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Abstract

Bayesian methods play a prominent role in parameter estimation and uncertainty quantification. In a typical application

of Bayes theorem, a prior distribution over the parameters is updated through a likelihood function to obtain the posterior

distribution. In the absence of any prior knowledge, a non-informative prior is chosen to express lack of any preference by

assigning a uniform distribution over the possible ranges of parameters. However, the validity of uniform priors as being truly

non-informative is seldom questioned. The objective of this study is to test this assumption while estimating soil saturated

hydraulic conductivity using data from infiltration experiments. The concept of a non-informative prior using an information

theoretic approach is pursued for this application, and the results compared to those obtained from assignment of a uniform

prior. Non-informative priors obtained by the information theoretic approach are different from a uniform prior, and estimates

of the posterior distribution are influenced by the choice of the prior, especially when data are limited. Examples from both

hypothetical and real data are utilized to highlight the importance of selecting truly non-informative priors.
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Fig. 1. A river network with streamflow observations available only at node N1
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In order to use Bayes theorem in hydrological models, one needs to

specify a likelihood function and a prior distribution. Many studies

have addressed the problem of choosing an appropriate likelihood

function to model the information content in the data. However,

relatively fewer studies have addressed the problem of prior

specification. Non-informative priors do not seem to have been

addressed in the hydrologic modeling literature.

Generally, uniform prior are assumed to be non-informative priors;

but the validity of this assumption is never questioned. This study

has the following two objectives:

(1) To find out if the uniform priors over model-parameters are 

appropriate in hydrologic applications, and

(2) to explore the principle of maximum gain to determine non-

informative priors.

Principle of maximum information gain (Bernardo, 1979) was used to derive non-informative priors. The main idea is as 

follows:

(1) The asymptotic posterior distribution of parameters represents the maximum information about the parameters that

one can obtain through data;

(2) The relative entropy between prior and asymptotic posterior distributions quantifies the missing information about

the parameters before any data are observed, and thus quantifies the information gain as one moves from prior to

posterior;

(3) The main idea of principle of maximum information gain is to choose a non-informative prior such that the missing

information between asymptotic posterior distribution and the prior distribution is maximized. The prior distribution

thus obtained is defined as the “best” prior in this regard.

• Uniform prior may not always be the non-

informative prior.

• Bernardo priors may be used to derive non-

informative priors.

Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. Journal of the 
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Uniform prior over parameters may introduce bias in the inference.

• The noninformative prior obtained is not uniform

• Since only one observation was used, the posterior

distributions is heavily affected by using two different

priors, uniform and Bernardo.

Fig. Bernardo prior over hydraulic conductivity, 𝐾ℎ, in Green-Ampt model (left), posterior distribution over 𝐾ℎ using Bernardo prior and uniform prior 

given that the true value of observed cumulative infiltration is 1.2 cm (middle) and  3.17 cm (right). 

Example 1

• The non-informative prior obtained is not

uniform.

• After a value of approximately 10 cm h−1,
the prior is equivalent to a uniform prior.

• The true value of 𝐾ℎ is 33 cm h−1; therefore,

posterior distributions obtained by using

Bernardo and uniform priors are similar.

Fig. Bernardo prior over hydraulic conductivity, 𝐾ℎ, in falling head Green-Ampt model (left), posterior distribution 

over 𝐾ℎ using Bernardo prior and uniform prior (right).

Example 2
• Again, the uniform prior is not the best

non-informative prior

• The non-informative prior seems to be

biased towards a Gaussian distribution

• If one uses Bernardo prior to infer the

value of 𝛽 , a large amount of data

would be required to infer a Laplacian

distribution (𝛽 = 0.5), in line with the

fact that the large amount of data are

required to accurately compute high-

order moments, i.e., characterize a

Laplacian distribution.Fig. Bernardo prior over shape parameter, 𝛽, in 

generalized Gaussian distribution
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