### Identification of Linear and Nonlinear Causal Relationship Among Low-Frequency Climatic Phenomena in the Last Millennium

Lucas Massaroppe<sup>1</sup>, Maria Gabriela Louzada Malfatti<sup>2</sup>, Igor Stivanelli Custodio<sup>1</sup>, and Pedro Leite da Silva Dias<sup>1</sup>

<sup>1</sup>Institute of Astronomy, Geophysics and Atmospheric Sciences <sup>2</sup>Institute of Energy and Environment

November 26, 2022

### Abstract

Considering that the instrumental climate record covers a period of about a century, it becomes necessary to use paleoclimatic records/models to explore the stability of the climatic variability and investigate the robustness of the teleconnections of the past. It is important to identify if the observed patterns in the current period persist over the last millennium when the changes in the orbital induced climate variations are negligible. In several studies on climatic causality crosscorrelation functions are used and the analysis is based on the relationship between atmospheric structures in pairs, a procedure that has several limitations in the elucidation of the network of possible connections. To mitigate these barriers, this work uses Partial Directed Coherence (PDC) and kernel nonlinear Partial Directed Coherence (knPDC) to allow the inference of the linear or nonlinear couplings between the climatological patterns, respectively. Connections between the two groups of climatic indicators in the last millennium were observed from 850 to 1850. The first group comprises the El Nino-Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Atlantic Interhemispheric SST Gradient (GTA) and the second, Antarctic Oscillation (AAO), El Nino-Southern Oscillation (ENSO), Pacific-South American (PSA1, EOF2) and QuasiBiennial Oscillation (QBO). The climate indices were computed from a weighted average set of climate model simulations of PMIP3, which represent simulations oriented to the past climate in the climate projection models of CMIP5. For the first group, no significant results were observed on the low-frequency band, observing only linear relationships between the Pacific and Atlantic Oceans. For the second group, the causal analysis point to linear relationships between ENSO-AAO, and nonlinear between ENSO-PSA in the low and high band and QBO-AAO, QBO-ENSO and QBO-PSA in the low-frequency band. In summary, the results indicate a higher nonlinear connection between low-frequency phenomena.



# A21N-2751: Identification of Linear and Nonlinear Causal Relationship Among Low-Frequency Climatic Phenomena in the Last Millennium.

<sup>1</sup>Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo; <sup>2</sup>Institute of Energy and Environment, University of São Paulo.

### INTRODUCTION

- In meteorology, identification of teleconnections between climatic patterns plays an important role in the validation of atmospheric models which are used for weather and climate prediction and for the development of future climate scenarios under global warming forcing.
- In order to evaluate the connectivity between climatic patterns, correlation analysis is often used, but this type of analysis may lead to oversimplified relationships, which do not imply causality between different scales of time (i.e., a nonlinearity).
- In this work, Partial Directed Coherence (PDC) and kernel non-linear Partial Directed Coherence (*kn*PDC) were used to infer the influence between atmospheric compartments (atmosphere and ocean), allowing the detection of linear and nonlinear connections, respectively, between variables representative of important climatic variability modes in the PMIP3 simulations for the last millennium.

### DATA AND METHODOLOGY

Climate Indices (Last Millennium: years 850 to 1850)

Weighted average set of climate model simulations of PMIP3 **PMIP3**: represent past climate simulations provided by the climate models of CMIP5.

Groups of climatic indicators

El Niño-Southern Oscillation (ENSO); Atlantic Multidecadal Oscillation (AMO); Atlantic Interhemispheric SST Gradient (GTA)

Inference of the linear or nonlinear couplings between the climatological patterns

Nonlinear Partial Directed Coherence kernel Partial Directed Coherence (PDC) [1] (*kn*PDC) [2]

We represent the input series  $\{x_i(n)\}_{n=1}^N$  (input space) through a Kernel Vector Autoregressive (kVAR) model, such as (Massaroppe and Baccalá, 2019)

$$\phi(x(n))| = \sum_{r=1}^{l} A_k \langle \phi(x(n-k))| + \langle \widetilde{w}(n) \rangle$$

where

- $\{\langle \widetilde{w}(n) | \}_{n \in \mathbb{Z}} \sim i. i. d. WN(0, \sum_{\langle \widetilde{w}(n) \rangle})\}$
- $\phi : \mathbb{X} \to \mathbb{F}$  represents a nonlinear mapping (Parzen, 1959), such that
- $\mathbb{E}\{\langle \phi[x_i(n)] | \phi[x_i(n-k)] \rangle\} = \mathbb{E}\{\kappa[x_i(n), x_i(n-k)]\};$ •  $\kappa$  (•): a Mercer kernel;
- $\langle \cdot | \cdot \rangle$ : Dirac's 'bracket' notation.

