Volcano-Independent Seismic Recognition: detecting and classifying events of a given volcano using data from others

Guillermo Cortés Moreno¹, Roberto Carniel¹, Philippe Lesage², Maria Angeles Mendoza Perez³, and Ivo Della Lucia¹

¹Università degli Studi di Udine

²Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, ³Universidad de Granada

November 22, 2022

Abstract

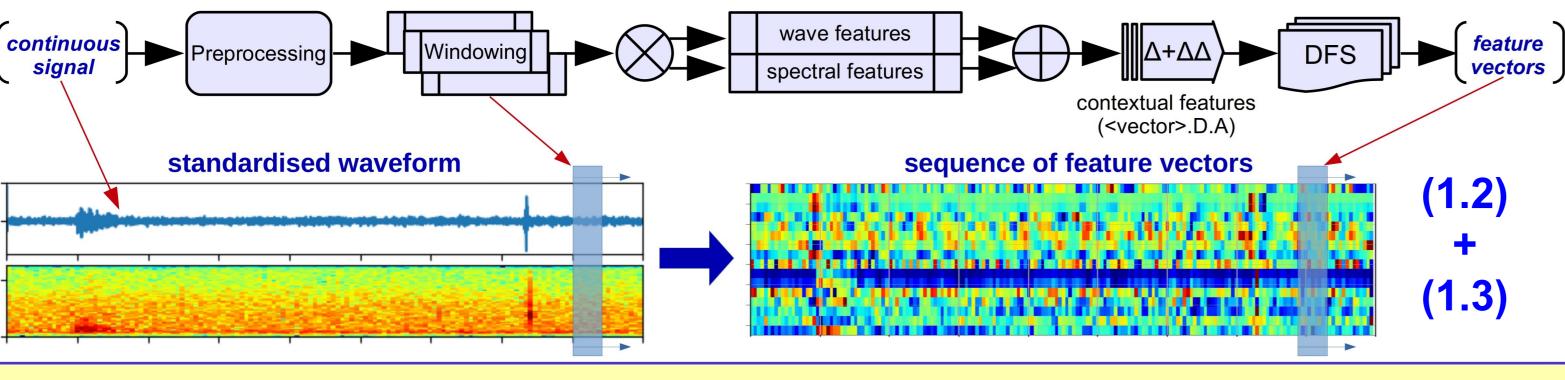
Modern seismic networks provide a huge amount of data received in real-time, being impossible the manual identification of relevant events useful to monitor the activity of the volcano. Thus, many volcano observatories are interested in tools to perform an online, automatic analysis of the seismic activity. Machine Learning area provides various of Volcano-Seismic Recognition (VSR) systems designed to classify seismic events in real-time. However, only a few approaches can also detect them in a continuous data streams. Most of those VSR systems are based on the 2-step supervised paradigm: 1. A training database (X-DB) of a given volcano 'X' is prepared with hundreds of events manually detected and classified according to their physical origin. 2. Statistical models are built analysing this DB, and are later used to automatically identify events in new data recorded at the volcano X. This supervised procedure is the major drawback to achieve a fast deployment of a VSR system for another volcano Y, as the preparation of its own Y-DB takes considerable time, and requires qualified operators and previous recordings, which is difficult for volcanoes without recent activity or which haven't been monitored. In order to overcome these limitations, the EU-funded project 'VULCAN.ears' focused on real-time, Volcano-Independent VSR (VI.VSR) approaches. It proposes alternative solutions based on state-of-the-art technologies as universal DBs and models, waveform standardisation and parallel architectures. Recent results obtained by mixing DBs from Popocatépetl, Colima, Deception and Arenal active volcanoes will be presented. We apply VULCAN.ears technologies to evaluate VSR systems on joint DBs built with data of several volcanoes. We also use volcano-independent models to automatically classify events of another volcano, analysing how the recognition accuracy varies as the training DB becomes more complex. All tests are carried out by an easy to use, userfriendly graphical application (geoStudio). All these achievements produce new insights useful to redesign the next-generation, portable and robust VSR systems.

