noise for the east component of station BILS. The time periods are highlighted as 337 

P1,  P2, and P3 in the spectrogram on Figure 7. Right: PPSD for station BILS, (same 338 

as Figure 3) with spectra for noise at time periods P1, P2, and P3. The dashed lines 339 

are used as a reference and denote the power of a time series of Gaussian white 340 

noise with specified standard deviation 341 

 342 
Figure 9. Stacked spectra of the time series of power of the noise at 2s, 60s, and 343 

300s periods (see Figure 7). The individual spectra for each site are calculated for the 344 

entire time span and then all the sites are averaged together to create the stack. 345 

 346 

4. Discussion 347 

 348 

4.1 On the characteristics of the noise 349 

 350 
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Langbein & Bock [2004] and Genrich & Bock [2006] first analyzed the noise behavior of 351 

HR-GNSS positions obtained from relative positioning (where the positions are with respect 352 

to a reference site). Those studies found that noise has a characteristic “dam” profile, with 353 

approximately flat power at long periods and linearly decaying (in a log-log sense) power at 354 

higher frequencies. In this study we find that positions obtained from PPP are consistent 355 

with these earlier findings. At periods longer than ~200s power is mostly flat, suggesting 356 

mostly uncorrelated positions, with power decaying with a slope of -2 at shorter periods 357 

(e.g. Figures 5 and 6). This power of 2 decay is characteristic of a random walk process 358 

(e.g. Agnew 1992). Both the slope and the location of the spectral “corner” are consistent 359 

with earlier findings from Genrich & Bock [2006] who analyzed instantaneous relative 360 

positions for three baselines in Southern California. It suggests that the primary source in 361 

the short period band up to ~200s is a combination of the troposphere and multipath. At 362 

very short periods (<5s) there is an indication that the spectra are beginning to flatten, this 363 

too would be consistent with Genrich & Bock [2006] and Bock et al. [2011] who observed 364 

mostly white noise in 50Hz sampled GNSS at periods shorter than 1-2Hz. This white noise 365 

behavior is indicative that the noise sources at these higher frequencies are uncorrelated.  366 

 367 
Figure 10. Distribution of noise at 60s period in the California, Pacific 368 

Northwest and Alaska regions. 369 

 370 

The long term behavior of the noise in Figure 7 is interesting. The spectrograms show a 371 

periodic variability in the noise levels which is punctuated by irregularly spaced short 372 

intervals of time where there is a wholesale increases or decrease of noise. The time series 373 

of power in Figure 7 were collected at 2s, 60s, and 300s, which alternatively correspond to 374 
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the short period somewhat flattened part of the spectrum, the linearly decaying part of the 375 

spectrum, and the long period approximately flat part of the spectrum. The changes in 376 

power at all of these periods co-vary, even during periods (such as P1 in Figure 7) when 377 

there are large increases in noise.  This is perhaps unsurprising, Figure 8 shows that the 378 

noise increase is manifested as several step-like jumps, likely from errors in the ambiguity 379 

resolution procedure. We also see a gradual decay after each step offset which is 380 

characteristic of “re-convergence” after a cycle slip (e.g. Geng et al., 2013).  381 

 382 

 383 
Figure 11, 20 minutes of noise observed at station BILS (Figure 2) and 20 minutes 384 

of synthetic noise generated using the median noise model from Figure 5. The time 385 

series for each direction of motion are offset for clarity. 386 

 387 

 388 

The irregular distribution of station noise in Figure 10 is somewhat surprising and will 389 

warrant further study. A priori one would expect a geographic correlation between the noise 390 

levels and a number of potential candidate parameters. For example it is well known that 391 

the geometry of the constellation of GPS satellites is less favorable for positioning at higher 392 

latitudes. Similarly the ionosphere should be more active as one approaches the poles. Yet 393 

we do not observe a systematic degradation of the northern sites. Similarly, one would 394 

expect that multipath would correlate strongly with the noise performance of the stations. 395 

We also do not see a correlation between noise power and the signal to noise ratio in the 396 

L1 and L2 frequencies. We explore this further in Figure 12. Here we plot the time series of 397 

power at 60s period for a 4 day period for all sites in the San Francisco Bay Area cluster. 398 

We see clearly that in this limited geographic region over length scales of ~100km the noise 399 

at many sites is highly correlated. Both episodes of elevated and reduced noise occur close 400 

together in time between many sites. We calculate the correlation coefficient of all the time 401 

series to an arbitrary site in the middle of the cluster (P223) and indeed we find high 402 

correlation (>0.75) between many of the stations. This is true even for station CMBB which 403 

is 175km from P223 and still exhibits a high (0.7) correlation coefficient. In Figure 12 we 404 

also show the median power at 60s period for the same 4 day period. We see clearly that 405 

the stations that do not follow the same regional variation in noise are those with highest 406 

power. These noisy sites have a completely different evolution of noise with time.  407 