The *kernel-nonlinear*-Partial Directed Coherence defined, in the phase space, as  $\overline{A}_{ii}(f) /$ 

$$_{\kappa\eta}\pi_{ij}(f) = \frac{\sqrt{\sqrt{\sigma_{ii}}}}{\sqrt{\bar{a}_j^H(f)\sum_{\langle \widetilde{W}(n)\rangle}^{-1}\bar{a}_j(f)}}$$

where

- $\bar{A}^{\phi}_{ij}(f) = \delta_{ij} \sum_{r=1}^{p} a^{\phi}_{ij}(r) e^{-i2\pi fr}$ ,  $(i^2 = -1)$ ;
- $a_{ii}^{\phi}(\mathbf{r})$  are the coefficients of na adequately fit kVAR model;
- $\bar{a}_i(f)$  represent the columns of the  $\left[\bar{A}_{ii}^{\phi}(f)\right]$  matrix.

PDC is similarly defined and can be seen in (Baccalá et al.,2013).

Lucas Massarope<sup>1</sup> (lucas massarope@gmail.com); Maria Gabriela Louzada Malfatti<sup>2</sup>; Igor Stivanelli Custódio<sup>1</sup>; Pedro Leite da Silva Dias<sup>1</sup>

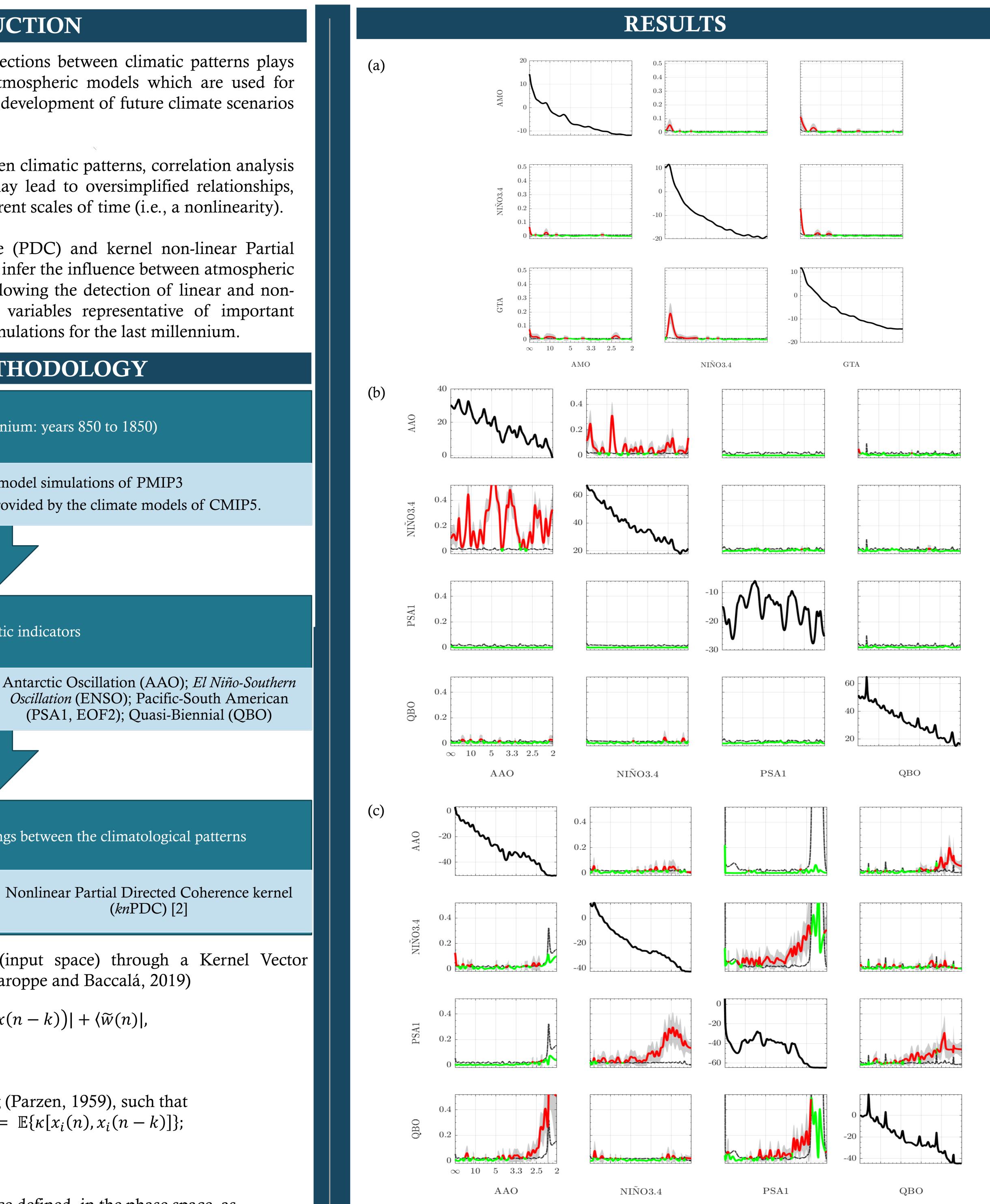



Fig. 1. The black line represents the (pseudo-) spectral density of the series, in dB.; the red line represents the statistically significant PDC / knPDC values; the dashed black line represents Patnaik's threshold approximation (Baccalá et al., 2013); the green line the statistically non-significant PDC / knPDC values. Therefore, using 1% significance level, the figures depict, respectively: (a) PDC for time series set (AMO, Niño 3.4 and GTA) using an autoregressive model of order p = 48, (b) PDC for time series set (AAO, Niño 3.4, PSA1 and QBO) using an autoregressive model of order p = 24 (c) *kn*PDC for the time series set (AAO, Niño 3.4, PSA1) and using the polynomial kernel  $[k(x, y) = (x, y)^2]$  and using a kernelautoregressive model of order p = 24.