Volcano-Independent Seismic Recognition (VI.VSR): detecting and classifying events of a given volcano using data from others Guillermo Cortés⁽¹⁾, Roberto Carniel⁽¹⁾, Philippe Lesage⁽²⁾, M. Ángeles Mendoza⁽³⁾ and Ivo Della Lucia⁽¹⁾

(1) Dipartimento Politecnico di Ingegneria e Architettura

DPIA, Università degli studi di Udine, Friuli, Italy [guillermo.cortes@uniud.it] [roberto.carniel@uniud.it] [ivodielle90@gmail.com]

0. Aims & Proposals


Volcano-Seismic Recognition (VSR) at Volcano Observatories (VOs) Aims: automatic Volcano-Independent Volcano-Seismic Recognition (VI.VSR)

- Volcano-Seismic (VS) activity is the most used indicator to evaluate volcanic hazard and forecast eruptions⁽¹⁾
- VOs require expert staff to manually label VS events: detect (time delimitation) + *classify* (assign them to their physical type or VS *class*)
- X Manual VSR is slow and not always reliable
- X Currently, automatic VSR is only deployed in few VOs

I. Methodology:

1. Efficient waveform description as a sequence of feature vectors (1.1) standardisation (STAND)⁽⁴⁾ via decomposition + reconstruction (\$dec:\$rec) (1.2) parameterisation (param.#feats) of overlapped waveform segments as feature vectors

(1.3) feature selection (DFS)⁽⁵⁾ in the given (param.#feats) parameterisation scheme iqinal waveforn reconstruction criterion \$rec (1.1) data-driven standardised wavef tandardised waveform

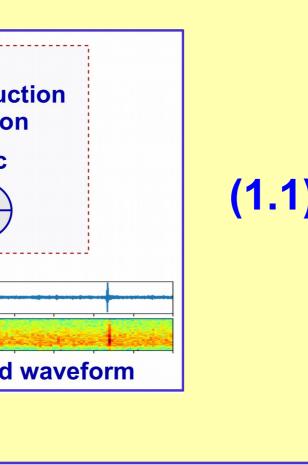
II. Station & volcano-independent VSR results 1. Robust & station-independent VSR at Deception Island

Station-independent VSR under noisy conditions VSR @ Deception **Volcano**⁽⁴⁾: recognizing VT and LP events overlapped on noise/tremor signals in 2009 by models built with data acquired in 1995 at another location:

system	recog type	train.DB = dec.1995 events / classes @ duration	eval.DB = dec.2009 events / classes @ duration	param.#feats	cPrec%
SSA-VSR continu	continuouc	200 / 2 @ 1 0 [h]	707 / 2 @ 12 2 [b]	mix.D.16	66
	COMINUOUS	288 / 3 @ 1,8 [h]	707 / 3 @ 12,2 [h]	mix.D.16[STAND]	76
				in time (OTANI	