 408 
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Figures 10 and 12 show that a likely explanation for the noise behavior at a particular site is 409 

a weighted sum of many factors The strong correlations at  ~100km length scales are 410 

evidence of regional effects. This includes period of disturbances in both the  ionospheric 411 

and troposphere which would affect stations over regions of this size.  Similarly drifts in 412 

clocks and orbits will have a strong regional correlation. However, that the absolute level of 413 

the noise at stations analyzed in this study exhibits poor correlation with obvious 414 

geographic features strongly suggests that this is an effect local to each site. The quality of 415 

the monument, and the environment (vegetation, snow, buildings, other microwave 416 

equipment) surrounding each site is highly heterogeneous and can have an outsized effect 417 

in the positioning quality raising the noise floor substantially.  418 

 419 
Figure 12. (a) Time series of power at 60s period for the 4 day time span from 420 

June 26th to June 30th 2019 for station in the San Francisco Bay Area cluster. 421 

The time series are colored by the correlation coefficient to a reference site 422 

inside the cluster (station P223) (b) Locations of the stations in the cluster and 423 

median power at 60s period for the selected time span. (c) Correlation between 424 

all sites to reference station P223. 425 

 426 

Finally we note that there are other noise sources which will be specific to the positioning 427 

algorithm being used. For example the ~2hr peak (Figure 9) is likely due to the frequency 428 

with which the orbital parameters in the broadcast ephemeris are updated by IGS. These 429 
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updated values are used in the FastLane processing scheme and introduce a regular 430 

periodic behavior. Indeed an important point we stress is that the overall noise behavior 431 

and shape of the spectra should roughly follow the “dam” profile irrespective of the 432 

positioning algorithm being used. However the details of the noise behavior will be strongly 433 

influenced by not just the traditional sources of noise but also by the processing strategy. 434 

Deviations from the noise behavior we detail here should not be unexpected.   435 

 436 

4.2 Implications for positioning algorithms 437 

 438 

The noise models we propose are useful signposts which can be used to compare against 439 

as improvements to GNSS positioning technologies are developed.  For example broadcast 440 

of new frequencies by GNSS satellites [Geng & Bock, 2013; Zhao et al., 2015], and 441 

positioning strategies that harness multiple constellations (“true GNSS”) promise to provide 442 

substantial improvements and reductions in noise [Odolinski et al., 2015; Geng et al., 2016; 443 

Geng et al., 2019b]. As this technology is incorporated into permanent monitoring networks 444 

it can be evaluated by comparison to established baselines of noise behavior. 445 

 446 

4.3 Comparison to seismological noise 447 

 448 

The concepts behind this study were inspired by the techniques proposed by McNamara & 449 

Buland [2004] who carried out a similar analysis for noise at seismic sites in the continental 450 

United States and established its systematic behavior. Because use of HR-GNSS is 451 

becoming widespread in monitoring efforts in seismology we have attempted to establish a 452 

similar baseline of behavior here. However, some critical conceptual differences warrant a 453 

few comments. The background seismic noise observed at broadband sites on-land are 454 

actual vibrations of the ground whose source is the interactions of the oceans with the 455 

near-shore solid Earth (e.g. Longuet Higgins, 1950). This noise is of comparatively very 456 

small amplitude, at periods of 1s, for example, it is expected to have a power of -170 to -457 

130 dB [Peterson, 1993]. This is several orders of magnitude below what we measure from 458 

GNSS (-55dB, Figure 5). We emphasize that the source of noise in GNSS positions have 459 

nothing to do with actual high-frequency motions of the ground.  It is true that longer period 460 

deformation of the Earth such as that induced by tides can have mm to sub-mm amplitudes 461 

(e.g. Agnew, 2010) however this is outside the frequency band of interest to monitoring 462 

large earthquakes. Rather, most of the noise comes from the variable delays to the 463 

microwave satellite signals introduced by the troposphere and ionosphere and spurious 464 

reflections (multipath) of the microwaves off of the surrounding terrain which occlude the 465 

main arrival to the GNSS antenna. Another large source of noise is imperfect knowledge in 466 

real-time of the satellite clocks and orbits. Long period noise induced by constellation 467 

geometry is highly repeatable and can be reduced through sidereal filtering [Larson et al., 468 

2007]. Assuming that technical improvements in mitigating these noise sources are 469 

possible this large gap (~70dB) between background seismic noise and current GNSS 470 

noise suggests that the lower bound of what could be observed lies far beyond what is 471 

possible now. There is essentially unbounded room for improvement. 472 

 473 
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4.4 Implications for seismic monitoring 474 