Fig.1a shows linear causality relationship (PDC) between: AMO  $\rightarrow$  GTA; AMO  $\rightarrow$ Niño 3.4; Niño 3.4  $\rightarrow$  GTA; Niño 3.4  $\rightarrow$  AMO; GTA  $\rightarrow$  Niño 3.4; GTA  $\rightarrow$  AMO. For nonlinear causality relationship (knPDC), no results were observed in the low frequency period. The observed results suggests that the Atlantic and Pacific oceans influence each other at different times.

Fig.1b depicts a linear causality relationship (PDC) between: AAO  $\leftarrow \rightarrow$  Niño 3.4; AAO  $\leftarrow \rightarrow$  QBO; Niño 3,4  $\rightarrow$  QBO. Some studies corroborate the results obtained with AAO and QBO (Gava et al., 2017), AAO and Niño 3.4 (Yu et al., 2015; Wang et al., 2017) and Niño 3.4 and QBO (Kane, 2005; Li et al., 2016).

knPDC results (Fig.1c) suggests a nonlinear causal relationship between the same patterns observed in PDC, but with higher statistically significant values at high and frequency. In addition, nonlinear causal relationships between low  $PSA1 \leftrightarrow Niño3.4$  and  $PSA1 \leftrightarrow QBO$  are observed. These results find support in other studies such as in Yu et al. (2015) for a relationship between PSA and ENSO and in Kane (2005) between PSA and QBO.

For the first group, no significant results were observed on the low-frequency band, observing only linear relationships between the Pacific and Atlantic Oceans. For the second group, the causal analysis point to linear relationships between ENSO  $\leftarrow \rightarrow$ AAO, and nonlinear between ENSO  $\leftarrow \rightarrow$  PSA in the low and high band and QBO  $\leftarrow \rightarrow$  AAO, QBO  $\leftarrow \rightarrow$  ENSO and QBO  $\leftarrow \rightarrow$  PSA in the low-frequency band. In summary, the results indicate a higher nonlinear connection between low-frequency phenomena.

The authors gratefully acknowledge support from the FAPESP Grant 2015/50686-1 (PACMEDY Project). L.M. to CAPES Grant 88887.161474/2017-00 (PALEOCEANO Project). M.G.L.M. to CNPq Grant 2017/05285-4 (Ph.D. Scholarship). I.S.C. to FAPESP Grant 2017/05285-4 (Ph.D. Scholarship) and CNPq Grant 471700/2013-4 (Universal Project).

University, Stanford, January 1959. connectivity detection. Entropy, 2019. Anais... Rio de Janeiro: SBMET, 2017. **Climate**, v. 28, n, 23, p. 9393-9408, 2015. Geophysical Union, 2017, 386 p.



# **DISCUSSION AND CONCLUSIONS**

### ACKNOWLEDGMENTS

# REFERENCES

[1] PARZEN, E. Statistical inference on time series by Hilbert space method, I. Technical Report 23, Applied Mathematics and Statistics Laboratory, Stanford

[2] MASSAROPPE, L. and BACCALÁ, L. A. Kernel methods for nonlinear

[3] BACCALÁ, L. A. et al. Unified asymptotic theory for all partial directed coherence forms. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 371, n. 1997, p. 20120158, 2013.

[4] LI, T. et al. Southern Hemisphere Summer Mesopause Responses to El Niño-Southern Oscillation. Journal of Climate, v. 29, n. 17, p. 6319-6328, 2016.

[5] GAVA, M. L. L. M.; VASCONCELLOS, F. C.; SANSIGOLO, C. A. Study of a possible relationship between the quasi-biennial oscillation and the Antarctic oscillation. In: Simpósio Internacional de Climatologia, 7., 2017. Petrópolis-RJ.

[6] KANE, R. P. Spectral characteristics and ENSO relationship of the Paraná river streamflow. Mausam, v. 56, n. 2, p. 367, 2005.

[7] YU, J.; PAEK, H; SALTZMAN, E. S.; LEE, T. The early 1990s change in ENSO-PSA-SAM relationships and its impact on Southern Hemisphere Climate. Journal of

[8] WANG, S. -Y.; YOON, J. -H.; FUNK, C. C.; GILLIES, R. R. Climate Extremes: Patterns and Mechanisms. 1. ed. New Jersey: John Wiley & sons, American