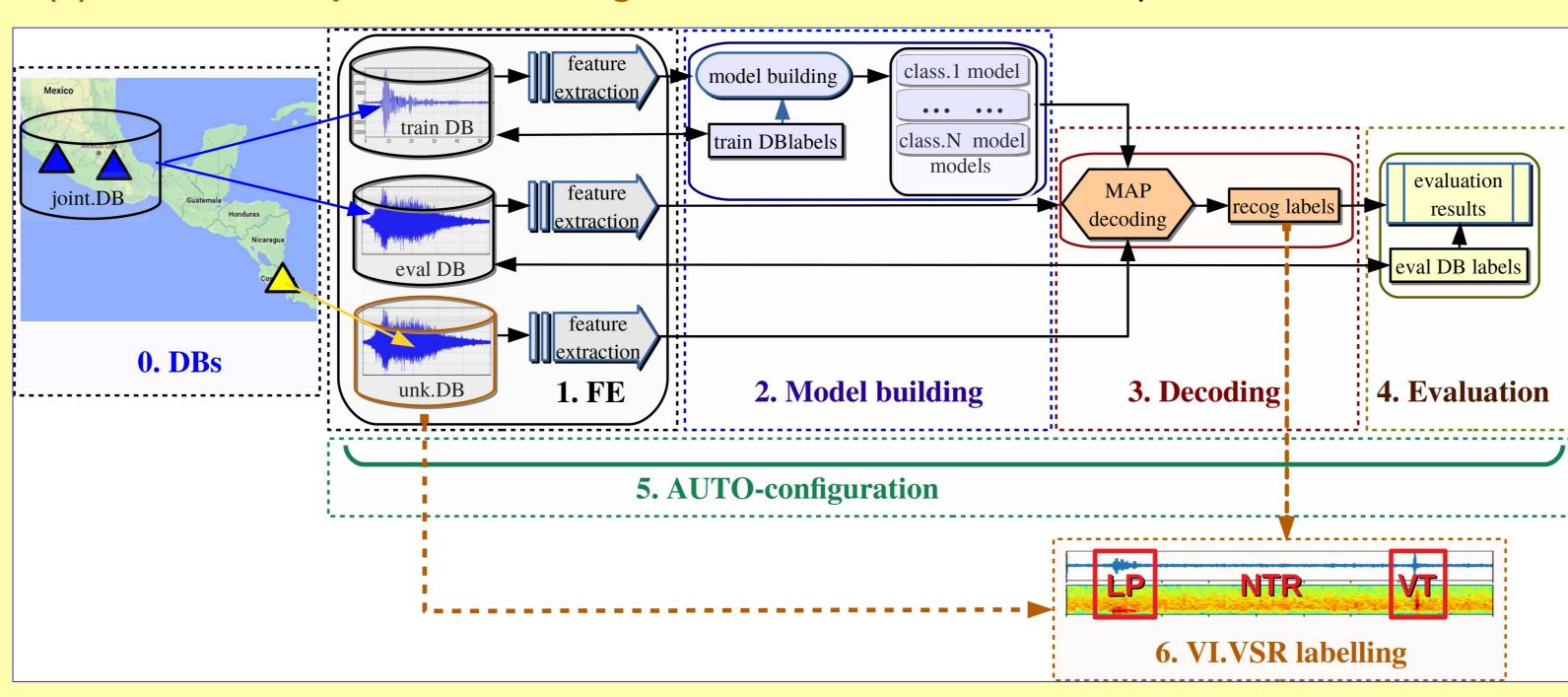
VSR precision increases 16% using waveform standardisation (STAND)

Parallel (PSA) vs. serial (SSA) VSR @ Deception⁽³⁾: class-focused PSA.VSR channels allow a more efficient AUTO configuration than SSA.


system	recog type	train.DB = dec.1995 events / classes @ dur.	eval.DB = dec.1998 events / classes @ dur.	param.#feats	cPrec%
SSA	continuous	288 / 3 @ 1,8 [h]	445 / 3 @ 4,2 [h]	AUTO(mix.D.30)	52
PSA.chans joint.PSA	continuous	288 / 3 @ 1,8 [h]	445 / 3 @ 4,2 [h]	AUTO(mix.D.30)	72 70

An improvement of 38% achieved by dedicated VSR channels (PSA.chans)

Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, MONT BLANC IRD, IFSTTAR, ISTerre, Grenoble, France - [lesage@univ-smb.fr]


- i. automatic Volcano-Seismic Recognition (VSR): statistical modelling of previously labelled VS classes to achieve:
- Real-time VSR to detect and classify events on continuous data streams easy VO integration into most popular data acquisition systems (Earthworm & WebObs)
- ii. Volcano-Independent VSR aims to recognise events from any volcano without any prior knowledge of its VS classes by means of *universal VSR*, allowing: Fast VSR deploy for awakening volcanoes and for new appearing classes in active volcanoes