 475 

Previous studies of the relative amplitudes of ground displacements at regional distances 476 

from medium to large events [Crowell et al., 2013, Melgar et al., 2015, Ruhl et al., 2018] 477 

suggest that, in order for GNSS time series to be of use for monitoring, precision of a few 478 

centimeters is necessary. For example, if the precision were relatively poor, say 10cm, the 479 

peak ground displacement scaling laws of Melgar et al. [2015] predict that an M7 480 

earthquake would be visible to any site within 91km. That distance grows to 462km and 481 

1628km for M8 and M9 earthquakes respectively. The aggregate PPSDs in Figures 5 and 6 482 

then suggest that the current precision achieved by the real-time GNSS solutions is 483 

sufficient for monitoring large events.  484 

 485 

Figure 13 shows an example of the potential performance. There we plot the three 486 

component HR-GNSS displacements for station CCCC which was processed in real-time 487 

with Fastlane and recorded both the M6.4 and M7.1 Ridgecrest CA earthquakes at 35 and 488 

50km from the source [Melgar et al., 2019; Goldberg et al, 2019]. We also plot the spectra 489 

for the waveforms and the median noise models. This shows clearly that the waveforms are 490 

reliable. Melgar et al. [2019] showed that while there were some small but appreciable 491 

differences between the real-time and post-processed high-rate solutions the features of 492 

the waveforms most used in monitoring remained consistent in both sets of solutions. 493 

 494 

 495 
Figure 13. Real-time three-component displacements at station CCCC during the 496 

2019 M6.4 and M7.1 Ridgecrest CA earthquakes plotted as seconds since the 497 
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earthquake origin time (OT). Also shown are the spectra of the waveforms 498 

compared to the median noise model  499 

 500 

Another important use of the work discussed here for monitoring is in making objective and 501 

automated assessments of the station positioning quality. Figure 8 exemplifies how an 502 

otherwise well-behaved station can, for limited periods of time,  have elevated noise levels 503 

which can have detrimental effects on any algorithm using it to model an earthquake 504 

source. Monitoring agencies can use either the global noise model, or a station by station 505 

noise model, and set percentile cutoffs, perhaps at a few selected periods. If the noise rises 506 

above that threshold for some period of time the station can be quarantined or “black listed” 507 

so that it doesn’t contribute solutions to a source modeling algorithm should an earthquake 508 

occur in that time. Later as the station noise drops to an acceptable level it can be removed 509 

from the black list. Similarly sites that are routinely above some threshold level will likely 510 

need to be serviced or altogether removed from contribution to any real-time monitoring 511 

effort. 512 

 513 

For the Fastlane algorithm in particular one important challenge remains as it continues to 514 

contribute solutions to monitoring agencies. The large outliers seen in Figure 2 are not the 515 

norm (e.g. Figure 4) but they are large enough that should they occur during an earthquake 516 

they could introduce significant errors into the modeling. This is problem has been noted in 517 

real-time monitoring efforts elsewhere [Kawamoto et al., 2017]. This in general will not be 518 

an issue for the computation of coseismic offsets, as a moving average or median filters 519 

can be employed (i.e., Crowell et al. [2016]), however, for PGD scaling, significant outliers 520 

or cycle slips can influence the derived magnitude estimates. During the Ridgecrest 521 

earthquakes there were no occurrences of this in any of the real-time waveforms. However 522 

continued effort in making the positioning strategy more robust is ongoing. 523 

 524 

5. Conclusions 525 

 526 

Large earthquakes are difficult to model in real-time with traditional inertial seismic 527 

measurements. Several algorithms that leverage high-rate RT-GNSS positions have been 528 

proposed and it has been shown that they can supplement the earthquake monitoring 529 

effort. However, analyses of the long-term noise behavior of high-rate RT-GNSS positions, 530 

which are important to understand how the data can be used operationally by monitoring 531 

agencies, have been limited to just a few sites and to short time spans. Here we have 532 

shown results from an analysis of the noise characteristics of one year of positions at 213 533 

RT-GNSS sites spanning a large geographic region from Southern California to Alaska. We 534 

have characterized the noise and proposed several references noise models which can be 535 

used as baselines to compare against as technological improvements allow for higher 536 

precision solutions. We have also shown how to use the reference noise models to 537 

generate realistic synthetic noise that can be used in simulations of HR-GNSS waveforms. 538 

Additionally, we find that while variations in the noise have a strong spatial correlation the 539 

absolute level of noise at a site does not. This is evidence that local effects 540 

(monumentation, station conditions, multipath etc.) likely dominate the noise behavior. 541 
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Further, we have shown how this noise analysis can be used in a dynamic quality control to 542 

determine which sites should or should not contribute positions to an earthquake modeling 543 

algorithm at a particular moment in time. Overall, while there remain important 544 

improvements yet to be made, such as reducing the number of outliers, we find that the 545 

present quality of real-time HR-GNSS waveforms is more than sufficient for monitoring 546 

large earthquakes. 547 

 548 
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