Efficient waveform description to build universal, Volcano-Independent VSR systems

2. Universal-VI.VSR system setup & recognition of unknown data

- (0) DBs: a universal, *joint.DB* is used to build *universal VSR models*
- (1) Feature Extraction (FE): efficient waveform description by a stream of feature vectors⁽⁶⁾
- (2) Model building: of each VS class in the *train DB* using its *labels*
- (3) **Decoding**: automatic detection & classification of *eval DB* events
- (4) Evaluation of results comparing recog labels vs. eval DB labels via VSR precision (cPrec) (5) AUTO-configuration by (re)evaluation (4) of the (1+2+3) stages
- (6) Volcano-independent labelling of VS events of an unk.DB acquired at another volcano

2. VI.VSR: recognising PopocatépetI events using Colima models

continuous VI.VSR @ PopocatépetI by Colima: waveform standardisation (STAND) + efficient feature selection (DFS⁽⁵⁾) + system auto.configuration (AUTO) empowers volcano-independent VSR:

SSA-VSR continuous 345 / 6 @ 17 [h] 814 / 6 @ 37 [h] MFCC.D.A.33 59 AUTO(MFCC.D.A.33) 65	system	recog type	train.DB = col.2004 events / classes @ dur.	eval.DB = pop.2002 events / classes @ dur.	param.#feats	cPrec%
AUTO(MFCC.D.A.33) 65					MFCC.D.A.33	59
		CONTINUOUS		01470@37[11]	AUTO(MFCC.D.A.33)	65

An enhancement of 10% via system AUTO-configuration

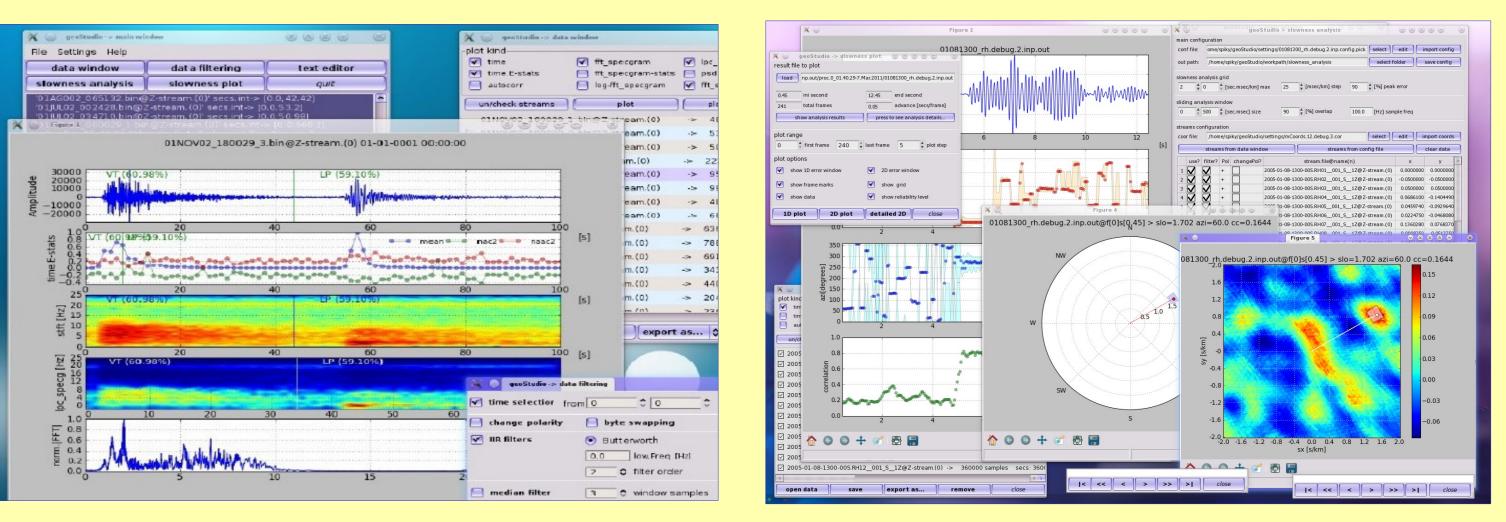
3. VI.VSR: recognising Arenal events by Colima and Popocatépet VI.VSR models built by a joint.DB: complex Arenal events can be successfully classified using *universal* models of a *universal* (joint) training DB

Successing dassing aniversal models of a aniversal joint taining DD					
system	recog type	<pre>train.DB = col.2004+pop.2002 events / classes @ duration ev</pre>	eval.DB = are.2007 /ents / classes @ duration	param.#feats	cPrec%
SSA-VSR	isolated	813 / 7 @ 41 [h]	552 / 7 @ 14 [h]	mix.D.30 AUTO(mix.D.30)	50 71
A 71% of precision classifying complex events thanks to universal DBs					

Proposal: portable & universal VSR systems

i. portable VSR solutions, relying on:

III. VI.VSR highlights


- (!) Remarks:
- Volcano-Independent VSR becomes **operational!** thanks to state-of-the-art VULCAN.ears technologies
- Complex volcanoes require joint.DBs in to build efficient VI.VSR models (as Arer volcano with 7 classes and its 3 types of tre
- (+) **Pros**:
- Promising early results!: good precision isolated (>71%) and continuous VI.VSR (>
- geoStudio and pyVSR interfaces allow & easy deployment of VI.VSR systems

(-) **Cons**:

- X A universal waveform description does exist, as it still depends on the training DB
- VSR precision highly depends on the ma labelling of the training DBs

3. Easy VSR integration at VOs via easy-to-use interfaces linking VSR & VOs

- Built-in VSR models of standalone & joint DBs to perform VI.VSR
- Slowness maps by Zero-Lag correlation method

- ii. pyVSR command-line interface as a Python wrapper for the VSR system: Ready-to-use scripts to build VSR models given a labelled DB Tools to run, define and evaluate whole VSR-tests Online VSR of data received from VO data servers

(3) Visual Information Processing Group Universidad de Granada, Spain - [*ninesmp75@gmail.com*]

Easy-to-use (Python-based) user interfaces to facilitate the VSR integration at VOs Structured Hidden Markov models (HMMs) to perform real-time, continuous VSR⁽²⁾

ii. universal VSR, based on VULCAN.ears project⁽³⁾ approaches:

Universal DBs collected from more than 15 volcanoes to build universal VSR models Efficient waveform description will enhance the volcano-independence of models Parallel VSR channels focused on each VS class, increasing reliability and precision

i. geoStudio⁽³⁾ multi-platform, graphical user interface for seismic analysis:

✓ I/O by ObsPy[®] builtin libs. Filtering and advancing plotting features

	References & Acknowledgments
in order enal remors)	 Boué et al., 2016, "Performance of the 'material Failure Forecast Method' in real-time situations: A Bayesian approach applied on effusive and explosive eruptions", JVGR, 327(0). Benítez et al., 2009, "Automatic recognition of volcano- seismic events based on Continuous Hidden Markov Models", The VOLUME Project. ISBN 978-1-905254-39-2, C.J Bean and European Commission. 6th Framework Programme. 2. Cortés et al., 2017, "Unsupervised volcano-seismic recognition as a tool for real-time monitoring and eruption forecasting: the VULCAN.ears project", IAVCEI 2017
n in both, >65%) v a fast	 (4) Cortés et al., 2019, "Standarization of Noisy Volcanoseismic Waveforms as a Key Step toward Station-Independent, Robust, Automatic Recognition", SRL, 90(2A). (5) Álvarez et al., 2012, "Discriminative feature selection for automatic classification of volcano-seismic signals", GRSL,9(2)
	(6) Carniel 2014, "Characterization of volcanic regimes and identification of significant transitions using geophysical data: a review", BV, 76(0).
an't yet 3 nanual	Acknowledgments: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. [749249] (VULCAN.ears project)